Homeostatic control of synaptic rewiring in recurrent networks induces the formation of stable memory engrams

Brain networks store new memories using functional and structural synaptic plasticity. Memory formation is generally attributed to Hebbian plasticity, while homeostatic plasticity is thought to have an ancillary role in stabilizing network dynamics. Here we report that homeostatic plasticity alone c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2022-02, Vol.18 (2), p.e1009836-e1009836
Hauptverfasser: Gallinaro, Júlia V, Gašparović, Nebojša, Rotter, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1009836
container_issue 2
container_start_page e1009836
container_title PLoS computational biology
container_volume 18
creator Gallinaro, Júlia V
Gašparović, Nebojša
Rotter, Stefan
description Brain networks store new memories using functional and structural synaptic plasticity. Memory formation is generally attributed to Hebbian plasticity, while homeostatic plasticity is thought to have an ancillary role in stabilizing network dynamics. Here we report that homeostatic plasticity alone can also lead to the formation of stable memories. We analyze this phenomenon using a new theory of network remodeling, combined with numerical simulations of recurrent spiking neural networks that exhibit structural plasticity based on firing rate homeostasis. These networks are able to store repeatedly presented patterns and recall them upon the presentation of incomplete cues. Storage is fast, governed by the homeostatic drift. In contrast, forgetting is slow, driven by a diffusion process. Joint stimulation of neurons induces the growth of associative connections between them, leading to the formation of memory engrams. These memories are stored in a distributed fashion throughout connectivity matrix, and individual synaptic connections have only a small influence. Although memory-specific connections are increased in number, the total number of inputs and outputs of neurons undergo only small changes during stimulation. We find that homeostatic structural plasticity induces a specific type of "silent memories", different from conventional attractor states.
doi_str_mv 10.1371/journal.pcbi.1009836
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2640120621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A695461230</galeid><doaj_id>oai_doaj_org_article_87f7a91df6e24e968e6a14c045a14732</doaj_id><sourcerecordid>A695461230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-e06b79cd03123c4a3f0d8ae0856c6159c6e775f4918cda6580753a459cce7abe3</originalsourceid><addsrcrecordid>eNqVUk1v1DAQjRCIfsA_QBCJSznsYsffF6SqArpSBRIfZ8vrTFIvib3YCWX_PU43rbqIC_JhRjNvnj3PryheYLTEROC3mzBGb7rl1q7dEiOkJOGPimPMGFkIwuTjB_lRcZLSBqGcKv60OCIMU0KlOi76y9BDSIMZnC1t8EMMXRmaMu282U61CDcuOt-WzufcjjGCH0oPw02IP1Ku1qOFVA7XUDYh9pkn-FuCwaw7KHvoQ9yV4Nto-vSseNKYLsHzOZ4W3z-8_3Zxubj6_HF1cX61sJyQYQGIr4WyNSK4IpYa0qBaGkCSccsxU5aDEKyhCktbG84kEowYmhsWhFkDOS1e7Xm3XUh6VirpilOEK8QrnBGrPaIOZqO30fUm7nQwTt8WQmy1iXn_DrQUjTAK1w2HioLiErjB1CLKchCkylzv5tvGdQ-1zQJF0x2QHna8u9Zt-KWl5IwrlQnOZoIYfo6QBt27ZKHrjIcwTu-uZKUERiRDX_8F_fd2yz2qNXkB55uQ77X51NC7_MvQuFw_54pRniVGeeDNwcDkBPg9tGZMSa--fvkP7KdDLN1jbQwpRWjuVcFITza-e76ebKxnG-exlw8VvR-68y35A83R8Eg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640120621</pqid></control><display><type>article</type><title>Homeostatic control of synaptic rewiring in recurrent networks induces the formation of stable memory engrams</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gallinaro, Júlia V ; Gašparović, Nebojša ; Rotter, Stefan</creator><contributor>van Rossum, Mark C. W.</contributor><creatorcontrib>Gallinaro, Júlia V ; Gašparović, Nebojša ; Rotter, Stefan ; van Rossum, Mark C. W.</creatorcontrib><description>Brain networks store new memories using functional and structural synaptic plasticity. Memory formation is generally attributed to Hebbian plasticity, while homeostatic plasticity is thought to have an ancillary role in stabilizing network dynamics. Here we report that homeostatic plasticity alone can also lead to the formation of stable memories. We analyze this phenomenon using a new theory of network remodeling, combined with numerical simulations of recurrent spiking neural networks that exhibit structural plasticity based on firing rate homeostasis. These networks are able to store repeatedly presented patterns and recall them upon the presentation of incomplete cues. Storage is fast, governed by the homeostatic drift. In contrast, forgetting is slow, driven by a diffusion process. Joint stimulation of neurons induces the growth of associative connections between them, leading to the formation of memory engrams. These memories are stored in a distributed fashion throughout connectivity matrix, and individual synaptic connections have only a small influence. Although memory-specific connections are increased in number, the total number of inputs and outputs of neurons undergo only small changes during stimulation. We find that homeostatic structural plasticity induces a specific type of "silent memories", different from conventional attractor states.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009836</identifier><identifier>PMID: 35143489</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Brain ; Computer and Information Sciences ; Connectivity ; Diffusion rate ; Firing pattern ; Firing rate ; Functional plasticity ; Hebbian plasticity ; Homeostasis ; Homeostasis - physiology ; Homeostatic plasticity ; Medicine and Health Sciences ; Memory ; Models, Neurological ; Nerve Net - physiology ; Neural circuitry ; Neural networks ; Neural plasticity ; Neurological research ; Neuronal Plasticity - physiology ; Neurons ; Neurons - physiology ; Neuroplasticity ; Physiological aspects ; Plasticity ; Rewiring ; Stimulation ; Structure-function relationships ; Synapses ; Synapses - physiology ; Synaptic plasticity</subject><ispartof>PLoS computational biology, 2022-02, Vol.18 (2), p.e1009836-e1009836</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Gallinaro et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Gallinaro et al 2022 Gallinaro et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-e06b79cd03123c4a3f0d8ae0856c6159c6e775f4918cda6580753a459cce7abe3</citedby><cites>FETCH-LOGICAL-c633t-e06b79cd03123c4a3f0d8ae0856c6159c6e775f4918cda6580753a459cce7abe3</cites><orcidid>0000-0003-4928-9370 ; 0000-0003-3534-6530 ; 0000-0003-0356-9676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8865699/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8865699/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35143489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>van Rossum, Mark C. W.</contributor><creatorcontrib>Gallinaro, Júlia V</creatorcontrib><creatorcontrib>Gašparović, Nebojša</creatorcontrib><creatorcontrib>Rotter, Stefan</creatorcontrib><title>Homeostatic control of synaptic rewiring in recurrent networks induces the formation of stable memory engrams</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Brain networks store new memories using functional and structural synaptic plasticity. Memory formation is generally attributed to Hebbian plasticity, while homeostatic plasticity is thought to have an ancillary role in stabilizing network dynamics. Here we report that homeostatic plasticity alone can also lead to the formation of stable memories. We analyze this phenomenon using a new theory of network remodeling, combined with numerical simulations of recurrent spiking neural networks that exhibit structural plasticity based on firing rate homeostasis. These networks are able to store repeatedly presented patterns and recall them upon the presentation of incomplete cues. Storage is fast, governed by the homeostatic drift. In contrast, forgetting is slow, driven by a diffusion process. Joint stimulation of neurons induces the growth of associative connections between them, leading to the formation of memory engrams. These memories are stored in a distributed fashion throughout connectivity matrix, and individual synaptic connections have only a small influence. Although memory-specific connections are increased in number, the total number of inputs and outputs of neurons undergo only small changes during stimulation. We find that homeostatic structural plasticity induces a specific type of "silent memories", different from conventional attractor states.</description><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Computer and Information Sciences</subject><subject>Connectivity</subject><subject>Diffusion rate</subject><subject>Firing pattern</subject><subject>Firing rate</subject><subject>Functional plasticity</subject><subject>Hebbian plasticity</subject><subject>Homeostasis</subject><subject>Homeostasis - physiology</subject><subject>Homeostatic plasticity</subject><subject>Medicine and Health Sciences</subject><subject>Memory</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neural plasticity</subject><subject>Neurological research</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neuroplasticity</subject><subject>Physiological aspects</subject><subject>Plasticity</subject><subject>Rewiring</subject><subject>Stimulation</subject><subject>Structure-function relationships</subject><subject>Synapses</subject><subject>Synapses - physiology</subject><subject>Synaptic plasticity</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVUk1v1DAQjRCIfsA_QBCJSznsYsffF6SqArpSBRIfZ8vrTFIvib3YCWX_PU43rbqIC_JhRjNvnj3PryheYLTEROC3mzBGb7rl1q7dEiOkJOGPimPMGFkIwuTjB_lRcZLSBqGcKv60OCIMU0KlOi76y9BDSIMZnC1t8EMMXRmaMu282U61CDcuOt-WzufcjjGCH0oPw02IP1Ku1qOFVA7XUDYh9pkn-FuCwaw7KHvoQ9yV4Nto-vSseNKYLsHzOZ4W3z-8_3Zxubj6_HF1cX61sJyQYQGIr4WyNSK4IpYa0qBaGkCSccsxU5aDEKyhCktbG84kEowYmhsWhFkDOS1e7Xm3XUh6VirpilOEK8QrnBGrPaIOZqO30fUm7nQwTt8WQmy1iXn_DrQUjTAK1w2HioLiErjB1CLKchCkylzv5tvGdQ-1zQJF0x2QHna8u9Zt-KWl5IwrlQnOZoIYfo6QBt27ZKHrjIcwTu-uZKUERiRDX_8F_fd2yz2qNXkB55uQ77X51NC7_MvQuFw_54pRniVGeeDNwcDkBPg9tGZMSa--fvkP7KdDLN1jbQwpRWjuVcFITza-e76ebKxnG-exlw8VvR-68y35A83R8Eg</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Gallinaro, Júlia V</creator><creator>Gašparović, Nebojša</creator><creator>Rotter, Stefan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4928-9370</orcidid><orcidid>https://orcid.org/0000-0003-3534-6530</orcidid><orcidid>https://orcid.org/0000-0003-0356-9676</orcidid></search><sort><creationdate>20220201</creationdate><title>Homeostatic control of synaptic rewiring in recurrent networks induces the formation of stable memory engrams</title><author>Gallinaro, Júlia V ; Gašparović, Nebojša ; Rotter, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-e06b79cd03123c4a3f0d8ae0856c6159c6e775f4918cda6580753a459cce7abe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Computer and Information Sciences</topic><topic>Connectivity</topic><topic>Diffusion rate</topic><topic>Firing pattern</topic><topic>Firing rate</topic><topic>Functional plasticity</topic><topic>Hebbian plasticity</topic><topic>Homeostasis</topic><topic>Homeostasis - physiology</topic><topic>Homeostatic plasticity</topic><topic>Medicine and Health Sciences</topic><topic>Memory</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neural plasticity</topic><topic>Neurological research</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neuroplasticity</topic><topic>Physiological aspects</topic><topic>Plasticity</topic><topic>Rewiring</topic><topic>Stimulation</topic><topic>Structure-function relationships</topic><topic>Synapses</topic><topic>Synapses - physiology</topic><topic>Synaptic plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallinaro, Júlia V</creatorcontrib><creatorcontrib>Gašparović, Nebojša</creatorcontrib><creatorcontrib>Rotter, Stefan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallinaro, Júlia V</au><au>Gašparović, Nebojša</au><au>Rotter, Stefan</au><au>van Rossum, Mark C. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homeostatic control of synaptic rewiring in recurrent networks induces the formation of stable memory engrams</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>18</volume><issue>2</issue><spage>e1009836</spage><epage>e1009836</epage><pages>e1009836-e1009836</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Brain networks store new memories using functional and structural synaptic plasticity. Memory formation is generally attributed to Hebbian plasticity, while homeostatic plasticity is thought to have an ancillary role in stabilizing network dynamics. Here we report that homeostatic plasticity alone can also lead to the formation of stable memories. We analyze this phenomenon using a new theory of network remodeling, combined with numerical simulations of recurrent spiking neural networks that exhibit structural plasticity based on firing rate homeostasis. These networks are able to store repeatedly presented patterns and recall them upon the presentation of incomplete cues. Storage is fast, governed by the homeostatic drift. In contrast, forgetting is slow, driven by a diffusion process. Joint stimulation of neurons induces the growth of associative connections between them, leading to the formation of memory engrams. These memories are stored in a distributed fashion throughout connectivity matrix, and individual synaptic connections have only a small influence. Although memory-specific connections are increased in number, the total number of inputs and outputs of neurons undergo only small changes during stimulation. We find that homeostatic structural plasticity induces a specific type of "silent memories", different from conventional attractor states.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35143489</pmid><doi>10.1371/journal.pcbi.1009836</doi><orcidid>https://orcid.org/0000-0003-4928-9370</orcidid><orcidid>https://orcid.org/0000-0003-3534-6530</orcidid><orcidid>https://orcid.org/0000-0003-0356-9676</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2022-02, Vol.18 (2), p.e1009836-e1009836
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2640120621
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biology and Life Sciences
Brain
Computer and Information Sciences
Connectivity
Diffusion rate
Firing pattern
Firing rate
Functional plasticity
Hebbian plasticity
Homeostasis
Homeostasis - physiology
Homeostatic plasticity
Medicine and Health Sciences
Memory
Models, Neurological
Nerve Net - physiology
Neural circuitry
Neural networks
Neural plasticity
Neurological research
Neuronal Plasticity - physiology
Neurons
Neurons - physiology
Neuroplasticity
Physiological aspects
Plasticity
Rewiring
Stimulation
Structure-function relationships
Synapses
Synapses - physiology
Synaptic plasticity
title Homeostatic control of synaptic rewiring in recurrent networks induces the formation of stable memory engrams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homeostatic%20control%20of%20synaptic%20rewiring%20in%20recurrent%20networks%20induces%20the%20formation%20of%20stable%20memory%20engrams&rft.jtitle=PLoS%20computational%20biology&rft.au=Gallinaro,%20J%C3%BAlia%20V&rft.date=2022-02-01&rft.volume=18&rft.issue=2&rft.spage=e1009836&rft.epage=e1009836&rft.pages=e1009836-e1009836&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009836&rft_dat=%3Cgale_plos_%3EA695461230%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640120621&rft_id=info:pmid/35143489&rft_galeid=A695461230&rft_doaj_id=oai_doaj_org_article_87f7a91df6e24e968e6a14c045a14732&rfr_iscdi=true