Ten simple rules for initial data analysis
Typically, researchers do not perform IDA in a systematic way, if at all, or mix IDA activities with subsequent data analysis tasks such as hypothesis generation or exploration, formal analysis, and interpretation of conclusions. The value of an effective IDA strategy for researchers lies in ensurin...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2022-02, Vol.18 (2), p.e1009819-e1009819 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009819 |
---|---|
container_issue | 2 |
container_start_page | e1009819 |
container_title | PLoS computational biology |
container_volume | 18 |
creator | Baillie, Mark le Cessie, Saskia Schmidt, Carsten Oliver Lusa, Lara Huebner, Marianne |
description | Typically, researchers do not perform IDA in a systematic way, if at all, or mix IDA activities with subsequent data analysis tasks such as hypothesis generation or exploration, formal analysis, and interpretation of conclusions. The value of an effective IDA strategy for researchers lies in ensuring that data are of sufficient quality, that model assumptions made in the SAP are satisfied, or to support decisions for the statistical analyses (and are adequately documented). IDA requires domain knowledge, especially researchers with an understanding of why and how the data was measured and collected, expertise in data management and stewardship, competencies in planning and implementing data analysis, and experience of scientific computing practices. Make IDA reproducible IDA is a crucial part of the research pipeline, and as such, it should be well documented to promote transparency, utility, and reproducibility. [...]keeping track of changes that you and your collaborators make to project data, programs (including analysis scripts, libraries, and packages), and documentation (including plans and reports) is a key IDA practice [15]. |
doi_str_mv | 10.1371/journal.pcbi.1009819 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2640120254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A695460928</galeid><doaj_id>oai_doaj_org_article_1ec60f7014d942ab816bba7b4ccf7049</doaj_id><sourcerecordid>A695460928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-fa669828afda96c697cddb378501b558360915216d934d1d813c5028b4ac99e03</originalsourceid><addsrcrecordid>eNqVUltrFDEUHsRia_UfiA74osKuuU_yIpTiZaEoaH0OZ5LMmiUzWZMZsf_ebHdauqUvkoeEk-9yzuGrqhcYLTFt8PtNnNIAYbk1rV9ihJTE6lF1gjmni4Zy-fjO-7h6mvMGofJU4kl1TDlBhCp1Ur27dEOdfb8Nrk5TcLnuYqr94EcPobYwQg3F5Sr7_Kw66iBk93y-T6ufnz5enn9ZXHz7vDo_u1gYQem46EAIJYmEzoISRqjGWNvSRnKEW84lFUhhTrCwijKLrcTUcERky8Ao5RA9rV7tdbchZj2PmTURDOHSNmcFsdojbISN3ibfQ7rSEby-LsS01pBGb4LT2BmBugZhZhUj0Eos2haalhlTqkwVrQ-z29T2zho3jAnCgejhz-B_6XX8o6VsEMekCLyZBVL8Pbk86t5n40KAwcVp1zelkklBdl6v70Efnm65R62hDOCHLhZfU451vTdxcJ0v9TOhOCurJLIQ3h4QCmZ0f8c1TDnr1Y_v_4H9eohle6xJMefkututYKR3GbxpX-8yqOcMFtrLuxu9Jd2Ejv4DvpDVyQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640120254</pqid></control><display><type>article</type><title>Ten simple rules for initial data analysis</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Baillie, Mark ; le Cessie, Saskia ; Schmidt, Carsten Oliver ; Lusa, Lara ; Huebner, Marianne</creator><creatorcontrib>Baillie, Mark ; le Cessie, Saskia ; Schmidt, Carsten Oliver ; Lusa, Lara ; Huebner, Marianne ; Topic Group “Initial Data Analysis” of the STRATOS Initiative ; for the Topic Group “Initial Data Analysis” of the STRATOS Initiative</creatorcontrib><description>Typically, researchers do not perform IDA in a systematic way, if at all, or mix IDA activities with subsequent data analysis tasks such as hypothesis generation or exploration, formal analysis, and interpretation of conclusions. The value of an effective IDA strategy for researchers lies in ensuring that data are of sufficient quality, that model assumptions made in the SAP are satisfied, or to support decisions for the statistical analyses (and are adequately documented). IDA requires domain knowledge, especially researchers with an understanding of why and how the data was measured and collected, expertise in data management and stewardship, competencies in planning and implementing data analysis, and experience of scientific computing practices. Make IDA reproducible IDA is a crucial part of the research pipeline, and as such, it should be well documented to promote transparency, utility, and reproducibility. [...]keeping track of changes that you and your collaborators make to project data, programs (including analysis scripts, libraries, and packages), and documentation (including plans and reports) is a key IDA practice [15].</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009819</identifier><identifier>PMID: 35202399</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Computer and Information Sciences ; Data Analysis ; Data management ; Data mining ; Decision analysis ; Humans ; Hypotheses ; Information management ; Laws, regulations and rules ; Metadata ; Methods ; Ovarian Neoplasms ; Physical Sciences ; Planning ; Reproducibility ; Research and Analysis Methods ; Researchers ; Science Policy ; Social Sciences ; Statistical analysis ; Subject specialists</subject><ispartof>PLoS computational biology, 2022-02, Vol.18 (2), p.e1009819-e1009819</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Baillie et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Baillie et al 2022 Baillie et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-fa669828afda96c697cddb378501b558360915216d934d1d813c5028b4ac99e03</citedby><cites>FETCH-LOGICAL-c633t-fa669828afda96c697cddb378501b558360915216d934d1d813c5028b4ac99e03</cites><orcidid>0000-0002-8981-2421 ; 0000-0002-9694-9231 ; 0000-0002-5618-0667 ; 0000-0001-5266-9396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870512/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870512/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35202399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baillie, Mark</creatorcontrib><creatorcontrib>le Cessie, Saskia</creatorcontrib><creatorcontrib>Schmidt, Carsten Oliver</creatorcontrib><creatorcontrib>Lusa, Lara</creatorcontrib><creatorcontrib>Huebner, Marianne</creatorcontrib><creatorcontrib>Topic Group “Initial Data Analysis” of the STRATOS Initiative</creatorcontrib><creatorcontrib>for the Topic Group “Initial Data Analysis” of the STRATOS Initiative</creatorcontrib><title>Ten simple rules for initial data analysis</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Typically, researchers do not perform IDA in a systematic way, if at all, or mix IDA activities with subsequent data analysis tasks such as hypothesis generation or exploration, formal analysis, and interpretation of conclusions. The value of an effective IDA strategy for researchers lies in ensuring that data are of sufficient quality, that model assumptions made in the SAP are satisfied, or to support decisions for the statistical analyses (and are adequately documented). IDA requires domain knowledge, especially researchers with an understanding of why and how the data was measured and collected, expertise in data management and stewardship, competencies in planning and implementing data analysis, and experience of scientific computing practices. Make IDA reproducible IDA is a crucial part of the research pipeline, and as such, it should be well documented to promote transparency, utility, and reproducibility. [...]keeping track of changes that you and your collaborators make to project data, programs (including analysis scripts, libraries, and packages), and documentation (including plans and reports) is a key IDA practice [15].</description><subject>Computer and Information Sciences</subject><subject>Data Analysis</subject><subject>Data management</subject><subject>Data mining</subject><subject>Decision analysis</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Information management</subject><subject>Laws, regulations and rules</subject><subject>Metadata</subject><subject>Methods</subject><subject>Ovarian Neoplasms</subject><subject>Physical Sciences</subject><subject>Planning</subject><subject>Reproducibility</subject><subject>Research and Analysis Methods</subject><subject>Researchers</subject><subject>Science Policy</subject><subject>Social Sciences</subject><subject>Statistical analysis</subject><subject>Subject specialists</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVUltrFDEUHsRia_UfiA74osKuuU_yIpTiZaEoaH0OZ5LMmiUzWZMZsf_ebHdauqUvkoeEk-9yzuGrqhcYLTFt8PtNnNIAYbk1rV9ihJTE6lF1gjmni4Zy-fjO-7h6mvMGofJU4kl1TDlBhCp1Ur27dEOdfb8Nrk5TcLnuYqr94EcPobYwQg3F5Sr7_Kw66iBk93y-T6ufnz5enn9ZXHz7vDo_u1gYQem46EAIJYmEzoISRqjGWNvSRnKEW84lFUhhTrCwijKLrcTUcERky8Ao5RA9rV7tdbchZj2PmTURDOHSNmcFsdojbISN3ibfQ7rSEby-LsS01pBGb4LT2BmBugZhZhUj0Eos2haalhlTqkwVrQ-z29T2zho3jAnCgejhz-B_6XX8o6VsEMekCLyZBVL8Pbk86t5n40KAwcVp1zelkklBdl6v70Efnm65R62hDOCHLhZfU451vTdxcJ0v9TOhOCurJLIQ3h4QCmZ0f8c1TDnr1Y_v_4H9eohle6xJMefkututYKR3GbxpX-8yqOcMFtrLuxu9Jd2Ejv4DvpDVyQ</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Baillie, Mark</creator><creator>le Cessie, Saskia</creator><creator>Schmidt, Carsten Oliver</creator><creator>Lusa, Lara</creator><creator>Huebner, Marianne</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8981-2421</orcidid><orcidid>https://orcid.org/0000-0002-9694-9231</orcidid><orcidid>https://orcid.org/0000-0002-5618-0667</orcidid><orcidid>https://orcid.org/0000-0001-5266-9396</orcidid></search><sort><creationdate>20220201</creationdate><title>Ten simple rules for initial data analysis</title><author>Baillie, Mark ; le Cessie, Saskia ; Schmidt, Carsten Oliver ; Lusa, Lara ; Huebner, Marianne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-fa669828afda96c697cddb378501b558360915216d934d1d813c5028b4ac99e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer and Information Sciences</topic><topic>Data Analysis</topic><topic>Data management</topic><topic>Data mining</topic><topic>Decision analysis</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Information management</topic><topic>Laws, regulations and rules</topic><topic>Metadata</topic><topic>Methods</topic><topic>Ovarian Neoplasms</topic><topic>Physical Sciences</topic><topic>Planning</topic><topic>Reproducibility</topic><topic>Research and Analysis Methods</topic><topic>Researchers</topic><topic>Science Policy</topic><topic>Social Sciences</topic><topic>Statistical analysis</topic><topic>Subject specialists</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baillie, Mark</creatorcontrib><creatorcontrib>le Cessie, Saskia</creatorcontrib><creatorcontrib>Schmidt, Carsten Oliver</creatorcontrib><creatorcontrib>Lusa, Lara</creatorcontrib><creatorcontrib>Huebner, Marianne</creatorcontrib><creatorcontrib>Topic Group “Initial Data Analysis” of the STRATOS Initiative</creatorcontrib><creatorcontrib>for the Topic Group “Initial Data Analysis” of the STRATOS Initiative</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baillie, Mark</au><au>le Cessie, Saskia</au><au>Schmidt, Carsten Oliver</au><au>Lusa, Lara</au><au>Huebner, Marianne</au><aucorp>Topic Group “Initial Data Analysis” of the STRATOS Initiative</aucorp><aucorp>for the Topic Group “Initial Data Analysis” of the STRATOS Initiative</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ten simple rules for initial data analysis</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>18</volume><issue>2</issue><spage>e1009819</spage><epage>e1009819</epage><pages>e1009819-e1009819</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Typically, researchers do not perform IDA in a systematic way, if at all, or mix IDA activities with subsequent data analysis tasks such as hypothesis generation or exploration, formal analysis, and interpretation of conclusions. The value of an effective IDA strategy for researchers lies in ensuring that data are of sufficient quality, that model assumptions made in the SAP are satisfied, or to support decisions for the statistical analyses (and are adequately documented). IDA requires domain knowledge, especially researchers with an understanding of why and how the data was measured and collected, expertise in data management and stewardship, competencies in planning and implementing data analysis, and experience of scientific computing practices. Make IDA reproducible IDA is a crucial part of the research pipeline, and as such, it should be well documented to promote transparency, utility, and reproducibility. [...]keeping track of changes that you and your collaborators make to project data, programs (including analysis scripts, libraries, and packages), and documentation (including plans and reports) is a key IDA practice [15].</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35202399</pmid><doi>10.1371/journal.pcbi.1009819</doi><orcidid>https://orcid.org/0000-0002-8981-2421</orcidid><orcidid>https://orcid.org/0000-0002-9694-9231</orcidid><orcidid>https://orcid.org/0000-0002-5618-0667</orcidid><orcidid>https://orcid.org/0000-0001-5266-9396</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2022-02, Vol.18 (2), p.e1009819-e1009819 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2640120254 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Computer and Information Sciences Data Analysis Data management Data mining Decision analysis Humans Hypotheses Information management Laws, regulations and rules Metadata Methods Ovarian Neoplasms Physical Sciences Planning Reproducibility Research and Analysis Methods Researchers Science Policy Social Sciences Statistical analysis Subject specialists |
title | Ten simple rules for initial data analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T05%3A40%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ten%20simple%20rules%20for%20initial%20data%20analysis&rft.jtitle=PLoS%20computational%20biology&rft.au=Baillie,%20Mark&rft.aucorp=Topic%20Group%20%E2%80%9CInitial%20Data%20Analysis%E2%80%9D%20of%20the%20STRATOS%20Initiative&rft.date=2022-02-01&rft.volume=18&rft.issue=2&rft.spage=e1009819&rft.epage=e1009819&rft.pages=e1009819-e1009819&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009819&rft_dat=%3Cgale_plos_%3EA695460928%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640120254&rft_id=info:pmid/35202399&rft_galeid=A695460928&rft_doaj_id=oai_doaj_org_article_1ec60f7014d942ab816bba7b4ccf7049&rfr_iscdi=true |