Birth cohort relative to an influenza A virus's antigenic cluster introduction drives patterns of children's antibody titers

An individual's antibody titers to influenza A strains are a result of the complicated interplay between infection history, cross-reactivity, immune waning, and other factors. It has been challenging to disentangle how population-level patterns of humoral immunity change as a function of age, c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2022-02, Vol.18 (2), p.e1010317-e1010317
Hauptverfasser: Brouwer, Andrew F, Balmaseda, Angel, Gresh, Lionel, Patel, Mayuri, Ojeda, Sergio, Schiller, Amy J, Lopez, Roger, Webby, Richard J, Nelson, Martha I, Kuan, Guillermina, Gordon, Aubree
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1010317
container_issue 2
container_start_page e1010317
container_title PLoS pathogens
container_volume 18
creator Brouwer, Andrew F
Balmaseda, Angel
Gresh, Lionel
Patel, Mayuri
Ojeda, Sergio
Schiller, Amy J
Lopez, Roger
Webby, Richard J
Nelson, Martha I
Kuan, Guillermina
Gordon, Aubree
description An individual's antibody titers to influenza A strains are a result of the complicated interplay between infection history, cross-reactivity, immune waning, and other factors. It has been challenging to disentangle how population-level patterns of humoral immunity change as a function of age, calendar year, and birth cohort from cross-sectional data alone. We analyzed 1,589 longitudinal sera samples from 260 children across three studies in Nicaragua, 2006-16. Hemagglutination inhibition (HAI) titers were determined against four H3N2 strains, one H1N1 strain, and two H1N1pdm strains. We assessed temporal patterns of HAI titers using an age-period-cohort modeling framework. We found that titers against a given virus depended on calendar year of serum collection and birth cohort but not on age. Titer cohort patterns were better described by participants' ages relative to year of likely introduction of the virus's antigenic cluster than by age relative to year of strain introduction or by year of birth. These cohort effects may be driven by a decreasing likelihood of early-life infection after cluster introduction and by more broadly reactive antibodies at a young age. H3N2 and H1N1 viruses had qualitatively distinct cohort patterns, with cohort patterns of titers to specific H3N2 strains reaching their peak in children born 3 years prior to that virus's antigenic cluster introduction and with titers to H1N1 and H1N1pdm strains peaking for children born 1-2 years prior to cluster introduction but not being dramatically lower for older children. Ultimately, specific patterns of strain circulation and antigenic cluster introduction may drive population-level antibody titer patterns in children.
doi_str_mv 10.1371/journal.ppat.1010317
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2640117905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A695460976</galeid><doaj_id>oai_doaj_org_article_80892ebd3d0f42dfbfe221885f14ab17</doaj_id><sourcerecordid>A695460976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-5058c83577ee3b9d4fe5bff4af459ffc38df73e061777fc9833b9a3b60120d593</originalsourceid><addsrcrecordid>eNqVkk2PFCEQhjtG466r_8AoiQf1MCM0DXRfTMaNH5NsNPHjTGgoZpj0NLNAT1zjj5dxejfbZi-GA6TqeV-oooriKcFzQgV5s_FD6FU33-1UmhNMMCXiXnFKGKMzQUV1_9b5pHgU4wbjilDCHxYnlJGm5IKeFr_fuZDWSPu1DwkF6FRye0DJI9Uj19tugP6XQgu0d2GIL2MOJ7eC3mmkuyEmCJlKwZtBJ-d7ZEKWR5TflFN9RN4ivXadCdCP4tabK5RcTsfHxQOrughPxv2s-PHh_ffzT7OLLx-X54uLmeacpBnDrNY1ZUIA0LYxlQXWWlspW7HGWk1rYwUFzIkQwuqmpplStOWYlNiwhp4Vz4--u85HOTYuypJXmBDRYJaJ5ZEwXm3kLritClfSKyf_BnxYSRWS0x3IGtdNCa2hBtuqNLa1UJakrpkllWqJyF5vx9uGdgtGQ-6P6iam00zv1nLl97KuG855nQ1ejQbBXw4Qk9y6qKHrVA9-OLybloRh3FQZffEPend1I7VSuYD8qz7fqw-mcsEbVnHcCJ6p-R1UXga2TvserMvxieD1RJCZBD_TSg0xyuW3r__Bfp6y1ZHVwccYwN70jmB5mP3rIuVh9uU4-1n27Hbfb0TXw07_AOcFAcQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640117905</pqid></control><display><type>article</type><title>Birth cohort relative to an influenza A virus's antigenic cluster introduction drives patterns of children's antibody titers</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>Brouwer, Andrew F ; Balmaseda, Angel ; Gresh, Lionel ; Patel, Mayuri ; Ojeda, Sergio ; Schiller, Amy J ; Lopez, Roger ; Webby, Richard J ; Nelson, Martha I ; Kuan, Guillermina ; Gordon, Aubree</creator><creatorcontrib>Brouwer, Andrew F ; Balmaseda, Angel ; Gresh, Lionel ; Patel, Mayuri ; Ojeda, Sergio ; Schiller, Amy J ; Lopez, Roger ; Webby, Richard J ; Nelson, Martha I ; Kuan, Guillermina ; Gordon, Aubree</creatorcontrib><description>An individual's antibody titers to influenza A strains are a result of the complicated interplay between infection history, cross-reactivity, immune waning, and other factors. It has been challenging to disentangle how population-level patterns of humoral immunity change as a function of age, calendar year, and birth cohort from cross-sectional data alone. We analyzed 1,589 longitudinal sera samples from 260 children across three studies in Nicaragua, 2006-16. Hemagglutination inhibition (HAI) titers were determined against four H3N2 strains, one H1N1 strain, and two H1N1pdm strains. We assessed temporal patterns of HAI titers using an age-period-cohort modeling framework. We found that titers against a given virus depended on calendar year of serum collection and birth cohort but not on age. Titer cohort patterns were better described by participants' ages relative to year of likely introduction of the virus's antigenic cluster than by age relative to year of strain introduction or by year of birth. These cohort effects may be driven by a decreasing likelihood of early-life infection after cluster introduction and by more broadly reactive antibodies at a young age. H3N2 and H1N1 viruses had qualitatively distinct cohort patterns, with cohort patterns of titers to specific H3N2 strains reaching their peak in children born 3 years prior to that virus's antigenic cluster introduction and with titers to H1N1 and H1N1pdm strains peaking for children born 1-2 years prior to cluster introduction but not being dramatically lower for older children. Ultimately, specific patterns of strain circulation and antigenic cluster introduction may drive population-level antibody titer patterns in children.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1010317</identifier><identifier>PMID: 35192673</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adolescent ; Age ; Antibodies ; Antibodies, Viral ; Antigenic determinants ; Antigens ; Biology and Life Sciences ; Birth Cohort ; Calendars ; Child ; Children ; Clusters ; Cohort analysis ; Cross-reactivity ; Cross-Sectional Studies ; Demographic aspects ; Evaluation ; Health aspects ; Hemagglutination inhibition ; Hemagglutination Inhibition Tests ; Humans ; Humoral immunity ; Immune response ; Immunology ; Infections ; Influenza ; Influenza A ; Influenza A Virus, H1N1 Subtype ; Influenza A Virus, H3N2 Subtype ; Influenza Vaccines ; Influenza viruses ; Influenza, Human - epidemiology ; Laboratories ; Medicine and Health Sciences ; Pandemics ; Pediatrics ; People and Places ; Physiological aspects ; Population ; Research and Analysis Methods ; Strains (organisms) ; Swine flu ; Vaccines ; Viral antibodies ; Viruses</subject><ispartof>PLoS pathogens, 2022-02, Vol.18 (2), p.e1010317-e1010317</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-5058c83577ee3b9d4fe5bff4af459ffc38df73e061777fc9833b9a3b60120d593</citedby><cites>FETCH-LOGICAL-c661t-5058c83577ee3b9d4fe5bff4af459ffc38df73e061777fc9833b9a3b60120d593</cites><orcidid>0000-0002-4397-7132 ; 0000-0002-5251-173X ; 0000-0002-3779-5287 ; 0000-0002-2333-1748 ; 0000-0003-4814-0179 ; 0000-0002-9352-7877 ; 0000-0002-1000-3665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896668/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896668/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35192673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brouwer, Andrew F</creatorcontrib><creatorcontrib>Balmaseda, Angel</creatorcontrib><creatorcontrib>Gresh, Lionel</creatorcontrib><creatorcontrib>Patel, Mayuri</creatorcontrib><creatorcontrib>Ojeda, Sergio</creatorcontrib><creatorcontrib>Schiller, Amy J</creatorcontrib><creatorcontrib>Lopez, Roger</creatorcontrib><creatorcontrib>Webby, Richard J</creatorcontrib><creatorcontrib>Nelson, Martha I</creatorcontrib><creatorcontrib>Kuan, Guillermina</creatorcontrib><creatorcontrib>Gordon, Aubree</creatorcontrib><title>Birth cohort relative to an influenza A virus's antigenic cluster introduction drives patterns of children's antibody titers</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>An individual's antibody titers to influenza A strains are a result of the complicated interplay between infection history, cross-reactivity, immune waning, and other factors. It has been challenging to disentangle how population-level patterns of humoral immunity change as a function of age, calendar year, and birth cohort from cross-sectional data alone. We analyzed 1,589 longitudinal sera samples from 260 children across three studies in Nicaragua, 2006-16. Hemagglutination inhibition (HAI) titers were determined against four H3N2 strains, one H1N1 strain, and two H1N1pdm strains. We assessed temporal patterns of HAI titers using an age-period-cohort modeling framework. We found that titers against a given virus depended on calendar year of serum collection and birth cohort but not on age. Titer cohort patterns were better described by participants' ages relative to year of likely introduction of the virus's antigenic cluster than by age relative to year of strain introduction or by year of birth. These cohort effects may be driven by a decreasing likelihood of early-life infection after cluster introduction and by more broadly reactive antibodies at a young age. H3N2 and H1N1 viruses had qualitatively distinct cohort patterns, with cohort patterns of titers to specific H3N2 strains reaching their peak in children born 3 years prior to that virus's antigenic cluster introduction and with titers to H1N1 and H1N1pdm strains peaking for children born 1-2 years prior to cluster introduction but not being dramatically lower for older children. Ultimately, specific patterns of strain circulation and antigenic cluster introduction may drive population-level antibody titer patterns in children.</description><subject>Adolescent</subject><subject>Age</subject><subject>Antibodies</subject><subject>Antibodies, Viral</subject><subject>Antigenic determinants</subject><subject>Antigens</subject><subject>Biology and Life Sciences</subject><subject>Birth Cohort</subject><subject>Calendars</subject><subject>Child</subject><subject>Children</subject><subject>Clusters</subject><subject>Cohort analysis</subject><subject>Cross-reactivity</subject><subject>Cross-Sectional Studies</subject><subject>Demographic aspects</subject><subject>Evaluation</subject><subject>Health aspects</subject><subject>Hemagglutination inhibition</subject><subject>Hemagglutination Inhibition Tests</subject><subject>Humans</subject><subject>Humoral immunity</subject><subject>Immune response</subject><subject>Immunology</subject><subject>Infections</subject><subject>Influenza</subject><subject>Influenza A</subject><subject>Influenza A Virus, H1N1 Subtype</subject><subject>Influenza A Virus, H3N2 Subtype</subject><subject>Influenza Vaccines</subject><subject>Influenza viruses</subject><subject>Influenza, Human - epidemiology</subject><subject>Laboratories</subject><subject>Medicine and Health Sciences</subject><subject>Pandemics</subject><subject>Pediatrics</subject><subject>People and Places</subject><subject>Physiological aspects</subject><subject>Population</subject><subject>Research and Analysis Methods</subject><subject>Strains (organisms)</subject><subject>Swine flu</subject><subject>Vaccines</subject><subject>Viral antibodies</subject><subject>Viruses</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk2PFCEQhjtG466r_8AoiQf1MCM0DXRfTMaNH5NsNPHjTGgoZpj0NLNAT1zjj5dxejfbZi-GA6TqeV-oooriKcFzQgV5s_FD6FU33-1UmhNMMCXiXnFKGKMzQUV1_9b5pHgU4wbjilDCHxYnlJGm5IKeFr_fuZDWSPu1DwkF6FRye0DJI9Uj19tugP6XQgu0d2GIL2MOJ7eC3mmkuyEmCJlKwZtBJ-d7ZEKWR5TflFN9RN4ivXadCdCP4tabK5RcTsfHxQOrughPxv2s-PHh_ffzT7OLLx-X54uLmeacpBnDrNY1ZUIA0LYxlQXWWlspW7HGWk1rYwUFzIkQwuqmpplStOWYlNiwhp4Vz4--u85HOTYuypJXmBDRYJaJ5ZEwXm3kLritClfSKyf_BnxYSRWS0x3IGtdNCa2hBtuqNLa1UJakrpkllWqJyF5vx9uGdgtGQ-6P6iam00zv1nLl97KuG855nQ1ejQbBXw4Qk9y6qKHrVA9-OLybloRh3FQZffEPend1I7VSuYD8qz7fqw-mcsEbVnHcCJ6p-R1UXga2TvserMvxieD1RJCZBD_TSg0xyuW3r__Bfp6y1ZHVwccYwN70jmB5mP3rIuVh9uU4-1n27Hbfb0TXw07_AOcFAcQ</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Brouwer, Andrew F</creator><creator>Balmaseda, Angel</creator><creator>Gresh, Lionel</creator><creator>Patel, Mayuri</creator><creator>Ojeda, Sergio</creator><creator>Schiller, Amy J</creator><creator>Lopez, Roger</creator><creator>Webby, Richard J</creator><creator>Nelson, Martha I</creator><creator>Kuan, Guillermina</creator><creator>Gordon, Aubree</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4397-7132</orcidid><orcidid>https://orcid.org/0000-0002-5251-173X</orcidid><orcidid>https://orcid.org/0000-0002-3779-5287</orcidid><orcidid>https://orcid.org/0000-0002-2333-1748</orcidid><orcidid>https://orcid.org/0000-0003-4814-0179</orcidid><orcidid>https://orcid.org/0000-0002-9352-7877</orcidid><orcidid>https://orcid.org/0000-0002-1000-3665</orcidid></search><sort><creationdate>20220201</creationdate><title>Birth cohort relative to an influenza A virus's antigenic cluster introduction drives patterns of children's antibody titers</title><author>Brouwer, Andrew F ; Balmaseda, Angel ; Gresh, Lionel ; Patel, Mayuri ; Ojeda, Sergio ; Schiller, Amy J ; Lopez, Roger ; Webby, Richard J ; Nelson, Martha I ; Kuan, Guillermina ; Gordon, Aubree</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-5058c83577ee3b9d4fe5bff4af459ffc38df73e061777fc9833b9a3b60120d593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adolescent</topic><topic>Age</topic><topic>Antibodies</topic><topic>Antibodies, Viral</topic><topic>Antigenic determinants</topic><topic>Antigens</topic><topic>Biology and Life Sciences</topic><topic>Birth Cohort</topic><topic>Calendars</topic><topic>Child</topic><topic>Children</topic><topic>Clusters</topic><topic>Cohort analysis</topic><topic>Cross-reactivity</topic><topic>Cross-Sectional Studies</topic><topic>Demographic aspects</topic><topic>Evaluation</topic><topic>Health aspects</topic><topic>Hemagglutination inhibition</topic><topic>Hemagglutination Inhibition Tests</topic><topic>Humans</topic><topic>Humoral immunity</topic><topic>Immune response</topic><topic>Immunology</topic><topic>Infections</topic><topic>Influenza</topic><topic>Influenza A</topic><topic>Influenza A Virus, H1N1 Subtype</topic><topic>Influenza A Virus, H3N2 Subtype</topic><topic>Influenza Vaccines</topic><topic>Influenza viruses</topic><topic>Influenza, Human - epidemiology</topic><topic>Laboratories</topic><topic>Medicine and Health Sciences</topic><topic>Pandemics</topic><topic>Pediatrics</topic><topic>People and Places</topic><topic>Physiological aspects</topic><topic>Population</topic><topic>Research and Analysis Methods</topic><topic>Strains (organisms)</topic><topic>Swine flu</topic><topic>Vaccines</topic><topic>Viral antibodies</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brouwer, Andrew F</creatorcontrib><creatorcontrib>Balmaseda, Angel</creatorcontrib><creatorcontrib>Gresh, Lionel</creatorcontrib><creatorcontrib>Patel, Mayuri</creatorcontrib><creatorcontrib>Ojeda, Sergio</creatorcontrib><creatorcontrib>Schiller, Amy J</creatorcontrib><creatorcontrib>Lopez, Roger</creatorcontrib><creatorcontrib>Webby, Richard J</creatorcontrib><creatorcontrib>Nelson, Martha I</creatorcontrib><creatorcontrib>Kuan, Guillermina</creatorcontrib><creatorcontrib>Gordon, Aubree</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brouwer, Andrew F</au><au>Balmaseda, Angel</au><au>Gresh, Lionel</au><au>Patel, Mayuri</au><au>Ojeda, Sergio</au><au>Schiller, Amy J</au><au>Lopez, Roger</au><au>Webby, Richard J</au><au>Nelson, Martha I</au><au>Kuan, Guillermina</au><au>Gordon, Aubree</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Birth cohort relative to an influenza A virus's antigenic cluster introduction drives patterns of children's antibody titers</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>18</volume><issue>2</issue><spage>e1010317</spage><epage>e1010317</epage><pages>e1010317-e1010317</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>An individual's antibody titers to influenza A strains are a result of the complicated interplay between infection history, cross-reactivity, immune waning, and other factors. It has been challenging to disentangle how population-level patterns of humoral immunity change as a function of age, calendar year, and birth cohort from cross-sectional data alone. We analyzed 1,589 longitudinal sera samples from 260 children across three studies in Nicaragua, 2006-16. Hemagglutination inhibition (HAI) titers were determined against four H3N2 strains, one H1N1 strain, and two H1N1pdm strains. We assessed temporal patterns of HAI titers using an age-period-cohort modeling framework. We found that titers against a given virus depended on calendar year of serum collection and birth cohort but not on age. Titer cohort patterns were better described by participants' ages relative to year of likely introduction of the virus's antigenic cluster than by age relative to year of strain introduction or by year of birth. These cohort effects may be driven by a decreasing likelihood of early-life infection after cluster introduction and by more broadly reactive antibodies at a young age. H3N2 and H1N1 viruses had qualitatively distinct cohort patterns, with cohort patterns of titers to specific H3N2 strains reaching their peak in children born 3 years prior to that virus's antigenic cluster introduction and with titers to H1N1 and H1N1pdm strains peaking for children born 1-2 years prior to cluster introduction but not being dramatically lower for older children. Ultimately, specific patterns of strain circulation and antigenic cluster introduction may drive population-level antibody titer patterns in children.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35192673</pmid><doi>10.1371/journal.ppat.1010317</doi><tpages>e1010317</tpages><orcidid>https://orcid.org/0000-0002-4397-7132</orcidid><orcidid>https://orcid.org/0000-0002-5251-173X</orcidid><orcidid>https://orcid.org/0000-0002-3779-5287</orcidid><orcidid>https://orcid.org/0000-0002-2333-1748</orcidid><orcidid>https://orcid.org/0000-0003-4814-0179</orcidid><orcidid>https://orcid.org/0000-0002-9352-7877</orcidid><orcidid>https://orcid.org/0000-0002-1000-3665</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2022-02, Vol.18 (2), p.e1010317-e1010317
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_2640117905
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS)
subjects Adolescent
Age
Antibodies
Antibodies, Viral
Antigenic determinants
Antigens
Biology and Life Sciences
Birth Cohort
Calendars
Child
Children
Clusters
Cohort analysis
Cross-reactivity
Cross-Sectional Studies
Demographic aspects
Evaluation
Health aspects
Hemagglutination inhibition
Hemagglutination Inhibition Tests
Humans
Humoral immunity
Immune response
Immunology
Infections
Influenza
Influenza A
Influenza A Virus, H1N1 Subtype
Influenza A Virus, H3N2 Subtype
Influenza Vaccines
Influenza viruses
Influenza, Human - epidemiology
Laboratories
Medicine and Health Sciences
Pandemics
Pediatrics
People and Places
Physiological aspects
Population
Research and Analysis Methods
Strains (organisms)
Swine flu
Vaccines
Viral antibodies
Viruses
title Birth cohort relative to an influenza A virus's antigenic cluster introduction drives patterns of children's antibody titers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Birth%20cohort%20relative%20to%20an%20influenza%20A%20virus's%20antigenic%20cluster%20introduction%20drives%20patterns%20of%20children's%20antibody%20titers&rft.jtitle=PLoS%20pathogens&rft.au=Brouwer,%20Andrew%20F&rft.date=2022-02-01&rft.volume=18&rft.issue=2&rft.spage=e1010317&rft.epage=e1010317&rft.pages=e1010317-e1010317&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1010317&rft_dat=%3Cgale_plos_%3EA695460976%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640117905&rft_id=info:pmid/35192673&rft_galeid=A695460976&rft_doaj_id=oai_doaj_org_article_80892ebd3d0f42dfbfe221885f14ab17&rfr_iscdi=true