Keap1 recognizes EIAV early accessory protein Rev to promote antiviral defense

The Nrf2/Keap1 axis plays a complex role in viral susceptibility, virus-associated inflammation and immune regulation in host cells. However, whether or how the Nrf2/Keap1 axis is involved in the interactions between equine lentiviruses and their hosts remains unclear. Here, we demonstrate that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2022-02, Vol.18 (2), p.e1009986-e1009986
Hauptverfasser: Wang, Yan, Ma, Guanqin, Wang, Xue-Feng, Na, Lei, Guo, Xing, Zhang, Jiaqi, Liu, Cong, Du, Cheng, Qi, Ting, Lin, Yuezhi, Wang, Xiaojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1009986
container_issue 2
container_start_page e1009986
container_title PLoS pathogens
container_volume 18
creator Wang, Yan
Ma, Guanqin
Wang, Xue-Feng
Na, Lei
Guo, Xing
Zhang, Jiaqi
Liu, Cong
Du, Cheng
Qi, Ting
Lin, Yuezhi
Wang, Xiaojun
description The Nrf2/Keap1 axis plays a complex role in viral susceptibility, virus-associated inflammation and immune regulation in host cells. However, whether or how the Nrf2/Keap1 axis is involved in the interactions between equine lentiviruses and their hosts remains unclear. Here, we demonstrate that the Nrf2/Keap1 axis was activated during EIAV infection. Mechanistically, EIAV-Rev competitively binds to Keap1 and releases Nrf2 from Keap1-mediated repression, leading to the accumulation of Nrf2 in the nucleus and promoting Nrf2 responsive genes transcription. Subsequently, we demonstrated that the Nrf2/Keap1 axis represses EIAV replication via two independent molecular mechanisms: directly increasing antioxidant enzymes to promote effective cellular resistance against EIAV infection, and repression of Rev-mediated RNA transport through direct interaction between Keap1 and Rev. Together, these data suggest that activation of the Nrf2/Keap1 axis mediates a passive defensive response to combat EIAV infection. The Nrf2/Keap1 axis could be a potential target for developing strategies for combating EIAV infection.
doi_str_mv 10.1371/journal.ppat.1009986
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2640117849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A695461257</galeid><doaj_id>oai_doaj_org_article_166d0e2b015041199f77675c75f6f6a1</doaj_id><sourcerecordid>A695461257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-772fcd8b9c57396b40211dfc52cd687ef17e0101aae6e1681364a225af6adf6e3</originalsourceid><addsrcrecordid>eNqVkk1vEzEQhlcIREvgHyBYiQscEjz22t69IEVVCxFVkcrH1XK84-Bos17sTUT663HItuqiXpAPtsfPvON5NVn2EsgMmIT3a78NrW5mXaf7GRBSVaV4lJ0C52wqmSwe3zufZM9iXBNSAAPxNDthHFgFjJ9mV59Rd5AHNH7VuhuM-fli_iNHHZp9ro3BGH3Y513wPbo2v8Zd3vvDdZMCuW57t3NBN3mNFtuIz7MnVjcRXwz7JPt-cf7t7NP08svHxdn8cmqEgH4qJbWmLpeV4ZJVYlkQClBbw6mpRSnRgkQCBLRGgSBKYKLQlHJtha6tQDbJXh91u8ZHNVgRFRUFAZBlUSVicSRqr9eqC26jw1557dTfgA8rpUPvTIMKhKgJ0iUBnhyCqrJSCsmN5FakgpC0PgzVtssN1gbbPvU8Eh2_tO6nWvmdKkvBKKVJ4O0gEPyvLcZebVw02DS6Rb89_JvKohRFxRP65h_04e4GaqVTA661PtU1B1E1FxUvBNDk7CSbPUClVePGGd-idSk-Sng3SkhMj7_7ld7GqBZfr_-DvRqzxZE1wccY0N55B0Qdpvm2SXWYZjVMc0p7dd_3u6Tb8WV_ADV77rI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640117849</pqid></control><display><type>article</type><title>Keap1 recognizes EIAV early accessory protein Rev to promote antiviral defense</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Wang, Yan ; Ma, Guanqin ; Wang, Xue-Feng ; Na, Lei ; Guo, Xing ; Zhang, Jiaqi ; Liu, Cong ; Du, Cheng ; Qi, Ting ; Lin, Yuezhi ; Wang, Xiaojun</creator><contributor>Cullen, Bryan R.</contributor><creatorcontrib>Wang, Yan ; Ma, Guanqin ; Wang, Xue-Feng ; Na, Lei ; Guo, Xing ; Zhang, Jiaqi ; Liu, Cong ; Du, Cheng ; Qi, Ting ; Lin, Yuezhi ; Wang, Xiaojun ; Cullen, Bryan R.</creatorcontrib><description>The Nrf2/Keap1 axis plays a complex role in viral susceptibility, virus-associated inflammation and immune regulation in host cells. However, whether or how the Nrf2/Keap1 axis is involved in the interactions between equine lentiviruses and their hosts remains unclear. Here, we demonstrate that the Nrf2/Keap1 axis was activated during EIAV infection. Mechanistically, EIAV-Rev competitively binds to Keap1 and releases Nrf2 from Keap1-mediated repression, leading to the accumulation of Nrf2 in the nucleus and promoting Nrf2 responsive genes transcription. Subsequently, we demonstrated that the Nrf2/Keap1 axis represses EIAV replication via two independent molecular mechanisms: directly increasing antioxidant enzymes to promote effective cellular resistance against EIAV infection, and repression of Rev-mediated RNA transport through direct interaction between Keap1 and Rev. Together, these data suggest that activation of the Nrf2/Keap1 axis mediates a passive defensive response to combat EIAV infection. The Nrf2/Keap1 axis could be a potential target for developing strategies for combating EIAV infection.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1009986</identifier><identifier>PMID: 35139135</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antioxidants ; Antioxidants - metabolism ; Antiviral Agents - pharmacology ; Antiviral drugs ; Biology and Life Sciences ; Cell Nucleus - drug effects ; Cell Nucleus - metabolism ; Cloning ; Control ; Cytoplasm ; Defensive behavior ; Development and progression ; Diagnosis ; Equine infectious anemia ; Gene expression ; Gene Products, rev - metabolism ; Genetic aspects ; Growth ; Health aspects ; Homeostasis ; Humans ; Immunoregulation ; Infections ; Infectious Anemia Virus, Equine - metabolism ; Kelch-Like ECH-Associated Protein 1 - metabolism ; Lentivirus ; Medicine and Health Sciences ; Molecular modelling ; NF-E2-Related Factor 2 - metabolism ; Oxidative stress ; Oxidative Stress - drug effects ; Pathogenesis ; Phosphorylation ; Proteins ; Research and analysis methods ; Risk factors ; RNA transport ; Signal Transduction - drug effects ; Transcription ; Viral infections ; Viral proteins ; Viruses</subject><ispartof>PLoS pathogens, 2022-02, Vol.18 (2), p.e1009986-e1009986</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Wang et al 2022 Wang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-772fcd8b9c57396b40211dfc52cd687ef17e0101aae6e1681364a225af6adf6e3</citedby><cites>FETCH-LOGICAL-c661t-772fcd8b9c57396b40211dfc52cd687ef17e0101aae6e1681364a225af6adf6e3</cites><orcidid>0000-0003-4521-4099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8863222/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8863222/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35139135$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cullen, Bryan R.</contributor><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Ma, Guanqin</creatorcontrib><creatorcontrib>Wang, Xue-Feng</creatorcontrib><creatorcontrib>Na, Lei</creatorcontrib><creatorcontrib>Guo, Xing</creatorcontrib><creatorcontrib>Zhang, Jiaqi</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Du, Cheng</creatorcontrib><creatorcontrib>Qi, Ting</creatorcontrib><creatorcontrib>Lin, Yuezhi</creatorcontrib><creatorcontrib>Wang, Xiaojun</creatorcontrib><title>Keap1 recognizes EIAV early accessory protein Rev to promote antiviral defense</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>The Nrf2/Keap1 axis plays a complex role in viral susceptibility, virus-associated inflammation and immune regulation in host cells. However, whether or how the Nrf2/Keap1 axis is involved in the interactions between equine lentiviruses and their hosts remains unclear. Here, we demonstrate that the Nrf2/Keap1 axis was activated during EIAV infection. Mechanistically, EIAV-Rev competitively binds to Keap1 and releases Nrf2 from Keap1-mediated repression, leading to the accumulation of Nrf2 in the nucleus and promoting Nrf2 responsive genes transcription. Subsequently, we demonstrated that the Nrf2/Keap1 axis represses EIAV replication via two independent molecular mechanisms: directly increasing antioxidant enzymes to promote effective cellular resistance against EIAV infection, and repression of Rev-mediated RNA transport through direct interaction between Keap1 and Rev. Together, these data suggest that activation of the Nrf2/Keap1 axis mediates a passive defensive response to combat EIAV infection. The Nrf2/Keap1 axis could be a potential target for developing strategies for combating EIAV infection.</description><subject>Antioxidants</subject><subject>Antioxidants - metabolism</subject><subject>Antiviral Agents - pharmacology</subject><subject>Antiviral drugs</subject><subject>Biology and Life Sciences</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - metabolism</subject><subject>Cloning</subject><subject>Control</subject><subject>Cytoplasm</subject><subject>Defensive behavior</subject><subject>Development and progression</subject><subject>Diagnosis</subject><subject>Equine infectious anemia</subject><subject>Gene expression</subject><subject>Gene Products, rev - metabolism</subject><subject>Genetic aspects</subject><subject>Growth</subject><subject>Health aspects</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Immunoregulation</subject><subject>Infections</subject><subject>Infectious Anemia Virus, Equine - metabolism</subject><subject>Kelch-Like ECH-Associated Protein 1 - metabolism</subject><subject>Lentivirus</subject><subject>Medicine and Health Sciences</subject><subject>Molecular modelling</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Pathogenesis</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Research and analysis methods</subject><subject>Risk factors</subject><subject>RNA transport</subject><subject>Signal Transduction - drug effects</subject><subject>Transcription</subject><subject>Viral infections</subject><subject>Viral proteins</subject><subject>Viruses</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1vEzEQhlcIREvgHyBYiQscEjz22t69IEVVCxFVkcrH1XK84-Bos17sTUT663HItuqiXpAPtsfPvON5NVn2EsgMmIT3a78NrW5mXaf7GRBSVaV4lJ0C52wqmSwe3zufZM9iXBNSAAPxNDthHFgFjJ9mV59Rd5AHNH7VuhuM-fli_iNHHZp9ro3BGH3Y513wPbo2v8Zd3vvDdZMCuW57t3NBN3mNFtuIz7MnVjcRXwz7JPt-cf7t7NP08svHxdn8cmqEgH4qJbWmLpeV4ZJVYlkQClBbw6mpRSnRgkQCBLRGgSBKYKLQlHJtha6tQDbJXh91u8ZHNVgRFRUFAZBlUSVicSRqr9eqC26jw1557dTfgA8rpUPvTIMKhKgJ0iUBnhyCqrJSCsmN5FakgpC0PgzVtssN1gbbPvU8Eh2_tO6nWvmdKkvBKKVJ4O0gEPyvLcZebVw02DS6Rb89_JvKohRFxRP65h_04e4GaqVTA661PtU1B1E1FxUvBNDk7CSbPUClVePGGd-idSk-Sng3SkhMj7_7ld7GqBZfr_-DvRqzxZE1wccY0N55B0Qdpvm2SXWYZjVMc0p7dd_3u6Tb8WV_ADV77rI</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Wang, Yan</creator><creator>Ma, Guanqin</creator><creator>Wang, Xue-Feng</creator><creator>Na, Lei</creator><creator>Guo, Xing</creator><creator>Zhang, Jiaqi</creator><creator>Liu, Cong</creator><creator>Du, Cheng</creator><creator>Qi, Ting</creator><creator>Lin, Yuezhi</creator><creator>Wang, Xiaojun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4521-4099</orcidid></search><sort><creationdate>20220201</creationdate><title>Keap1 recognizes EIAV early accessory protein Rev to promote antiviral defense</title><author>Wang, Yan ; Ma, Guanqin ; Wang, Xue-Feng ; Na, Lei ; Guo, Xing ; Zhang, Jiaqi ; Liu, Cong ; Du, Cheng ; Qi, Ting ; Lin, Yuezhi ; Wang, Xiaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-772fcd8b9c57396b40211dfc52cd687ef17e0101aae6e1681364a225af6adf6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antioxidants</topic><topic>Antioxidants - metabolism</topic><topic>Antiviral Agents - pharmacology</topic><topic>Antiviral drugs</topic><topic>Biology and Life Sciences</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - metabolism</topic><topic>Cloning</topic><topic>Control</topic><topic>Cytoplasm</topic><topic>Defensive behavior</topic><topic>Development and progression</topic><topic>Diagnosis</topic><topic>Equine infectious anemia</topic><topic>Gene expression</topic><topic>Gene Products, rev - metabolism</topic><topic>Genetic aspects</topic><topic>Growth</topic><topic>Health aspects</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Immunoregulation</topic><topic>Infections</topic><topic>Infectious Anemia Virus, Equine - metabolism</topic><topic>Kelch-Like ECH-Associated Protein 1 - metabolism</topic><topic>Lentivirus</topic><topic>Medicine and Health Sciences</topic><topic>Molecular modelling</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Pathogenesis</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Research and analysis methods</topic><topic>Risk factors</topic><topic>RNA transport</topic><topic>Signal Transduction - drug effects</topic><topic>Transcription</topic><topic>Viral infections</topic><topic>Viral proteins</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Ma, Guanqin</creatorcontrib><creatorcontrib>Wang, Xue-Feng</creatorcontrib><creatorcontrib>Na, Lei</creatorcontrib><creatorcontrib>Guo, Xing</creatorcontrib><creatorcontrib>Zhang, Jiaqi</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Du, Cheng</creatorcontrib><creatorcontrib>Qi, Ting</creatorcontrib><creatorcontrib>Lin, Yuezhi</creatorcontrib><creatorcontrib>Wang, Xiaojun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yan</au><au>Ma, Guanqin</au><au>Wang, Xue-Feng</au><au>Na, Lei</au><au>Guo, Xing</au><au>Zhang, Jiaqi</au><au>Liu, Cong</au><au>Du, Cheng</au><au>Qi, Ting</au><au>Lin, Yuezhi</au><au>Wang, Xiaojun</au><au>Cullen, Bryan R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Keap1 recognizes EIAV early accessory protein Rev to promote antiviral defense</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>18</volume><issue>2</issue><spage>e1009986</spage><epage>e1009986</epage><pages>e1009986-e1009986</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>The Nrf2/Keap1 axis plays a complex role in viral susceptibility, virus-associated inflammation and immune regulation in host cells. However, whether or how the Nrf2/Keap1 axis is involved in the interactions between equine lentiviruses and their hosts remains unclear. Here, we demonstrate that the Nrf2/Keap1 axis was activated during EIAV infection. Mechanistically, EIAV-Rev competitively binds to Keap1 and releases Nrf2 from Keap1-mediated repression, leading to the accumulation of Nrf2 in the nucleus and promoting Nrf2 responsive genes transcription. Subsequently, we demonstrated that the Nrf2/Keap1 axis represses EIAV replication via two independent molecular mechanisms: directly increasing antioxidant enzymes to promote effective cellular resistance against EIAV infection, and repression of Rev-mediated RNA transport through direct interaction between Keap1 and Rev. Together, these data suggest that activation of the Nrf2/Keap1 axis mediates a passive defensive response to combat EIAV infection. The Nrf2/Keap1 axis could be a potential target for developing strategies for combating EIAV infection.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35139135</pmid><doi>10.1371/journal.ppat.1009986</doi><orcidid>https://orcid.org/0000-0003-4521-4099</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2022-02, Vol.18 (2), p.e1009986-e1009986
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_2640117849
source MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Antioxidants
Antioxidants - metabolism
Antiviral Agents - pharmacology
Antiviral drugs
Biology and Life Sciences
Cell Nucleus - drug effects
Cell Nucleus - metabolism
Cloning
Control
Cytoplasm
Defensive behavior
Development and progression
Diagnosis
Equine infectious anemia
Gene expression
Gene Products, rev - metabolism
Genetic aspects
Growth
Health aspects
Homeostasis
Humans
Immunoregulation
Infections
Infectious Anemia Virus, Equine - metabolism
Kelch-Like ECH-Associated Protein 1 - metabolism
Lentivirus
Medicine and Health Sciences
Molecular modelling
NF-E2-Related Factor 2 - metabolism
Oxidative stress
Oxidative Stress - drug effects
Pathogenesis
Phosphorylation
Proteins
Research and analysis methods
Risk factors
RNA transport
Signal Transduction - drug effects
Transcription
Viral infections
Viral proteins
Viruses
title Keap1 recognizes EIAV early accessory protein Rev to promote antiviral defense
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Keap1%20recognizes%20EIAV%20early%20accessory%20protein%20Rev%20to%20promote%20antiviral%20defense&rft.jtitle=PLoS%20pathogens&rft.au=Wang,%20Yan&rft.date=2022-02-01&rft.volume=18&rft.issue=2&rft.spage=e1009986&rft.epage=e1009986&rft.pages=e1009986-e1009986&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1009986&rft_dat=%3Cgale_plos_%3EA695461257%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640117849&rft_id=info:pmid/35139135&rft_galeid=A695461257&rft_doaj_id=oai_doaj_org_article_166d0e2b015041199f77675c75f6f6a1&rfr_iscdi=true