Keap1 recognizes EIAV early accessory protein Rev to promote antiviral defense
The Nrf2/Keap1 axis plays a complex role in viral susceptibility, virus-associated inflammation and immune regulation in host cells. However, whether or how the Nrf2/Keap1 axis is involved in the interactions between equine lentiviruses and their hosts remains unclear. Here, we demonstrate that the...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2022-02, Vol.18 (2), p.e1009986-e1009986 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009986 |
---|---|
container_issue | 2 |
container_start_page | e1009986 |
container_title | PLoS pathogens |
container_volume | 18 |
creator | Wang, Yan Ma, Guanqin Wang, Xue-Feng Na, Lei Guo, Xing Zhang, Jiaqi Liu, Cong Du, Cheng Qi, Ting Lin, Yuezhi Wang, Xiaojun |
description | The Nrf2/Keap1 axis plays a complex role in viral susceptibility, virus-associated inflammation and immune regulation in host cells. However, whether or how the Nrf2/Keap1 axis is involved in the interactions between equine lentiviruses and their hosts remains unclear. Here, we demonstrate that the Nrf2/Keap1 axis was activated during EIAV infection. Mechanistically, EIAV-Rev competitively binds to Keap1 and releases Nrf2 from Keap1-mediated repression, leading to the accumulation of Nrf2 in the nucleus and promoting Nrf2 responsive genes transcription. Subsequently, we demonstrated that the Nrf2/Keap1 axis represses EIAV replication via two independent molecular mechanisms: directly increasing antioxidant enzymes to promote effective cellular resistance against EIAV infection, and repression of Rev-mediated RNA transport through direct interaction between Keap1 and Rev. Together, these data suggest that activation of the Nrf2/Keap1 axis mediates a passive defensive response to combat EIAV infection. The Nrf2/Keap1 axis could be a potential target for developing strategies for combating EIAV infection. |
doi_str_mv | 10.1371/journal.ppat.1009986 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2640117849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A695461257</galeid><doaj_id>oai_doaj_org_article_166d0e2b015041199f77675c75f6f6a1</doaj_id><sourcerecordid>A695461257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-772fcd8b9c57396b40211dfc52cd687ef17e0101aae6e1681364a225af6adf6e3</originalsourceid><addsrcrecordid>eNqVkk1vEzEQhlcIREvgHyBYiQscEjz22t69IEVVCxFVkcrH1XK84-Bos17sTUT663HItuqiXpAPtsfPvON5NVn2EsgMmIT3a78NrW5mXaf7GRBSVaV4lJ0C52wqmSwe3zufZM9iXBNSAAPxNDthHFgFjJ9mV59Rd5AHNH7VuhuM-fli_iNHHZp9ro3BGH3Y513wPbo2v8Zd3vvDdZMCuW57t3NBN3mNFtuIz7MnVjcRXwz7JPt-cf7t7NP08svHxdn8cmqEgH4qJbWmLpeV4ZJVYlkQClBbw6mpRSnRgkQCBLRGgSBKYKLQlHJtha6tQDbJXh91u8ZHNVgRFRUFAZBlUSVicSRqr9eqC26jw1557dTfgA8rpUPvTIMKhKgJ0iUBnhyCqrJSCsmN5FakgpC0PgzVtssN1gbbPvU8Eh2_tO6nWvmdKkvBKKVJ4O0gEPyvLcZebVw02DS6Rb89_JvKohRFxRP65h_04e4GaqVTA661PtU1B1E1FxUvBNDk7CSbPUClVePGGd-idSk-Sng3SkhMj7_7ld7GqBZfr_-DvRqzxZE1wccY0N55B0Qdpvm2SXWYZjVMc0p7dd_3u6Tb8WV_ADV77rI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640117849</pqid></control><display><type>article</type><title>Keap1 recognizes EIAV early accessory protein Rev to promote antiviral defense</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Wang, Yan ; Ma, Guanqin ; Wang, Xue-Feng ; Na, Lei ; Guo, Xing ; Zhang, Jiaqi ; Liu, Cong ; Du, Cheng ; Qi, Ting ; Lin, Yuezhi ; Wang, Xiaojun</creator><contributor>Cullen, Bryan R.</contributor><creatorcontrib>Wang, Yan ; Ma, Guanqin ; Wang, Xue-Feng ; Na, Lei ; Guo, Xing ; Zhang, Jiaqi ; Liu, Cong ; Du, Cheng ; Qi, Ting ; Lin, Yuezhi ; Wang, Xiaojun ; Cullen, Bryan R.</creatorcontrib><description>The Nrf2/Keap1 axis plays a complex role in viral susceptibility, virus-associated inflammation and immune regulation in host cells. However, whether or how the Nrf2/Keap1 axis is involved in the interactions between equine lentiviruses and their hosts remains unclear. Here, we demonstrate that the Nrf2/Keap1 axis was activated during EIAV infection. Mechanistically, EIAV-Rev competitively binds to Keap1 and releases Nrf2 from Keap1-mediated repression, leading to the accumulation of Nrf2 in the nucleus and promoting Nrf2 responsive genes transcription. Subsequently, we demonstrated that the Nrf2/Keap1 axis represses EIAV replication via two independent molecular mechanisms: directly increasing antioxidant enzymes to promote effective cellular resistance against EIAV infection, and repression of Rev-mediated RNA transport through direct interaction between Keap1 and Rev. Together, these data suggest that activation of the Nrf2/Keap1 axis mediates a passive defensive response to combat EIAV infection. The Nrf2/Keap1 axis could be a potential target for developing strategies for combating EIAV infection.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1009986</identifier><identifier>PMID: 35139135</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antioxidants ; Antioxidants - metabolism ; Antiviral Agents - pharmacology ; Antiviral drugs ; Biology and Life Sciences ; Cell Nucleus - drug effects ; Cell Nucleus - metabolism ; Cloning ; Control ; Cytoplasm ; Defensive behavior ; Development and progression ; Diagnosis ; Equine infectious anemia ; Gene expression ; Gene Products, rev - metabolism ; Genetic aspects ; Growth ; Health aspects ; Homeostasis ; Humans ; Immunoregulation ; Infections ; Infectious Anemia Virus, Equine - metabolism ; Kelch-Like ECH-Associated Protein 1 - metabolism ; Lentivirus ; Medicine and Health Sciences ; Molecular modelling ; NF-E2-Related Factor 2 - metabolism ; Oxidative stress ; Oxidative Stress - drug effects ; Pathogenesis ; Phosphorylation ; Proteins ; Research and analysis methods ; Risk factors ; RNA transport ; Signal Transduction - drug effects ; Transcription ; Viral infections ; Viral proteins ; Viruses</subject><ispartof>PLoS pathogens, 2022-02, Vol.18 (2), p.e1009986-e1009986</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Wang et al 2022 Wang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-772fcd8b9c57396b40211dfc52cd687ef17e0101aae6e1681364a225af6adf6e3</citedby><cites>FETCH-LOGICAL-c661t-772fcd8b9c57396b40211dfc52cd687ef17e0101aae6e1681364a225af6adf6e3</cites><orcidid>0000-0003-4521-4099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8863222/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8863222/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35139135$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cullen, Bryan R.</contributor><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Ma, Guanqin</creatorcontrib><creatorcontrib>Wang, Xue-Feng</creatorcontrib><creatorcontrib>Na, Lei</creatorcontrib><creatorcontrib>Guo, Xing</creatorcontrib><creatorcontrib>Zhang, Jiaqi</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Du, Cheng</creatorcontrib><creatorcontrib>Qi, Ting</creatorcontrib><creatorcontrib>Lin, Yuezhi</creatorcontrib><creatorcontrib>Wang, Xiaojun</creatorcontrib><title>Keap1 recognizes EIAV early accessory protein Rev to promote antiviral defense</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>The Nrf2/Keap1 axis plays a complex role in viral susceptibility, virus-associated inflammation and immune regulation in host cells. However, whether or how the Nrf2/Keap1 axis is involved in the interactions between equine lentiviruses and their hosts remains unclear. Here, we demonstrate that the Nrf2/Keap1 axis was activated during EIAV infection. Mechanistically, EIAV-Rev competitively binds to Keap1 and releases Nrf2 from Keap1-mediated repression, leading to the accumulation of Nrf2 in the nucleus and promoting Nrf2 responsive genes transcription. Subsequently, we demonstrated that the Nrf2/Keap1 axis represses EIAV replication via two independent molecular mechanisms: directly increasing antioxidant enzymes to promote effective cellular resistance against EIAV infection, and repression of Rev-mediated RNA transport through direct interaction between Keap1 and Rev. Together, these data suggest that activation of the Nrf2/Keap1 axis mediates a passive defensive response to combat EIAV infection. The Nrf2/Keap1 axis could be a potential target for developing strategies for combating EIAV infection.</description><subject>Antioxidants</subject><subject>Antioxidants - metabolism</subject><subject>Antiviral Agents - pharmacology</subject><subject>Antiviral drugs</subject><subject>Biology and Life Sciences</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - metabolism</subject><subject>Cloning</subject><subject>Control</subject><subject>Cytoplasm</subject><subject>Defensive behavior</subject><subject>Development and progression</subject><subject>Diagnosis</subject><subject>Equine infectious anemia</subject><subject>Gene expression</subject><subject>Gene Products, rev - metabolism</subject><subject>Genetic aspects</subject><subject>Growth</subject><subject>Health aspects</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Immunoregulation</subject><subject>Infections</subject><subject>Infectious Anemia Virus, Equine - metabolism</subject><subject>Kelch-Like ECH-Associated Protein 1 - metabolism</subject><subject>Lentivirus</subject><subject>Medicine and Health Sciences</subject><subject>Molecular modelling</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Pathogenesis</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Research and analysis methods</subject><subject>Risk factors</subject><subject>RNA transport</subject><subject>Signal Transduction - drug effects</subject><subject>Transcription</subject><subject>Viral infections</subject><subject>Viral proteins</subject><subject>Viruses</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1vEzEQhlcIREvgHyBYiQscEjz22t69IEVVCxFVkcrH1XK84-Bos17sTUT663HItuqiXpAPtsfPvON5NVn2EsgMmIT3a78NrW5mXaf7GRBSVaV4lJ0C52wqmSwe3zufZM9iXBNSAAPxNDthHFgFjJ9mV59Rd5AHNH7VuhuM-fli_iNHHZp9ro3BGH3Y513wPbo2v8Zd3vvDdZMCuW57t3NBN3mNFtuIz7MnVjcRXwz7JPt-cf7t7NP08svHxdn8cmqEgH4qJbWmLpeV4ZJVYlkQClBbw6mpRSnRgkQCBLRGgSBKYKLQlHJtha6tQDbJXh91u8ZHNVgRFRUFAZBlUSVicSRqr9eqC26jw1557dTfgA8rpUPvTIMKhKgJ0iUBnhyCqrJSCsmN5FakgpC0PgzVtssN1gbbPvU8Eh2_tO6nWvmdKkvBKKVJ4O0gEPyvLcZebVw02DS6Rb89_JvKohRFxRP65h_04e4GaqVTA661PtU1B1E1FxUvBNDk7CSbPUClVePGGd-idSk-Sng3SkhMj7_7ld7GqBZfr_-DvRqzxZE1wccY0N55B0Qdpvm2SXWYZjVMc0p7dd_3u6Tb8WV_ADV77rI</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Wang, Yan</creator><creator>Ma, Guanqin</creator><creator>Wang, Xue-Feng</creator><creator>Na, Lei</creator><creator>Guo, Xing</creator><creator>Zhang, Jiaqi</creator><creator>Liu, Cong</creator><creator>Du, Cheng</creator><creator>Qi, Ting</creator><creator>Lin, Yuezhi</creator><creator>Wang, Xiaojun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4521-4099</orcidid></search><sort><creationdate>20220201</creationdate><title>Keap1 recognizes EIAV early accessory protein Rev to promote antiviral defense</title><author>Wang, Yan ; Ma, Guanqin ; Wang, Xue-Feng ; Na, Lei ; Guo, Xing ; Zhang, Jiaqi ; Liu, Cong ; Du, Cheng ; Qi, Ting ; Lin, Yuezhi ; Wang, Xiaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-772fcd8b9c57396b40211dfc52cd687ef17e0101aae6e1681364a225af6adf6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antioxidants</topic><topic>Antioxidants - metabolism</topic><topic>Antiviral Agents - pharmacology</topic><topic>Antiviral drugs</topic><topic>Biology and Life Sciences</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - metabolism</topic><topic>Cloning</topic><topic>Control</topic><topic>Cytoplasm</topic><topic>Defensive behavior</topic><topic>Development and progression</topic><topic>Diagnosis</topic><topic>Equine infectious anemia</topic><topic>Gene expression</topic><topic>Gene Products, rev - metabolism</topic><topic>Genetic aspects</topic><topic>Growth</topic><topic>Health aspects</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Immunoregulation</topic><topic>Infections</topic><topic>Infectious Anemia Virus, Equine - metabolism</topic><topic>Kelch-Like ECH-Associated Protein 1 - metabolism</topic><topic>Lentivirus</topic><topic>Medicine and Health Sciences</topic><topic>Molecular modelling</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Pathogenesis</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Research and analysis methods</topic><topic>Risk factors</topic><topic>RNA transport</topic><topic>Signal Transduction - drug effects</topic><topic>Transcription</topic><topic>Viral infections</topic><topic>Viral proteins</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Ma, Guanqin</creatorcontrib><creatorcontrib>Wang, Xue-Feng</creatorcontrib><creatorcontrib>Na, Lei</creatorcontrib><creatorcontrib>Guo, Xing</creatorcontrib><creatorcontrib>Zhang, Jiaqi</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Du, Cheng</creatorcontrib><creatorcontrib>Qi, Ting</creatorcontrib><creatorcontrib>Lin, Yuezhi</creatorcontrib><creatorcontrib>Wang, Xiaojun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yan</au><au>Ma, Guanqin</au><au>Wang, Xue-Feng</au><au>Na, Lei</au><au>Guo, Xing</au><au>Zhang, Jiaqi</au><au>Liu, Cong</au><au>Du, Cheng</au><au>Qi, Ting</au><au>Lin, Yuezhi</au><au>Wang, Xiaojun</au><au>Cullen, Bryan R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Keap1 recognizes EIAV early accessory protein Rev to promote antiviral defense</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>18</volume><issue>2</issue><spage>e1009986</spage><epage>e1009986</epage><pages>e1009986-e1009986</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>The Nrf2/Keap1 axis plays a complex role in viral susceptibility, virus-associated inflammation and immune regulation in host cells. However, whether or how the Nrf2/Keap1 axis is involved in the interactions between equine lentiviruses and their hosts remains unclear. Here, we demonstrate that the Nrf2/Keap1 axis was activated during EIAV infection. Mechanistically, EIAV-Rev competitively binds to Keap1 and releases Nrf2 from Keap1-mediated repression, leading to the accumulation of Nrf2 in the nucleus and promoting Nrf2 responsive genes transcription. Subsequently, we demonstrated that the Nrf2/Keap1 axis represses EIAV replication via two independent molecular mechanisms: directly increasing antioxidant enzymes to promote effective cellular resistance against EIAV infection, and repression of Rev-mediated RNA transport through direct interaction between Keap1 and Rev. Together, these data suggest that activation of the Nrf2/Keap1 axis mediates a passive defensive response to combat EIAV infection. The Nrf2/Keap1 axis could be a potential target for developing strategies for combating EIAV infection.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35139135</pmid><doi>10.1371/journal.ppat.1009986</doi><orcidid>https://orcid.org/0000-0003-4521-4099</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2022-02, Vol.18 (2), p.e1009986-e1009986 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2640117849 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Antioxidants Antioxidants - metabolism Antiviral Agents - pharmacology Antiviral drugs Biology and Life Sciences Cell Nucleus - drug effects Cell Nucleus - metabolism Cloning Control Cytoplasm Defensive behavior Development and progression Diagnosis Equine infectious anemia Gene expression Gene Products, rev - metabolism Genetic aspects Growth Health aspects Homeostasis Humans Immunoregulation Infections Infectious Anemia Virus, Equine - metabolism Kelch-Like ECH-Associated Protein 1 - metabolism Lentivirus Medicine and Health Sciences Molecular modelling NF-E2-Related Factor 2 - metabolism Oxidative stress Oxidative Stress - drug effects Pathogenesis Phosphorylation Proteins Research and analysis methods Risk factors RNA transport Signal Transduction - drug effects Transcription Viral infections Viral proteins Viruses |
title | Keap1 recognizes EIAV early accessory protein Rev to promote antiviral defense |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Keap1%20recognizes%20EIAV%20early%20accessory%20protein%20Rev%20to%20promote%20antiviral%20defense&rft.jtitle=PLoS%20pathogens&rft.au=Wang,%20Yan&rft.date=2022-02-01&rft.volume=18&rft.issue=2&rft.spage=e1009986&rft.epage=e1009986&rft.pages=e1009986-e1009986&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1009986&rft_dat=%3Cgale_plos_%3EA695461257%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640117849&rft_id=info:pmid/35139135&rft_galeid=A695461257&rft_doaj_id=oai_doaj_org_article_166d0e2b015041199f77675c75f6f6a1&rfr_iscdi=true |