MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression

The benefits of biopesticides and transgenic crops based on the insecticidal Cry-toxins from Bacillus thuringiensis (Bt) are considerably threatened by insect resistance evolution, thus, deciphering the molecular mechanisms underlying insect resistance to Bt products is of great significance to thei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2022-02, Vol.18 (2), p.e1010037-e1010037
Hauptverfasser: Guo, Le, Cheng, Zhouqiang, Qin, Jianying, Sun, Dan, Wang, Shaoli, Wu, Qingjun, Crickmore, Neil, Zhou, Xuguo, Bravo, Alejandra, Soberón, Mario, Guo, Zhaojiang, Zhang, Youjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1010037
container_issue 2
container_start_page e1010037
container_title PLoS genetics
container_volume 18
creator Guo, Le
Cheng, Zhouqiang
Qin, Jianying
Sun, Dan
Wang, Shaoli
Wu, Qingjun
Crickmore, Neil
Zhou, Xuguo
Bravo, Alejandra
Soberón, Mario
Guo, Zhaojiang
Zhang, Youjun
description The benefits of biopesticides and transgenic crops based on the insecticidal Cry-toxins from Bacillus thuringiensis (Bt) are considerably threatened by insect resistance evolution, thus, deciphering the molecular mechanisms underlying insect resistance to Bt products is of great significance to their sustainable utilization. Previously, we have demonstrated that the down-regulation of PxmALP in a strain of Plutella xylostella (L.) highly resistant to the Bt Cry1Ac toxin was due to a hormone-activated MAPK signaling pathway and contributed to the resistance phenotype. However, the underlying transcriptional regulatory mechanism remains enigmatic. Here, we report that the PxGATAd transcription factor (TF) is responsible for the differential expression of PxmALP observed between the Cry1Ac susceptible and resistant strains. We identified that PxGATAd directly activates PxmALP expression via interacting with a non-canonical but specific GATA-like cis-response element (CRE) located in the PxmALP promoter region. A six-nucleotide insertion mutation in this cis-acting element of the PxmALP promoter from the resistant strain resulted in repression of transcriptional activity, affecting the regulatory performance of PxGATAd. Furthermore, silencing of PxGATAd in susceptible larvae reduced the expression of PxmALP and susceptibility to Cry1Ac toxin. Suppressing PxMAP4K4 expression in the resistant larvae transiently recovered both the expression of PxGATAd and PxmALP, indicating that the PxGATAd is a positive responsive factor involved in the activation of PxmALP promoter and negatively regulated by the MAPK signaling pathway. Overall, this study deciphers an intricate regulatory mechanism of PxmALP gene expression and highlights the concurrent involvement of both trans-regulatory factors and cis-acting elements in Cry1Ac resistance development in lepidopteran insects.
doi_str_mv 10.1371/journal.pgen.1010037
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2640116786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A695461193</galeid><doaj_id>oai_doaj_org_article_211db95015ad4df98daaa1a90b5d5aec</doaj_id><sourcerecordid>A695461193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-342fd7d4eba3444e704b659c0a684776ecace4070b9a5a2234ea2546e98aaf4a3</originalsourceid><addsrcrecordid>eNqVk19v0zAUxSMEYmPwDRBYQkLw0GIndv68TIoqGBOFVTB4tW7sm9YjiYvtoFV8eVzWTSvaA8gPsZzfObbP9U2Sp4xOWVawNxd2dAN00_UShymjjNKsuJccMiGyScEpv39rfpA88v4iEqKsiofJQSYYy0pRHia_PtaLD5MetYGAmgQHg1fOrIOxA2lBBevISX1ea6LsEJxpxoCeBEtmbsNqRRx64wMMCokZSHTp7aAbUN9Jb8OKNJtI6FGZYUkWl309XxC8XEeRj_6PkwctdB6f7L5Hydd3b89n7yfzs5PTWT2fqCLNwyTjaasLzbGBjHOOBeVNLipFIS95UeSoQCGnBW0qEJCmGUdIBc-xKgFaDtlR8vzKd91ZL3e5eZnmnDKWF2UeidMrQlu4kGtnenAbacHIPwvWLSW4YFSHMmVMN5WgTIDmuq1KDQAMKtoILQBV9Dre7TY2MVeFMTbo9kz3_wxmJZf2pyxLnouUR4NXOwNnf4zog-yNV9h1MKAdt-dOc0p5lpYRffEXevftdtQS4gXM0Nq4r9qayjqvYlKMVVmkpndQcWjsTSw-tiau7wle7wm2DwQvwxJG7-Xpl8__wX76d_bs2z778ha7QujCyttu3D5fvw_yK1A5673D9qYgjMptP10nJ7f9JHf9FGXPbhfzRnTdQNlvInAa3w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640116786</pqid></control><display><type>article</type><title>MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Guo, Le ; Cheng, Zhouqiang ; Qin, Jianying ; Sun, Dan ; Wang, Shaoli ; Wu, Qingjun ; Crickmore, Neil ; Zhou, Xuguo ; Bravo, Alejandra ; Soberón, Mario ; Guo, Zhaojiang ; Zhang, Youjun</creator><creatorcontrib>Guo, Le ; Cheng, Zhouqiang ; Qin, Jianying ; Sun, Dan ; Wang, Shaoli ; Wu, Qingjun ; Crickmore, Neil ; Zhou, Xuguo ; Bravo, Alejandra ; Soberón, Mario ; Guo, Zhaojiang ; Zhang, Youjun</creatorcontrib><description>The benefits of biopesticides and transgenic crops based on the insecticidal Cry-toxins from Bacillus thuringiensis (Bt) are considerably threatened by insect resistance evolution, thus, deciphering the molecular mechanisms underlying insect resistance to Bt products is of great significance to their sustainable utilization. Previously, we have demonstrated that the down-regulation of PxmALP in a strain of Plutella xylostella (L.) highly resistant to the Bt Cry1Ac toxin was due to a hormone-activated MAPK signaling pathway and contributed to the resistance phenotype. However, the underlying transcriptional regulatory mechanism remains enigmatic. Here, we report that the PxGATAd transcription factor (TF) is responsible for the differential expression of PxmALP observed between the Cry1Ac susceptible and resistant strains. We identified that PxGATAd directly activates PxmALP expression via interacting with a non-canonical but specific GATA-like cis-response element (CRE) located in the PxmALP promoter region. A six-nucleotide insertion mutation in this cis-acting element of the PxmALP promoter from the resistant strain resulted in repression of transcriptional activity, affecting the regulatory performance of PxGATAd. Furthermore, silencing of PxGATAd in susceptible larvae reduced the expression of PxmALP and susceptibility to Cry1Ac toxin. Suppressing PxMAP4K4 expression in the resistant larvae transiently recovered both the expression of PxGATAd and PxmALP, indicating that the PxGATAd is a positive responsive factor involved in the activation of PxmALP promoter and negatively regulated by the MAPK signaling pathway. Overall, this study deciphers an intricate regulatory mechanism of PxmALP gene expression and highlights the concurrent involvement of both trans-regulatory factors and cis-acting elements in Cry1Ac resistance development in lepidopteran insects.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1010037</identifier><identifier>PMID: 35113858</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Agricultural pests ; Agricultural production ; Agricultural research ; Animals ; Bacillus thuringiensis - genetics ; Bacillus thuringiensis - metabolism ; Bacillus thuringiensis Toxins - metabolism ; Bacillus thuringiensis Toxins - pharmacology ; Bacterial Proteins - genetics ; Binding sites ; Biology and Life Sciences ; Cellular signal transduction ; Cloning ; Cry1Ac toxin ; Endotoxins - metabolism ; Endotoxins - pharmacology ; Gene expression ; Gene silencing ; Genetic aspects ; Granulovirus - genetics ; Hemolysin Proteins - metabolism ; Hemolysin Proteins - pharmacology ; Insect Proteins - genetics ; Insecticide Resistance - genetics ; Insecticides - metabolism ; Insects ; Larva - genetics ; MAP kinase ; MAP Kinase Signaling System - drug effects ; MAP Kinase Signaling System - physiology ; Medicine and Health Sciences ; Mitogen-activated protein kinases ; Molecular modelling ; Moths - genetics ; Moths - metabolism ; Mutation ; Pest resistance ; Pesticide resistance ; Phenotypes ; Physiological aspects ; Plasmids ; Proteins ; Signal transduction ; Toxins ; Transcription factors ; Transcription Factors - genetics</subject><ispartof>PLoS genetics, 2022-02, Vol.18 (2), p.e1010037-e1010037</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Guo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Guo et al 2022 Guo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-342fd7d4eba3444e704b659c0a684776ecace4070b9a5a2234ea2546e98aaf4a3</citedby><cites>FETCH-LOGICAL-c726t-342fd7d4eba3444e704b659c0a684776ecace4070b9a5a2234ea2546e98aaf4a3</cites><orcidid>0000-0002-8448-0763 ; 0000-0003-4682-7241 ; 0000-0003-3508-6695 ; 0000-0002-7573-7475 ; 0000-0001-5170-6781 ; 0000-0002-2385-8224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8846524/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8846524/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35113858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Le</creatorcontrib><creatorcontrib>Cheng, Zhouqiang</creatorcontrib><creatorcontrib>Qin, Jianying</creatorcontrib><creatorcontrib>Sun, Dan</creatorcontrib><creatorcontrib>Wang, Shaoli</creatorcontrib><creatorcontrib>Wu, Qingjun</creatorcontrib><creatorcontrib>Crickmore, Neil</creatorcontrib><creatorcontrib>Zhou, Xuguo</creatorcontrib><creatorcontrib>Bravo, Alejandra</creatorcontrib><creatorcontrib>Soberón, Mario</creatorcontrib><creatorcontrib>Guo, Zhaojiang</creatorcontrib><creatorcontrib>Zhang, Youjun</creatorcontrib><title>MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The benefits of biopesticides and transgenic crops based on the insecticidal Cry-toxins from Bacillus thuringiensis (Bt) are considerably threatened by insect resistance evolution, thus, deciphering the molecular mechanisms underlying insect resistance to Bt products is of great significance to their sustainable utilization. Previously, we have demonstrated that the down-regulation of PxmALP in a strain of Plutella xylostella (L.) highly resistant to the Bt Cry1Ac toxin was due to a hormone-activated MAPK signaling pathway and contributed to the resistance phenotype. However, the underlying transcriptional regulatory mechanism remains enigmatic. Here, we report that the PxGATAd transcription factor (TF) is responsible for the differential expression of PxmALP observed between the Cry1Ac susceptible and resistant strains. We identified that PxGATAd directly activates PxmALP expression via interacting with a non-canonical but specific GATA-like cis-response element (CRE) located in the PxmALP promoter region. A six-nucleotide insertion mutation in this cis-acting element of the PxmALP promoter from the resistant strain resulted in repression of transcriptional activity, affecting the regulatory performance of PxGATAd. Furthermore, silencing of PxGATAd in susceptible larvae reduced the expression of PxmALP and susceptibility to Cry1Ac toxin. Suppressing PxMAP4K4 expression in the resistant larvae transiently recovered both the expression of PxGATAd and PxmALP, indicating that the PxGATAd is a positive responsive factor involved in the activation of PxmALP promoter and negatively regulated by the MAPK signaling pathway. Overall, this study deciphers an intricate regulatory mechanism of PxmALP gene expression and highlights the concurrent involvement of both trans-regulatory factors and cis-acting elements in Cry1Ac resistance development in lepidopteran insects.</description><subject>Adaptation</subject><subject>Agricultural pests</subject><subject>Agricultural production</subject><subject>Agricultural research</subject><subject>Animals</subject><subject>Bacillus thuringiensis - genetics</subject><subject>Bacillus thuringiensis - metabolism</subject><subject>Bacillus thuringiensis Toxins - metabolism</subject><subject>Bacillus thuringiensis Toxins - pharmacology</subject><subject>Bacterial Proteins - genetics</subject><subject>Binding sites</subject><subject>Biology and Life Sciences</subject><subject>Cellular signal transduction</subject><subject>Cloning</subject><subject>Cry1Ac toxin</subject><subject>Endotoxins - metabolism</subject><subject>Endotoxins - pharmacology</subject><subject>Gene expression</subject><subject>Gene silencing</subject><subject>Genetic aspects</subject><subject>Granulovirus - genetics</subject><subject>Hemolysin Proteins - metabolism</subject><subject>Hemolysin Proteins - pharmacology</subject><subject>Insect Proteins - genetics</subject><subject>Insecticide Resistance - genetics</subject><subject>Insecticides - metabolism</subject><subject>Insects</subject><subject>Larva - genetics</subject><subject>MAP kinase</subject><subject>MAP Kinase Signaling System - drug effects</subject><subject>MAP Kinase Signaling System - physiology</subject><subject>Medicine and Health Sciences</subject><subject>Mitogen-activated protein kinases</subject><subject>Molecular modelling</subject><subject>Moths - genetics</subject><subject>Moths - metabolism</subject><subject>Mutation</subject><subject>Pest resistance</subject><subject>Pesticide resistance</subject><subject>Phenotypes</subject><subject>Physiological aspects</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Signal transduction</subject><subject>Toxins</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk19v0zAUxSMEYmPwDRBYQkLw0GIndv68TIoqGBOFVTB4tW7sm9YjiYvtoFV8eVzWTSvaA8gPsZzfObbP9U2Sp4xOWVawNxd2dAN00_UShymjjNKsuJccMiGyScEpv39rfpA88v4iEqKsiofJQSYYy0pRHia_PtaLD5MetYGAmgQHg1fOrIOxA2lBBevISX1ea6LsEJxpxoCeBEtmbsNqRRx64wMMCokZSHTp7aAbUN9Jb8OKNJtI6FGZYUkWl309XxC8XEeRj_6PkwctdB6f7L5Hydd3b89n7yfzs5PTWT2fqCLNwyTjaasLzbGBjHOOBeVNLipFIS95UeSoQCGnBW0qEJCmGUdIBc-xKgFaDtlR8vzKd91ZL3e5eZnmnDKWF2UeidMrQlu4kGtnenAbacHIPwvWLSW4YFSHMmVMN5WgTIDmuq1KDQAMKtoILQBV9Dre7TY2MVeFMTbo9kz3_wxmJZf2pyxLnouUR4NXOwNnf4zog-yNV9h1MKAdt-dOc0p5lpYRffEXevftdtQS4gXM0Nq4r9qayjqvYlKMVVmkpndQcWjsTSw-tiau7wle7wm2DwQvwxJG7-Xpl8__wX76d_bs2z778ha7QujCyttu3D5fvw_yK1A5673D9qYgjMptP10nJ7f9JHf9FGXPbhfzRnTdQNlvInAa3w</recordid><startdate>20220203</startdate><enddate>20220203</enddate><creator>Guo, Le</creator><creator>Cheng, Zhouqiang</creator><creator>Qin, Jianying</creator><creator>Sun, Dan</creator><creator>Wang, Shaoli</creator><creator>Wu, Qingjun</creator><creator>Crickmore, Neil</creator><creator>Zhou, Xuguo</creator><creator>Bravo, Alejandra</creator><creator>Soberón, Mario</creator><creator>Guo, Zhaojiang</creator><creator>Zhang, Youjun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8448-0763</orcidid><orcidid>https://orcid.org/0000-0003-4682-7241</orcidid><orcidid>https://orcid.org/0000-0003-3508-6695</orcidid><orcidid>https://orcid.org/0000-0002-7573-7475</orcidid><orcidid>https://orcid.org/0000-0001-5170-6781</orcidid><orcidid>https://orcid.org/0000-0002-2385-8224</orcidid></search><sort><creationdate>20220203</creationdate><title>MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression</title><author>Guo, Le ; Cheng, Zhouqiang ; Qin, Jianying ; Sun, Dan ; Wang, Shaoli ; Wu, Qingjun ; Crickmore, Neil ; Zhou, Xuguo ; Bravo, Alejandra ; Soberón, Mario ; Guo, Zhaojiang ; Zhang, Youjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-342fd7d4eba3444e704b659c0a684776ecace4070b9a5a2234ea2546e98aaf4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation</topic><topic>Agricultural pests</topic><topic>Agricultural production</topic><topic>Agricultural research</topic><topic>Animals</topic><topic>Bacillus thuringiensis - genetics</topic><topic>Bacillus thuringiensis - metabolism</topic><topic>Bacillus thuringiensis Toxins - metabolism</topic><topic>Bacillus thuringiensis Toxins - pharmacology</topic><topic>Bacterial Proteins - genetics</topic><topic>Binding sites</topic><topic>Biology and Life Sciences</topic><topic>Cellular signal transduction</topic><topic>Cloning</topic><topic>Cry1Ac toxin</topic><topic>Endotoxins - metabolism</topic><topic>Endotoxins - pharmacology</topic><topic>Gene expression</topic><topic>Gene silencing</topic><topic>Genetic aspects</topic><topic>Granulovirus - genetics</topic><topic>Hemolysin Proteins - metabolism</topic><topic>Hemolysin Proteins - pharmacology</topic><topic>Insect Proteins - genetics</topic><topic>Insecticide Resistance - genetics</topic><topic>Insecticides - metabolism</topic><topic>Insects</topic><topic>Larva - genetics</topic><topic>MAP kinase</topic><topic>MAP Kinase Signaling System - drug effects</topic><topic>MAP Kinase Signaling System - physiology</topic><topic>Medicine and Health Sciences</topic><topic>Mitogen-activated protein kinases</topic><topic>Molecular modelling</topic><topic>Moths - genetics</topic><topic>Moths - metabolism</topic><topic>Mutation</topic><topic>Pest resistance</topic><topic>Pesticide resistance</topic><topic>Phenotypes</topic><topic>Physiological aspects</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Signal transduction</topic><topic>Toxins</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Le</creatorcontrib><creatorcontrib>Cheng, Zhouqiang</creatorcontrib><creatorcontrib>Qin, Jianying</creatorcontrib><creatorcontrib>Sun, Dan</creatorcontrib><creatorcontrib>Wang, Shaoli</creatorcontrib><creatorcontrib>Wu, Qingjun</creatorcontrib><creatorcontrib>Crickmore, Neil</creatorcontrib><creatorcontrib>Zhou, Xuguo</creatorcontrib><creatorcontrib>Bravo, Alejandra</creatorcontrib><creatorcontrib>Soberón, Mario</creatorcontrib><creatorcontrib>Guo, Zhaojiang</creatorcontrib><creatorcontrib>Zhang, Youjun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Le</au><au>Cheng, Zhouqiang</au><au>Qin, Jianying</au><au>Sun, Dan</au><au>Wang, Shaoli</au><au>Wu, Qingjun</au><au>Crickmore, Neil</au><au>Zhou, Xuguo</au><au>Bravo, Alejandra</au><au>Soberón, Mario</au><au>Guo, Zhaojiang</au><au>Zhang, Youjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2022-02-03</date><risdate>2022</risdate><volume>18</volume><issue>2</issue><spage>e1010037</spage><epage>e1010037</epage><pages>e1010037-e1010037</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The benefits of biopesticides and transgenic crops based on the insecticidal Cry-toxins from Bacillus thuringiensis (Bt) are considerably threatened by insect resistance evolution, thus, deciphering the molecular mechanisms underlying insect resistance to Bt products is of great significance to their sustainable utilization. Previously, we have demonstrated that the down-regulation of PxmALP in a strain of Plutella xylostella (L.) highly resistant to the Bt Cry1Ac toxin was due to a hormone-activated MAPK signaling pathway and contributed to the resistance phenotype. However, the underlying transcriptional regulatory mechanism remains enigmatic. Here, we report that the PxGATAd transcription factor (TF) is responsible for the differential expression of PxmALP observed between the Cry1Ac susceptible and resistant strains. We identified that PxGATAd directly activates PxmALP expression via interacting with a non-canonical but specific GATA-like cis-response element (CRE) located in the PxmALP promoter region. A six-nucleotide insertion mutation in this cis-acting element of the PxmALP promoter from the resistant strain resulted in repression of transcriptional activity, affecting the regulatory performance of PxGATAd. Furthermore, silencing of PxGATAd in susceptible larvae reduced the expression of PxmALP and susceptibility to Cry1Ac toxin. Suppressing PxMAP4K4 expression in the resistant larvae transiently recovered both the expression of PxGATAd and PxmALP, indicating that the PxGATAd is a positive responsive factor involved in the activation of PxmALP promoter and negatively regulated by the MAPK signaling pathway. Overall, this study deciphers an intricate regulatory mechanism of PxmALP gene expression and highlights the concurrent involvement of both trans-regulatory factors and cis-acting elements in Cry1Ac resistance development in lepidopteran insects.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35113858</pmid><doi>10.1371/journal.pgen.1010037</doi><orcidid>https://orcid.org/0000-0002-8448-0763</orcidid><orcidid>https://orcid.org/0000-0003-4682-7241</orcidid><orcidid>https://orcid.org/0000-0003-3508-6695</orcidid><orcidid>https://orcid.org/0000-0002-7573-7475</orcidid><orcidid>https://orcid.org/0000-0001-5170-6781</orcidid><orcidid>https://orcid.org/0000-0002-2385-8224</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2022-02, Vol.18 (2), p.e1010037-e1010037
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2640116786
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adaptation
Agricultural pests
Agricultural production
Agricultural research
Animals
Bacillus thuringiensis - genetics
Bacillus thuringiensis - metabolism
Bacillus thuringiensis Toxins - metabolism
Bacillus thuringiensis Toxins - pharmacology
Bacterial Proteins - genetics
Binding sites
Biology and Life Sciences
Cellular signal transduction
Cloning
Cry1Ac toxin
Endotoxins - metabolism
Endotoxins - pharmacology
Gene expression
Gene silencing
Genetic aspects
Granulovirus - genetics
Hemolysin Proteins - metabolism
Hemolysin Proteins - pharmacology
Insect Proteins - genetics
Insecticide Resistance - genetics
Insecticides - metabolism
Insects
Larva - genetics
MAP kinase
MAP Kinase Signaling System - drug effects
MAP Kinase Signaling System - physiology
Medicine and Health Sciences
Mitogen-activated protein kinases
Molecular modelling
Moths - genetics
Moths - metabolism
Mutation
Pest resistance
Pesticide resistance
Phenotypes
Physiological aspects
Plasmids
Proteins
Signal transduction
Toxins
Transcription factors
Transcription Factors - genetics
title MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MAPK-mediated%20transcription%20factor%20GATAd%20contributes%20to%20Cry1Ac%20resistance%20in%20diamondback%20moth%20by%20reducing%20PxmALP%20expression&rft.jtitle=PLoS%20genetics&rft.au=Guo,%20Le&rft.date=2022-02-03&rft.volume=18&rft.issue=2&rft.spage=e1010037&rft.epage=e1010037&rft.pages=e1010037-e1010037&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1010037&rft_dat=%3Cgale_plos_%3EA695461193%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640116786&rft_id=info:pmid/35113858&rft_galeid=A695461193&rft_doaj_id=oai_doaj_org_article_211db95015ad4df98daaa1a90b5d5aec&rfr_iscdi=true