MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression
The benefits of biopesticides and transgenic crops based on the insecticidal Cry-toxins from Bacillus thuringiensis (Bt) are considerably threatened by insect resistance evolution, thus, deciphering the molecular mechanisms underlying insect resistance to Bt products is of great significance to thei...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2022-02, Vol.18 (2), p.e1010037-e1010037 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1010037 |
---|---|
container_issue | 2 |
container_start_page | e1010037 |
container_title | PLoS genetics |
container_volume | 18 |
creator | Guo, Le Cheng, Zhouqiang Qin, Jianying Sun, Dan Wang, Shaoli Wu, Qingjun Crickmore, Neil Zhou, Xuguo Bravo, Alejandra Soberón, Mario Guo, Zhaojiang Zhang, Youjun |
description | The benefits of biopesticides and transgenic crops based on the insecticidal Cry-toxins from Bacillus thuringiensis (Bt) are considerably threatened by insect resistance evolution, thus, deciphering the molecular mechanisms underlying insect resistance to Bt products is of great significance to their sustainable utilization. Previously, we have demonstrated that the down-regulation of PxmALP in a strain of Plutella xylostella (L.) highly resistant to the Bt Cry1Ac toxin was due to a hormone-activated MAPK signaling pathway and contributed to the resistance phenotype. However, the underlying transcriptional regulatory mechanism remains enigmatic. Here, we report that the PxGATAd transcription factor (TF) is responsible for the differential expression of PxmALP observed between the Cry1Ac susceptible and resistant strains. We identified that PxGATAd directly activates PxmALP expression via interacting with a non-canonical but specific GATA-like cis-response element (CRE) located in the PxmALP promoter region. A six-nucleotide insertion mutation in this cis-acting element of the PxmALP promoter from the resistant strain resulted in repression of transcriptional activity, affecting the regulatory performance of PxGATAd. Furthermore, silencing of PxGATAd in susceptible larvae reduced the expression of PxmALP and susceptibility to Cry1Ac toxin. Suppressing PxMAP4K4 expression in the resistant larvae transiently recovered both the expression of PxGATAd and PxmALP, indicating that the PxGATAd is a positive responsive factor involved in the activation of PxmALP promoter and negatively regulated by the MAPK signaling pathway. Overall, this study deciphers an intricate regulatory mechanism of PxmALP gene expression and highlights the concurrent involvement of both trans-regulatory factors and cis-acting elements in Cry1Ac resistance development in lepidopteran insects. |
doi_str_mv | 10.1371/journal.pgen.1010037 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2640116786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A695461193</galeid><doaj_id>oai_doaj_org_article_211db95015ad4df98daaa1a90b5d5aec</doaj_id><sourcerecordid>A695461193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-342fd7d4eba3444e704b659c0a684776ecace4070b9a5a2234ea2546e98aaf4a3</originalsourceid><addsrcrecordid>eNqVk19v0zAUxSMEYmPwDRBYQkLw0GIndv68TIoqGBOFVTB4tW7sm9YjiYvtoFV8eVzWTSvaA8gPsZzfObbP9U2Sp4xOWVawNxd2dAN00_UShymjjNKsuJccMiGyScEpv39rfpA88v4iEqKsiofJQSYYy0pRHia_PtaLD5MetYGAmgQHg1fOrIOxA2lBBevISX1ea6LsEJxpxoCeBEtmbsNqRRx64wMMCokZSHTp7aAbUN9Jb8OKNJtI6FGZYUkWl309XxC8XEeRj_6PkwctdB6f7L5Hydd3b89n7yfzs5PTWT2fqCLNwyTjaasLzbGBjHOOBeVNLipFIS95UeSoQCGnBW0qEJCmGUdIBc-xKgFaDtlR8vzKd91ZL3e5eZnmnDKWF2UeidMrQlu4kGtnenAbacHIPwvWLSW4YFSHMmVMN5WgTIDmuq1KDQAMKtoILQBV9Dre7TY2MVeFMTbo9kz3_wxmJZf2pyxLnouUR4NXOwNnf4zog-yNV9h1MKAdt-dOc0p5lpYRffEXevftdtQS4gXM0Nq4r9qayjqvYlKMVVmkpndQcWjsTSw-tiau7wle7wm2DwQvwxJG7-Xpl8__wX76d_bs2z778ha7QujCyttu3D5fvw_yK1A5673D9qYgjMptP10nJ7f9JHf9FGXPbhfzRnTdQNlvInAa3w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640116786</pqid></control><display><type>article</type><title>MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Guo, Le ; Cheng, Zhouqiang ; Qin, Jianying ; Sun, Dan ; Wang, Shaoli ; Wu, Qingjun ; Crickmore, Neil ; Zhou, Xuguo ; Bravo, Alejandra ; Soberón, Mario ; Guo, Zhaojiang ; Zhang, Youjun</creator><creatorcontrib>Guo, Le ; Cheng, Zhouqiang ; Qin, Jianying ; Sun, Dan ; Wang, Shaoli ; Wu, Qingjun ; Crickmore, Neil ; Zhou, Xuguo ; Bravo, Alejandra ; Soberón, Mario ; Guo, Zhaojiang ; Zhang, Youjun</creatorcontrib><description>The benefits of biopesticides and transgenic crops based on the insecticidal Cry-toxins from Bacillus thuringiensis (Bt) are considerably threatened by insect resistance evolution, thus, deciphering the molecular mechanisms underlying insect resistance to Bt products is of great significance to their sustainable utilization. Previously, we have demonstrated that the down-regulation of PxmALP in a strain of Plutella xylostella (L.) highly resistant to the Bt Cry1Ac toxin was due to a hormone-activated MAPK signaling pathway and contributed to the resistance phenotype. However, the underlying transcriptional regulatory mechanism remains enigmatic. Here, we report that the PxGATAd transcription factor (TF) is responsible for the differential expression of PxmALP observed between the Cry1Ac susceptible and resistant strains. We identified that PxGATAd directly activates PxmALP expression via interacting with a non-canonical but specific GATA-like cis-response element (CRE) located in the PxmALP promoter region. A six-nucleotide insertion mutation in this cis-acting element of the PxmALP promoter from the resistant strain resulted in repression of transcriptional activity, affecting the regulatory performance of PxGATAd. Furthermore, silencing of PxGATAd in susceptible larvae reduced the expression of PxmALP and susceptibility to Cry1Ac toxin. Suppressing PxMAP4K4 expression in the resistant larvae transiently recovered both the expression of PxGATAd and PxmALP, indicating that the PxGATAd is a positive responsive factor involved in the activation of PxmALP promoter and negatively regulated by the MAPK signaling pathway. Overall, this study deciphers an intricate regulatory mechanism of PxmALP gene expression and highlights the concurrent involvement of both trans-regulatory factors and cis-acting elements in Cry1Ac resistance development in lepidopteran insects.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1010037</identifier><identifier>PMID: 35113858</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Agricultural pests ; Agricultural production ; Agricultural research ; Animals ; Bacillus thuringiensis - genetics ; Bacillus thuringiensis - metabolism ; Bacillus thuringiensis Toxins - metabolism ; Bacillus thuringiensis Toxins - pharmacology ; Bacterial Proteins - genetics ; Binding sites ; Biology and Life Sciences ; Cellular signal transduction ; Cloning ; Cry1Ac toxin ; Endotoxins - metabolism ; Endotoxins - pharmacology ; Gene expression ; Gene silencing ; Genetic aspects ; Granulovirus - genetics ; Hemolysin Proteins - metabolism ; Hemolysin Proteins - pharmacology ; Insect Proteins - genetics ; Insecticide Resistance - genetics ; Insecticides - metabolism ; Insects ; Larva - genetics ; MAP kinase ; MAP Kinase Signaling System - drug effects ; MAP Kinase Signaling System - physiology ; Medicine and Health Sciences ; Mitogen-activated protein kinases ; Molecular modelling ; Moths - genetics ; Moths - metabolism ; Mutation ; Pest resistance ; Pesticide resistance ; Phenotypes ; Physiological aspects ; Plasmids ; Proteins ; Signal transduction ; Toxins ; Transcription factors ; Transcription Factors - genetics</subject><ispartof>PLoS genetics, 2022-02, Vol.18 (2), p.e1010037-e1010037</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Guo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Guo et al 2022 Guo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-342fd7d4eba3444e704b659c0a684776ecace4070b9a5a2234ea2546e98aaf4a3</citedby><cites>FETCH-LOGICAL-c726t-342fd7d4eba3444e704b659c0a684776ecace4070b9a5a2234ea2546e98aaf4a3</cites><orcidid>0000-0002-8448-0763 ; 0000-0003-4682-7241 ; 0000-0003-3508-6695 ; 0000-0002-7573-7475 ; 0000-0001-5170-6781 ; 0000-0002-2385-8224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8846524/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8846524/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35113858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Le</creatorcontrib><creatorcontrib>Cheng, Zhouqiang</creatorcontrib><creatorcontrib>Qin, Jianying</creatorcontrib><creatorcontrib>Sun, Dan</creatorcontrib><creatorcontrib>Wang, Shaoli</creatorcontrib><creatorcontrib>Wu, Qingjun</creatorcontrib><creatorcontrib>Crickmore, Neil</creatorcontrib><creatorcontrib>Zhou, Xuguo</creatorcontrib><creatorcontrib>Bravo, Alejandra</creatorcontrib><creatorcontrib>Soberón, Mario</creatorcontrib><creatorcontrib>Guo, Zhaojiang</creatorcontrib><creatorcontrib>Zhang, Youjun</creatorcontrib><title>MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The benefits of biopesticides and transgenic crops based on the insecticidal Cry-toxins from Bacillus thuringiensis (Bt) are considerably threatened by insect resistance evolution, thus, deciphering the molecular mechanisms underlying insect resistance to Bt products is of great significance to their sustainable utilization. Previously, we have demonstrated that the down-regulation of PxmALP in a strain of Plutella xylostella (L.) highly resistant to the Bt Cry1Ac toxin was due to a hormone-activated MAPK signaling pathway and contributed to the resistance phenotype. However, the underlying transcriptional regulatory mechanism remains enigmatic. Here, we report that the PxGATAd transcription factor (TF) is responsible for the differential expression of PxmALP observed between the Cry1Ac susceptible and resistant strains. We identified that PxGATAd directly activates PxmALP expression via interacting with a non-canonical but specific GATA-like cis-response element (CRE) located in the PxmALP promoter region. A six-nucleotide insertion mutation in this cis-acting element of the PxmALP promoter from the resistant strain resulted in repression of transcriptional activity, affecting the regulatory performance of PxGATAd. Furthermore, silencing of PxGATAd in susceptible larvae reduced the expression of PxmALP and susceptibility to Cry1Ac toxin. Suppressing PxMAP4K4 expression in the resistant larvae transiently recovered both the expression of PxGATAd and PxmALP, indicating that the PxGATAd is a positive responsive factor involved in the activation of PxmALP promoter and negatively regulated by the MAPK signaling pathway. Overall, this study deciphers an intricate regulatory mechanism of PxmALP gene expression and highlights the concurrent involvement of both trans-regulatory factors and cis-acting elements in Cry1Ac resistance development in lepidopteran insects.</description><subject>Adaptation</subject><subject>Agricultural pests</subject><subject>Agricultural production</subject><subject>Agricultural research</subject><subject>Animals</subject><subject>Bacillus thuringiensis - genetics</subject><subject>Bacillus thuringiensis - metabolism</subject><subject>Bacillus thuringiensis Toxins - metabolism</subject><subject>Bacillus thuringiensis Toxins - pharmacology</subject><subject>Bacterial Proteins - genetics</subject><subject>Binding sites</subject><subject>Biology and Life Sciences</subject><subject>Cellular signal transduction</subject><subject>Cloning</subject><subject>Cry1Ac toxin</subject><subject>Endotoxins - metabolism</subject><subject>Endotoxins - pharmacology</subject><subject>Gene expression</subject><subject>Gene silencing</subject><subject>Genetic aspects</subject><subject>Granulovirus - genetics</subject><subject>Hemolysin Proteins - metabolism</subject><subject>Hemolysin Proteins - pharmacology</subject><subject>Insect Proteins - genetics</subject><subject>Insecticide Resistance - genetics</subject><subject>Insecticides - metabolism</subject><subject>Insects</subject><subject>Larva - genetics</subject><subject>MAP kinase</subject><subject>MAP Kinase Signaling System - drug effects</subject><subject>MAP Kinase Signaling System - physiology</subject><subject>Medicine and Health Sciences</subject><subject>Mitogen-activated protein kinases</subject><subject>Molecular modelling</subject><subject>Moths - genetics</subject><subject>Moths - metabolism</subject><subject>Mutation</subject><subject>Pest resistance</subject><subject>Pesticide resistance</subject><subject>Phenotypes</subject><subject>Physiological aspects</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Signal transduction</subject><subject>Toxins</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk19v0zAUxSMEYmPwDRBYQkLw0GIndv68TIoqGBOFVTB4tW7sm9YjiYvtoFV8eVzWTSvaA8gPsZzfObbP9U2Sp4xOWVawNxd2dAN00_UShymjjNKsuJccMiGyScEpv39rfpA88v4iEqKsiofJQSYYy0pRHia_PtaLD5MetYGAmgQHg1fOrIOxA2lBBevISX1ea6LsEJxpxoCeBEtmbsNqRRx64wMMCokZSHTp7aAbUN9Jb8OKNJtI6FGZYUkWl309XxC8XEeRj_6PkwctdB6f7L5Hydd3b89n7yfzs5PTWT2fqCLNwyTjaasLzbGBjHOOBeVNLipFIS95UeSoQCGnBW0qEJCmGUdIBc-xKgFaDtlR8vzKd91ZL3e5eZnmnDKWF2UeidMrQlu4kGtnenAbacHIPwvWLSW4YFSHMmVMN5WgTIDmuq1KDQAMKtoILQBV9Dre7TY2MVeFMTbo9kz3_wxmJZf2pyxLnouUR4NXOwNnf4zog-yNV9h1MKAdt-dOc0p5lpYRffEXevftdtQS4gXM0Nq4r9qayjqvYlKMVVmkpndQcWjsTSw-tiau7wle7wm2DwQvwxJG7-Xpl8__wX76d_bs2z778ha7QujCyttu3D5fvw_yK1A5673D9qYgjMptP10nJ7f9JHf9FGXPbhfzRnTdQNlvInAa3w</recordid><startdate>20220203</startdate><enddate>20220203</enddate><creator>Guo, Le</creator><creator>Cheng, Zhouqiang</creator><creator>Qin, Jianying</creator><creator>Sun, Dan</creator><creator>Wang, Shaoli</creator><creator>Wu, Qingjun</creator><creator>Crickmore, Neil</creator><creator>Zhou, Xuguo</creator><creator>Bravo, Alejandra</creator><creator>Soberón, Mario</creator><creator>Guo, Zhaojiang</creator><creator>Zhang, Youjun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8448-0763</orcidid><orcidid>https://orcid.org/0000-0003-4682-7241</orcidid><orcidid>https://orcid.org/0000-0003-3508-6695</orcidid><orcidid>https://orcid.org/0000-0002-7573-7475</orcidid><orcidid>https://orcid.org/0000-0001-5170-6781</orcidid><orcidid>https://orcid.org/0000-0002-2385-8224</orcidid></search><sort><creationdate>20220203</creationdate><title>MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression</title><author>Guo, Le ; Cheng, Zhouqiang ; Qin, Jianying ; Sun, Dan ; Wang, Shaoli ; Wu, Qingjun ; Crickmore, Neil ; Zhou, Xuguo ; Bravo, Alejandra ; Soberón, Mario ; Guo, Zhaojiang ; Zhang, Youjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-342fd7d4eba3444e704b659c0a684776ecace4070b9a5a2234ea2546e98aaf4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation</topic><topic>Agricultural pests</topic><topic>Agricultural production</topic><topic>Agricultural research</topic><topic>Animals</topic><topic>Bacillus thuringiensis - genetics</topic><topic>Bacillus thuringiensis - metabolism</topic><topic>Bacillus thuringiensis Toxins - metabolism</topic><topic>Bacillus thuringiensis Toxins - pharmacology</topic><topic>Bacterial Proteins - genetics</topic><topic>Binding sites</topic><topic>Biology and Life Sciences</topic><topic>Cellular signal transduction</topic><topic>Cloning</topic><topic>Cry1Ac toxin</topic><topic>Endotoxins - metabolism</topic><topic>Endotoxins - pharmacology</topic><topic>Gene expression</topic><topic>Gene silencing</topic><topic>Genetic aspects</topic><topic>Granulovirus - genetics</topic><topic>Hemolysin Proteins - metabolism</topic><topic>Hemolysin Proteins - pharmacology</topic><topic>Insect Proteins - genetics</topic><topic>Insecticide Resistance - genetics</topic><topic>Insecticides - metabolism</topic><topic>Insects</topic><topic>Larva - genetics</topic><topic>MAP kinase</topic><topic>MAP Kinase Signaling System - drug effects</topic><topic>MAP Kinase Signaling System - physiology</topic><topic>Medicine and Health Sciences</topic><topic>Mitogen-activated protein kinases</topic><topic>Molecular modelling</topic><topic>Moths - genetics</topic><topic>Moths - metabolism</topic><topic>Mutation</topic><topic>Pest resistance</topic><topic>Pesticide resistance</topic><topic>Phenotypes</topic><topic>Physiological aspects</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Signal transduction</topic><topic>Toxins</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Le</creatorcontrib><creatorcontrib>Cheng, Zhouqiang</creatorcontrib><creatorcontrib>Qin, Jianying</creatorcontrib><creatorcontrib>Sun, Dan</creatorcontrib><creatorcontrib>Wang, Shaoli</creatorcontrib><creatorcontrib>Wu, Qingjun</creatorcontrib><creatorcontrib>Crickmore, Neil</creatorcontrib><creatorcontrib>Zhou, Xuguo</creatorcontrib><creatorcontrib>Bravo, Alejandra</creatorcontrib><creatorcontrib>Soberón, Mario</creatorcontrib><creatorcontrib>Guo, Zhaojiang</creatorcontrib><creatorcontrib>Zhang, Youjun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Le</au><au>Cheng, Zhouqiang</au><au>Qin, Jianying</au><au>Sun, Dan</au><au>Wang, Shaoli</au><au>Wu, Qingjun</au><au>Crickmore, Neil</au><au>Zhou, Xuguo</au><au>Bravo, Alejandra</au><au>Soberón, Mario</au><au>Guo, Zhaojiang</au><au>Zhang, Youjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2022-02-03</date><risdate>2022</risdate><volume>18</volume><issue>2</issue><spage>e1010037</spage><epage>e1010037</epage><pages>e1010037-e1010037</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The benefits of biopesticides and transgenic crops based on the insecticidal Cry-toxins from Bacillus thuringiensis (Bt) are considerably threatened by insect resistance evolution, thus, deciphering the molecular mechanisms underlying insect resistance to Bt products is of great significance to their sustainable utilization. Previously, we have demonstrated that the down-regulation of PxmALP in a strain of Plutella xylostella (L.) highly resistant to the Bt Cry1Ac toxin was due to a hormone-activated MAPK signaling pathway and contributed to the resistance phenotype. However, the underlying transcriptional regulatory mechanism remains enigmatic. Here, we report that the PxGATAd transcription factor (TF) is responsible for the differential expression of PxmALP observed between the Cry1Ac susceptible and resistant strains. We identified that PxGATAd directly activates PxmALP expression via interacting with a non-canonical but specific GATA-like cis-response element (CRE) located in the PxmALP promoter region. A six-nucleotide insertion mutation in this cis-acting element of the PxmALP promoter from the resistant strain resulted in repression of transcriptional activity, affecting the regulatory performance of PxGATAd. Furthermore, silencing of PxGATAd in susceptible larvae reduced the expression of PxmALP and susceptibility to Cry1Ac toxin. Suppressing PxMAP4K4 expression in the resistant larvae transiently recovered both the expression of PxGATAd and PxmALP, indicating that the PxGATAd is a positive responsive factor involved in the activation of PxmALP promoter and negatively regulated by the MAPK signaling pathway. Overall, this study deciphers an intricate regulatory mechanism of PxmALP gene expression and highlights the concurrent involvement of both trans-regulatory factors and cis-acting elements in Cry1Ac resistance development in lepidopteran insects.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35113858</pmid><doi>10.1371/journal.pgen.1010037</doi><orcidid>https://orcid.org/0000-0002-8448-0763</orcidid><orcidid>https://orcid.org/0000-0003-4682-7241</orcidid><orcidid>https://orcid.org/0000-0003-3508-6695</orcidid><orcidid>https://orcid.org/0000-0002-7573-7475</orcidid><orcidid>https://orcid.org/0000-0001-5170-6781</orcidid><orcidid>https://orcid.org/0000-0002-2385-8224</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2022-02, Vol.18 (2), p.e1010037-e1010037 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2640116786 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adaptation Agricultural pests Agricultural production Agricultural research Animals Bacillus thuringiensis - genetics Bacillus thuringiensis - metabolism Bacillus thuringiensis Toxins - metabolism Bacillus thuringiensis Toxins - pharmacology Bacterial Proteins - genetics Binding sites Biology and Life Sciences Cellular signal transduction Cloning Cry1Ac toxin Endotoxins - metabolism Endotoxins - pharmacology Gene expression Gene silencing Genetic aspects Granulovirus - genetics Hemolysin Proteins - metabolism Hemolysin Proteins - pharmacology Insect Proteins - genetics Insecticide Resistance - genetics Insecticides - metabolism Insects Larva - genetics MAP kinase MAP Kinase Signaling System - drug effects MAP Kinase Signaling System - physiology Medicine and Health Sciences Mitogen-activated protein kinases Molecular modelling Moths - genetics Moths - metabolism Mutation Pest resistance Pesticide resistance Phenotypes Physiological aspects Plasmids Proteins Signal transduction Toxins Transcription factors Transcription Factors - genetics |
title | MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MAPK-mediated%20transcription%20factor%20GATAd%20contributes%20to%20Cry1Ac%20resistance%20in%20diamondback%20moth%20by%20reducing%20PxmALP%20expression&rft.jtitle=PLoS%20genetics&rft.au=Guo,%20Le&rft.date=2022-02-03&rft.volume=18&rft.issue=2&rft.spage=e1010037&rft.epage=e1010037&rft.pages=e1010037-e1010037&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1010037&rft_dat=%3Cgale_plos_%3EA695461193%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640116786&rft_id=info:pmid/35113858&rft_galeid=A695461193&rft_doaj_id=oai_doaj_org_article_211db95015ad4df98daaa1a90b5d5aec&rfr_iscdi=true |