Genetic dissection of novel myopathy models reveals a role of CapZα and Leiomodin 3 during myofibril elongation

Myofibrils within skeletal muscle are composed of sarcomeres that generate force by contraction when their myosin-rich thick filaments slide past actin-based thin filaments. Although mutations in components of the sarcomere are a major cause of human disease, the highly complex process of sarcomere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2022-02, Vol.18 (2), p.e1010066-e1010066
Hauptverfasser: Berger, Joachim, Berger, Silke, Mok, Yu Shan G, Li, Mei, Tarakci, Hakan, Currie, Peter D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1010066
container_issue 2
container_start_page e1010066
container_title PLoS genetics
container_volume 18
creator Berger, Joachim
Berger, Silke
Mok, Yu Shan G
Li, Mei
Tarakci, Hakan
Currie, Peter D
description Myofibrils within skeletal muscle are composed of sarcomeres that generate force by contraction when their myosin-rich thick filaments slide past actin-based thin filaments. Although mutations in components of the sarcomere are a major cause of human disease, the highly complex process of sarcomere assembly is not fully understood. Current models of thin filament assembly highlight a central role for filament capping proteins, which can be divided into three protein families, each ascribed with separate roles in thin filament assembly. CapZ proteins have been shown to bind the Z-disc protein α-actinin to form an anchoring complex for thin filaments and actin polymerisation. Subsequent thin filaments extension dynamics are thought to be facilitated by Leiomodins (Lmods) and thin filament assembly is concluded by Tropomodulins (Tmods) that specifically cap the pointed end of thin filaments. To study thin filament assembly in vivo, single and compound loss-of-function zebrafish mutants within distinct classes of capping proteins were analysed. The generated lmod3- and capza1b-deficient zebrafish exhibited aspects of the pathology caused by variations in their human orthologs. Although loss of the analysed main capping proteins of the skeletal muscle, capza1b, capza1a, lmod3 and tmod4, resulted in sarcomere defects, residual organised sarcomeres were formed within the assessed mutants, indicating that these proteins are not essential for the initial myofibril assembly. Furthermore, detected similarity and location of myofibril defects, apparent at the peripheral ends of myofibres of both Lmod3- and CapZα-deficient mutants, suggest a function in longitudinal myofibril growth for both proteins, which is molecularly distinct to the function of Tmod4.
doi_str_mv 10.1371/journal.pgen.1010066
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2640116570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5b70acb587c64d85a956a5df9a8e94b9</doaj_id><sourcerecordid>2628295237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4416-d5f43596406a4f8bcdb8829440f8d7706315feccb51eac752375d621388e40db3</originalsourceid><addsrcrecordid>eNptksFuEzEQhlcIREvhDRBY4sIlwV7ba-8FqYraUikSF7hwsbz27NaR117sJFIeixfhmfCStGoRJ1v2P9_MP_qr6i3BS0IF-bSJuxS0X04DhCXBBOOmeVadE87pQjDMnj-6n1Wvct5gTLlsxcvqjHLCJK3xeTXdQICtM8i6nMFsXQwo9ijEPXg0HuKkt3cHNEYLPqMEe9Dl1ChFD7Nupacfv38hHSxag4tF5wKiyO6SC8Nc37suOY_AxzDomf66etEXBrw5nRfV9-urb6svi_XXm9vV5XphGCPNwvKeUd42DDea9bIztpOybhnDvbRC4IYS3oMxHSegjeA1Fdw2NaFSAsO2oxfV-yN38jGr07KyqguRkIYLXBS3R4WNeqOm5EadDipqp_4-xDQoncpqPCjeCaxLLylMw6zkuuWN5rZvtYSWdW1hfT5123UjWANhm7R_An36E9ydGuJeSSkwZ6IAPp4AKf7cQd6q0WUD3usAcTfPXRf7s80i_fCP9P_u2FFlUsw5Qf8wDMFqDtB9lZoDpE4BKmXvHht5KLpPDP0DCwjFTw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640116570</pqid></control><display><type>article</type><title>Genetic dissection of novel myopathy models reveals a role of CapZα and Leiomodin 3 during myofibril elongation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Berger, Joachim ; Berger, Silke ; Mok, Yu Shan G ; Li, Mei ; Tarakci, Hakan ; Currie, Peter D</creator><contributor>Cox, Gregory A.</contributor><creatorcontrib>Berger, Joachim ; Berger, Silke ; Mok, Yu Shan G ; Li, Mei ; Tarakci, Hakan ; Currie, Peter D ; Cox, Gregory A.</creatorcontrib><description>Myofibrils within skeletal muscle are composed of sarcomeres that generate force by contraction when their myosin-rich thick filaments slide past actin-based thin filaments. Although mutations in components of the sarcomere are a major cause of human disease, the highly complex process of sarcomere assembly is not fully understood. Current models of thin filament assembly highlight a central role for filament capping proteins, which can be divided into three protein families, each ascribed with separate roles in thin filament assembly. CapZ proteins have been shown to bind the Z-disc protein α-actinin to form an anchoring complex for thin filaments and actin polymerisation. Subsequent thin filaments extension dynamics are thought to be facilitated by Leiomodins (Lmods) and thin filament assembly is concluded by Tropomodulins (Tmods) that specifically cap the pointed end of thin filaments. To study thin filament assembly in vivo, single and compound loss-of-function zebrafish mutants within distinct classes of capping proteins were analysed. The generated lmod3- and capza1b-deficient zebrafish exhibited aspects of the pathology caused by variations in their human orthologs. Although loss of the analysed main capping proteins of the skeletal muscle, capza1b, capza1a, lmod3 and tmod4, resulted in sarcomere defects, residual organised sarcomeres were formed within the assessed mutants, indicating that these proteins are not essential for the initial myofibril assembly. Furthermore, detected similarity and location of myofibril defects, apparent at the peripheral ends of myofibres of both Lmod3- and CapZα-deficient mutants, suggest a function in longitudinal myofibril growth for both proteins, which is molecularly distinct to the function of Tmod4.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1010066</identifier><identifier>PMID: 35148320</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actin ; Actinin ; Actins - genetics ; Actins - metabolism ; Animals ; Binding sites ; Biology and Life Sciences ; Danio rerio ; Deficient mutant ; DISC protein ; Filaments ; Medicine and Health Sciences ; Microfilament Proteins - genetics ; Microfilament Proteins - metabolism ; Muscle contraction ; Muscle Proteins - genetics ; Muscle Proteins - metabolism ; Muscular Diseases - genetics ; Muscular Diseases - metabolism ; Musculoskeletal system ; Mutation ; Myofibrils ; Myofibrils - genetics ; Myofibrils - metabolism ; Myopathy ; Myosin ; Protein families ; Proteins ; Research and Analysis Methods ; Sarcomeres ; Siblings ; Skeletal muscle ; Tropomodulin - genetics ; Tropomodulin - metabolism ; Zebrafish - genetics ; Zebrafish - metabolism</subject><ispartof>PLoS genetics, 2022-02, Vol.18 (2), p.e1010066-e1010066</ispartof><rights>2022 Berger et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Berger et al 2022 Berger et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4416-d5f43596406a4f8bcdb8829440f8d7706315feccb51eac752375d621388e40db3</citedby><cites>FETCH-LOGICAL-c4416-d5f43596406a4f8bcdb8829440f8d7706315feccb51eac752375d621388e40db3</cites><orcidid>0000-0002-7859-545X ; 0000-0001-8874-8862 ; 0000-0002-0281-1558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870547/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870547/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35148320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cox, Gregory A.</contributor><creatorcontrib>Berger, Joachim</creatorcontrib><creatorcontrib>Berger, Silke</creatorcontrib><creatorcontrib>Mok, Yu Shan G</creatorcontrib><creatorcontrib>Li, Mei</creatorcontrib><creatorcontrib>Tarakci, Hakan</creatorcontrib><creatorcontrib>Currie, Peter D</creatorcontrib><title>Genetic dissection of novel myopathy models reveals a role of CapZα and Leiomodin 3 during myofibril elongation</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Myofibrils within skeletal muscle are composed of sarcomeres that generate force by contraction when their myosin-rich thick filaments slide past actin-based thin filaments. Although mutations in components of the sarcomere are a major cause of human disease, the highly complex process of sarcomere assembly is not fully understood. Current models of thin filament assembly highlight a central role for filament capping proteins, which can be divided into three protein families, each ascribed with separate roles in thin filament assembly. CapZ proteins have been shown to bind the Z-disc protein α-actinin to form an anchoring complex for thin filaments and actin polymerisation. Subsequent thin filaments extension dynamics are thought to be facilitated by Leiomodins (Lmods) and thin filament assembly is concluded by Tropomodulins (Tmods) that specifically cap the pointed end of thin filaments. To study thin filament assembly in vivo, single and compound loss-of-function zebrafish mutants within distinct classes of capping proteins were analysed. The generated lmod3- and capza1b-deficient zebrafish exhibited aspects of the pathology caused by variations in their human orthologs. Although loss of the analysed main capping proteins of the skeletal muscle, capza1b, capza1a, lmod3 and tmod4, resulted in sarcomere defects, residual organised sarcomeres were formed within the assessed mutants, indicating that these proteins are not essential for the initial myofibril assembly. Furthermore, detected similarity and location of myofibril defects, apparent at the peripheral ends of myofibres of both Lmod3- and CapZα-deficient mutants, suggest a function in longitudinal myofibril growth for both proteins, which is molecularly distinct to the function of Tmod4.</description><subject>Actin</subject><subject>Actinin</subject><subject>Actins - genetics</subject><subject>Actins - metabolism</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Biology and Life Sciences</subject><subject>Danio rerio</subject><subject>Deficient mutant</subject><subject>DISC protein</subject><subject>Filaments</subject><subject>Medicine and Health Sciences</subject><subject>Microfilament Proteins - genetics</subject><subject>Microfilament Proteins - metabolism</subject><subject>Muscle contraction</subject><subject>Muscle Proteins - genetics</subject><subject>Muscle Proteins - metabolism</subject><subject>Muscular Diseases - genetics</subject><subject>Muscular Diseases - metabolism</subject><subject>Musculoskeletal system</subject><subject>Mutation</subject><subject>Myofibrils</subject><subject>Myofibrils - genetics</subject><subject>Myofibrils - metabolism</subject><subject>Myopathy</subject><subject>Myosin</subject><subject>Protein families</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Sarcomeres</subject><subject>Siblings</subject><subject>Skeletal muscle</subject><subject>Tropomodulin - genetics</subject><subject>Tropomodulin - metabolism</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - metabolism</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptksFuEzEQhlcIREvhDRBY4sIlwV7ba-8FqYraUikSF7hwsbz27NaR117sJFIeixfhmfCStGoRJ1v2P9_MP_qr6i3BS0IF-bSJuxS0X04DhCXBBOOmeVadE87pQjDMnj-6n1Wvct5gTLlsxcvqjHLCJK3xeTXdQICtM8i6nMFsXQwo9ijEPXg0HuKkt3cHNEYLPqMEe9Dl1ChFD7Nupacfv38hHSxag4tF5wKiyO6SC8Nc37suOY_AxzDomf66etEXBrw5nRfV9-urb6svi_XXm9vV5XphGCPNwvKeUd42DDea9bIztpOybhnDvbRC4IYS3oMxHSegjeA1Fdw2NaFSAsO2oxfV-yN38jGr07KyqguRkIYLXBS3R4WNeqOm5EadDipqp_4-xDQoncpqPCjeCaxLLylMw6zkuuWN5rZvtYSWdW1hfT5123UjWANhm7R_An36E9ydGuJeSSkwZ6IAPp4AKf7cQd6q0WUD3usAcTfPXRf7s80i_fCP9P_u2FFlUsw5Qf8wDMFqDtB9lZoDpE4BKmXvHht5KLpPDP0DCwjFTw</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Berger, Joachim</creator><creator>Berger, Silke</creator><creator>Mok, Yu Shan G</creator><creator>Li, Mei</creator><creator>Tarakci, Hakan</creator><creator>Currie, Peter D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7859-545X</orcidid><orcidid>https://orcid.org/0000-0001-8874-8862</orcidid><orcidid>https://orcid.org/0000-0002-0281-1558</orcidid></search><sort><creationdate>202202</creationdate><title>Genetic dissection of novel myopathy models reveals a role of CapZα and Leiomodin 3 during myofibril elongation</title><author>Berger, Joachim ; Berger, Silke ; Mok, Yu Shan G ; Li, Mei ; Tarakci, Hakan ; Currie, Peter D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4416-d5f43596406a4f8bcdb8829440f8d7706315feccb51eac752375d621388e40db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actin</topic><topic>Actinin</topic><topic>Actins - genetics</topic><topic>Actins - metabolism</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Biology and Life Sciences</topic><topic>Danio rerio</topic><topic>Deficient mutant</topic><topic>DISC protein</topic><topic>Filaments</topic><topic>Medicine and Health Sciences</topic><topic>Microfilament Proteins - genetics</topic><topic>Microfilament Proteins - metabolism</topic><topic>Muscle contraction</topic><topic>Muscle Proteins - genetics</topic><topic>Muscle Proteins - metabolism</topic><topic>Muscular Diseases - genetics</topic><topic>Muscular Diseases - metabolism</topic><topic>Musculoskeletal system</topic><topic>Mutation</topic><topic>Myofibrils</topic><topic>Myofibrils - genetics</topic><topic>Myofibrils - metabolism</topic><topic>Myopathy</topic><topic>Myosin</topic><topic>Protein families</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Sarcomeres</topic><topic>Siblings</topic><topic>Skeletal muscle</topic><topic>Tropomodulin - genetics</topic><topic>Tropomodulin - metabolism</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berger, Joachim</creatorcontrib><creatorcontrib>Berger, Silke</creatorcontrib><creatorcontrib>Mok, Yu Shan G</creatorcontrib><creatorcontrib>Li, Mei</creatorcontrib><creatorcontrib>Tarakci, Hakan</creatorcontrib><creatorcontrib>Currie, Peter D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berger, Joachim</au><au>Berger, Silke</au><au>Mok, Yu Shan G</au><au>Li, Mei</au><au>Tarakci, Hakan</au><au>Currie, Peter D</au><au>Cox, Gregory A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic dissection of novel myopathy models reveals a role of CapZα and Leiomodin 3 during myofibril elongation</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2022-02</date><risdate>2022</risdate><volume>18</volume><issue>2</issue><spage>e1010066</spage><epage>e1010066</epage><pages>e1010066-e1010066</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Myofibrils within skeletal muscle are composed of sarcomeres that generate force by contraction when their myosin-rich thick filaments slide past actin-based thin filaments. Although mutations in components of the sarcomere are a major cause of human disease, the highly complex process of sarcomere assembly is not fully understood. Current models of thin filament assembly highlight a central role for filament capping proteins, which can be divided into three protein families, each ascribed with separate roles in thin filament assembly. CapZ proteins have been shown to bind the Z-disc protein α-actinin to form an anchoring complex for thin filaments and actin polymerisation. Subsequent thin filaments extension dynamics are thought to be facilitated by Leiomodins (Lmods) and thin filament assembly is concluded by Tropomodulins (Tmods) that specifically cap the pointed end of thin filaments. To study thin filament assembly in vivo, single and compound loss-of-function zebrafish mutants within distinct classes of capping proteins were analysed. The generated lmod3- and capza1b-deficient zebrafish exhibited aspects of the pathology caused by variations in their human orthologs. Although loss of the analysed main capping proteins of the skeletal muscle, capza1b, capza1a, lmod3 and tmod4, resulted in sarcomere defects, residual organised sarcomeres were formed within the assessed mutants, indicating that these proteins are not essential for the initial myofibril assembly. Furthermore, detected similarity and location of myofibril defects, apparent at the peripheral ends of myofibres of both Lmod3- and CapZα-deficient mutants, suggest a function in longitudinal myofibril growth for both proteins, which is molecularly distinct to the function of Tmod4.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35148320</pmid><doi>10.1371/journal.pgen.1010066</doi><orcidid>https://orcid.org/0000-0002-7859-545X</orcidid><orcidid>https://orcid.org/0000-0001-8874-8862</orcidid><orcidid>https://orcid.org/0000-0002-0281-1558</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2022-02, Vol.18 (2), p.e1010066-e1010066
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2640116570
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Actin
Actinin
Actins - genetics
Actins - metabolism
Animals
Binding sites
Biology and Life Sciences
Danio rerio
Deficient mutant
DISC protein
Filaments
Medicine and Health Sciences
Microfilament Proteins - genetics
Microfilament Proteins - metabolism
Muscle contraction
Muscle Proteins - genetics
Muscle Proteins - metabolism
Muscular Diseases - genetics
Muscular Diseases - metabolism
Musculoskeletal system
Mutation
Myofibrils
Myofibrils - genetics
Myofibrils - metabolism
Myopathy
Myosin
Protein families
Proteins
Research and Analysis Methods
Sarcomeres
Siblings
Skeletal muscle
Tropomodulin - genetics
Tropomodulin - metabolism
Zebrafish - genetics
Zebrafish - metabolism
title Genetic dissection of novel myopathy models reveals a role of CapZα and Leiomodin 3 during myofibril elongation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A11%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20dissection%20of%20novel%20myopathy%20models%20reveals%20a%20role%20of%20CapZ%CE%B1%20and%20Leiomodin%203%20during%20myofibril%20elongation&rft.jtitle=PLoS%20genetics&rft.au=Berger,%20Joachim&rft.date=2022-02&rft.volume=18&rft.issue=2&rft.spage=e1010066&rft.epage=e1010066&rft.pages=e1010066-e1010066&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1010066&rft_dat=%3Cproquest_plos_%3E2628295237%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640116570&rft_id=info:pmid/35148320&rft_doaj_id=oai_doaj_org_article_5b70acb587c64d85a956a5df9a8e94b9&rfr_iscdi=true