Automated fitting of transition state force fields for biomolecular simulations

The generation of surrogate potential energy functions (PEF) that are orders of magnitude faster to compute but as accurate as the underlying training data from high-level electronic structure methods is one of the most promising applications of fitting procedures in chemistry. In previous work, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-03, Vol.17 (3), p.e0264960-e0264960
Hauptverfasser: Quinn, Taylor R, Patel, Himani N, Koh, Kevin H, Haines, Brandon E, Norrby, Per-Ola, Helquist, Paul, Wiest, Olaf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0264960
container_issue 3
container_start_page e0264960
container_title PloS one
container_volume 17
creator Quinn, Taylor R
Patel, Himani N
Koh, Kevin H
Haines, Brandon E
Norrby, Per-Ola
Helquist, Paul
Wiest, Olaf
description The generation of surrogate potential energy functions (PEF) that are orders of magnitude faster to compute but as accurate as the underlying training data from high-level electronic structure methods is one of the most promising applications of fitting procedures in chemistry. In previous work, we have shown that transition state force fields (TSFFs), fitted to the functional form of MM3* force fields using the quantum guided molecular mechanics (Q2MM) method, provide an accurate description of transition states that can be used for stereoselectivity predictions of small molecule reactions. Here, we demonstrate the applicability of the method for fit TSFFs to the well-established Amber force field, which could be used for molecular dynamics studies of enzyme reaction. As a case study, the fitting of a TSFF to the second hydride transfer in Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl coenzyme A reductase (PmHMGR) is used. The differences and similarities to fitting of small molecule TSFFs are discussed.
doi_str_mv 10.1371/journal.pone.0264960
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2638000100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696334040</galeid><doaj_id>oai_doaj_org_article_241716d3a6b24ba9a7b1af87ae378431</doaj_id><sourcerecordid>A696334040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-bf63859cd75dbf821dd8fa3dab0975c63a2bb44b51e2b9b7985d33e09b8b4fb83</originalsourceid><addsrcrecordid>eNptkltrFDEUxwdRbK1-A9EBQXzZNbdJMi_CUrwUCn3R55DrbpbMZE0yBb-9me607IovObn8zv9ccprmLQRriBn8vI9TGmVYH-Jo1wBR0lPwrLmEPUYrigB-frK_aF7lvAegw5zSl80F7hCDlLDL5m4zlTjIYk3rfCl-3LbRtSXJMfvi49jmUh9bF5Ouq7fB5PnQKh-HGKyegkxt9kO1M55fNy-cDNm-WexV8-vb15_XP1a3d99vrje3K93xrqyUo5h3vTasM8pxBI3hTmIjFehZpymWSClCVActUr1iPe8Mxhb0iiviFMdXzfuj7iHELJZeZIGqLAAAAlCJmyNhotyLQ_KDTH9ElF48XMS0FTIVr4MViMDaDoMlVYgo2UumoHScSYsZJxhWrS9LtEkN1mg71g6FM9Hzl9HvxDbeC95DhCitAp8WgRR_TzYXMfisbQhytHE65s0QYv2MfvgH_X91C7WVtQA_uljj6llUbGhVwQSQmfp4Qu2sDGWXY5gevuocJEdQp5hzsu6pNgjEPG6PSYh53MQybtXt3Wlfnpwe5wv_BUEp0p4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638000100</pqid></control><display><type>article</type><title>Automated fitting of transition state force fields for biomolecular simulations</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Quinn, Taylor R ; Patel, Himani N ; Koh, Kevin H ; Haines, Brandon E ; Norrby, Per-Ola ; Helquist, Paul ; Wiest, Olaf</creator><creatorcontrib>Quinn, Taylor R ; Patel, Himani N ; Koh, Kevin H ; Haines, Brandon E ; Norrby, Per-Ola ; Helquist, Paul ; Wiest, Olaf</creatorcontrib><description>The generation of surrogate potential energy functions (PEF) that are orders of magnitude faster to compute but as accurate as the underlying training data from high-level electronic structure methods is one of the most promising applications of fitting procedures in chemistry. In previous work, we have shown that transition state force fields (TSFFs), fitted to the functional form of MM3* force fields using the quantum guided molecular mechanics (Q2MM) method, provide an accurate description of transition states that can be used for stereoselectivity predictions of small molecule reactions. Here, we demonstrate the applicability of the method for fit TSFFs to the well-established Amber force field, which could be used for molecular dynamics studies of enzyme reaction. As a case study, the fitting of a TSFF to the second hydride transfer in Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl coenzyme A reductase (PmHMGR) is used. The differences and similarities to fitting of small molecule TSFFs are discussed.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0264960</identifier><identifier>PMID: 35271647</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Automation ; Biochemistry ; Biology and Life Sciences ; Chemistry ; Coenzyme A ; Electronic structure ; Engineering and Technology ; Enzymes ; Hydroxymethylglutaryl-CoA reductase ; Mechanics ; Methods ; Molecular dynamics ; Molecular Dynamics Simulation ; Physical Sciences ; Potential energy ; R&amp;D ; Reductases ; Research &amp; development ; Simulation ; Stereoselectivity</subject><ispartof>PloS one, 2022-03, Vol.17 (3), p.e0264960-e0264960</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Quinn et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Quinn et al 2022 Quinn et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-bf63859cd75dbf821dd8fa3dab0975c63a2bb44b51e2b9b7985d33e09b8b4fb83</citedby><cites>FETCH-LOGICAL-c585t-bf63859cd75dbf821dd8fa3dab0975c63a2bb44b51e2b9b7985d33e09b8b4fb83</cites><orcidid>0000-0002-2419-0705 ; 0000-0001-9316-7720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912266/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912266/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35271647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quinn, Taylor R</creatorcontrib><creatorcontrib>Patel, Himani N</creatorcontrib><creatorcontrib>Koh, Kevin H</creatorcontrib><creatorcontrib>Haines, Brandon E</creatorcontrib><creatorcontrib>Norrby, Per-Ola</creatorcontrib><creatorcontrib>Helquist, Paul</creatorcontrib><creatorcontrib>Wiest, Olaf</creatorcontrib><title>Automated fitting of transition state force fields for biomolecular simulations</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The generation of surrogate potential energy functions (PEF) that are orders of magnitude faster to compute but as accurate as the underlying training data from high-level electronic structure methods is one of the most promising applications of fitting procedures in chemistry. In previous work, we have shown that transition state force fields (TSFFs), fitted to the functional form of MM3* force fields using the quantum guided molecular mechanics (Q2MM) method, provide an accurate description of transition states that can be used for stereoselectivity predictions of small molecule reactions. Here, we demonstrate the applicability of the method for fit TSFFs to the well-established Amber force field, which could be used for molecular dynamics studies of enzyme reaction. As a case study, the fitting of a TSFF to the second hydride transfer in Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl coenzyme A reductase (PmHMGR) is used. The differences and similarities to fitting of small molecule TSFFs are discussed.</description><subject>Analysis</subject><subject>Automation</subject><subject>Biochemistry</subject><subject>Biology and Life Sciences</subject><subject>Chemistry</subject><subject>Coenzyme A</subject><subject>Electronic structure</subject><subject>Engineering and Technology</subject><subject>Enzymes</subject><subject>Hydroxymethylglutaryl-CoA reductase</subject><subject>Mechanics</subject><subject>Methods</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Physical Sciences</subject><subject>Potential energy</subject><subject>R&amp;D</subject><subject>Reductases</subject><subject>Research &amp; development</subject><subject>Simulation</subject><subject>Stereoselectivity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkltrFDEUxwdRbK1-A9EBQXzZNbdJMi_CUrwUCn3R55DrbpbMZE0yBb-9me607IovObn8zv9ccprmLQRriBn8vI9TGmVYH-Jo1wBR0lPwrLmEPUYrigB-frK_aF7lvAegw5zSl80F7hCDlLDL5m4zlTjIYk3rfCl-3LbRtSXJMfvi49jmUh9bF5Ouq7fB5PnQKh-HGKyegkxt9kO1M55fNy-cDNm-WexV8-vb15_XP1a3d99vrje3K93xrqyUo5h3vTasM8pxBI3hTmIjFehZpymWSClCVActUr1iPe8Mxhb0iiviFMdXzfuj7iHELJZeZIGqLAAAAlCJmyNhotyLQ_KDTH9ElF48XMS0FTIVr4MViMDaDoMlVYgo2UumoHScSYsZJxhWrS9LtEkN1mg71g6FM9Hzl9HvxDbeC95DhCitAp8WgRR_TzYXMfisbQhytHE65s0QYv2MfvgH_X91C7WVtQA_uljj6llUbGhVwQSQmfp4Qu2sDGWXY5gevuocJEdQp5hzsu6pNgjEPG6PSYh53MQybtXt3Wlfnpwe5wv_BUEp0p4</recordid><startdate>20220310</startdate><enddate>20220310</enddate><creator>Quinn, Taylor R</creator><creator>Patel, Himani N</creator><creator>Koh, Kevin H</creator><creator>Haines, Brandon E</creator><creator>Norrby, Per-Ola</creator><creator>Helquist, Paul</creator><creator>Wiest, Olaf</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2419-0705</orcidid><orcidid>https://orcid.org/0000-0001-9316-7720</orcidid></search><sort><creationdate>20220310</creationdate><title>Automated fitting of transition state force fields for biomolecular simulations</title><author>Quinn, Taylor R ; Patel, Himani N ; Koh, Kevin H ; Haines, Brandon E ; Norrby, Per-Ola ; Helquist, Paul ; Wiest, Olaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-bf63859cd75dbf821dd8fa3dab0975c63a2bb44b51e2b9b7985d33e09b8b4fb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Automation</topic><topic>Biochemistry</topic><topic>Biology and Life Sciences</topic><topic>Chemistry</topic><topic>Coenzyme A</topic><topic>Electronic structure</topic><topic>Engineering and Technology</topic><topic>Enzymes</topic><topic>Hydroxymethylglutaryl-CoA reductase</topic><topic>Mechanics</topic><topic>Methods</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Physical Sciences</topic><topic>Potential energy</topic><topic>R&amp;D</topic><topic>Reductases</topic><topic>Research &amp; development</topic><topic>Simulation</topic><topic>Stereoselectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quinn, Taylor R</creatorcontrib><creatorcontrib>Patel, Himani N</creatorcontrib><creatorcontrib>Koh, Kevin H</creatorcontrib><creatorcontrib>Haines, Brandon E</creatorcontrib><creatorcontrib>Norrby, Per-Ola</creatorcontrib><creatorcontrib>Helquist, Paul</creatorcontrib><creatorcontrib>Wiest, Olaf</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quinn, Taylor R</au><au>Patel, Himani N</au><au>Koh, Kevin H</au><au>Haines, Brandon E</au><au>Norrby, Per-Ola</au><au>Helquist, Paul</au><au>Wiest, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated fitting of transition state force fields for biomolecular simulations</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-03-10</date><risdate>2022</risdate><volume>17</volume><issue>3</issue><spage>e0264960</spage><epage>e0264960</epage><pages>e0264960-e0264960</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The generation of surrogate potential energy functions (PEF) that are orders of magnitude faster to compute but as accurate as the underlying training data from high-level electronic structure methods is one of the most promising applications of fitting procedures in chemistry. In previous work, we have shown that transition state force fields (TSFFs), fitted to the functional form of MM3* force fields using the quantum guided molecular mechanics (Q2MM) method, provide an accurate description of transition states that can be used for stereoselectivity predictions of small molecule reactions. Here, we demonstrate the applicability of the method for fit TSFFs to the well-established Amber force field, which could be used for molecular dynamics studies of enzyme reaction. As a case study, the fitting of a TSFF to the second hydride transfer in Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl coenzyme A reductase (PmHMGR) is used. The differences and similarities to fitting of small molecule TSFFs are discussed.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35271647</pmid><doi>10.1371/journal.pone.0264960</doi><orcidid>https://orcid.org/0000-0002-2419-0705</orcidid><orcidid>https://orcid.org/0000-0001-9316-7720</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-03, Vol.17 (3), p.e0264960-e0264960
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2638000100
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Analysis
Automation
Biochemistry
Biology and Life Sciences
Chemistry
Coenzyme A
Electronic structure
Engineering and Technology
Enzymes
Hydroxymethylglutaryl-CoA reductase
Mechanics
Methods
Molecular dynamics
Molecular Dynamics Simulation
Physical Sciences
Potential energy
R&D
Reductases
Research & development
Simulation
Stereoselectivity
title Automated fitting of transition state force fields for biomolecular simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T21%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20fitting%20of%20transition%20state%20force%20fields%20for%20biomolecular%20simulations&rft.jtitle=PloS%20one&rft.au=Quinn,%20Taylor%20R&rft.date=2022-03-10&rft.volume=17&rft.issue=3&rft.spage=e0264960&rft.epage=e0264960&rft.pages=e0264960-e0264960&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0264960&rft_dat=%3Cgale_plos_%3EA696334040%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638000100&rft_id=info:pmid/35271647&rft_galeid=A696334040&rft_doaj_id=oai_doaj_org_article_241716d3a6b24ba9a7b1af87ae378431&rfr_iscdi=true