Evaluating the detection ability of a range of epistasis detection methods on simulated data for pure and impure epistatic models
Numerous approaches have been proposed for the detection of epistatic interactions within GWAS datasets in order to better understand the drivers of disease and genetics. A selection of state-of-the-art approaches were assessed. These included the statistical tests, fast-epistasis, BOOST, logistic r...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-02, Vol.17 (2), p.e0263390-e0263390 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0263390 |
---|---|
container_issue | 2 |
container_start_page | e0263390 |
container_title | PloS one |
container_volume | 17 |
creator | Russ, Dominic Williams, John A Cardoso, Victor Roth Bravo-Merodio, Laura Pendleton, Samantha C Aziz, Furqan Acharjee, Animesh Gkoutos, Georgios V |
description | Numerous approaches have been proposed for the detection of epistatic interactions within GWAS datasets in order to better understand the drivers of disease and genetics.
A selection of state-of-the-art approaches were assessed. These included the statistical tests, fast-epistasis, BOOST, logistic regression and wtest; swarm intelligence methods, namely AntEpiSeeker, epiACO and CINOEDV; and data mining approaches, including MDR, GSS, SNPRuler and MPI3SNP. Data were simulated to provide randomly generated models with no individual main effects at different heritabilities (pure epistasis) as well as models based on penetrance tables with some main effects (impure epistasis). Detection of both two and three locus interactions were assessed across a total of 1,560 simulated datasets. The different methods were also applied to a section of the UK biobank cohort for Atrial Fibrillation.
For pure, two locus interactions, PLINK's implementation of BOOST recovered the highest number of correct interactions, with 53.9% and significantly better performing than the other methods (p = 4.52e - 36). For impure two locus interactions, MDR exhibited the best performance, recovering 62.2% of the most significant impure epistatic interactions (p = 6.31e - 90 for all but one test). The assessment of three locus interaction prediction revealed that wtest recovered the highest number (17.2%) of pure epistatic interactions(p = 8.49e - 14). wtest also recovered the highest number of three locus impure epistatic interactions (p = 6.76e - 48) while AntEpiSeeker ranked as the most significant the highest number of such interactions (40.5%). Finally, when applied to a real dataset for Atrial Fibrillation, most notably finding an interaction between SYNE2 and DTNB. |
doi_str_mv | 10.1371/journal.pone.0263390 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2630499728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A694210695</galeid><doaj_id>oai_doaj_org_article_94d662ff60644442a80b2d816c1e6e84</doaj_id><sourcerecordid>A694210695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c743t-748daebb6656366f92505140e728405c72e80d4aee7c9995dc19c5951c3c55103</originalsourceid><addsrcrecordid>eNqNk99vFCEQxzdGY2v1PzBKYmL04U7YBXZ5MWmaqpc0aeKvV8LB7B0Nu5zANvbR_1y2t21uTR-EBybwme8MA1MULwlekqomH678EHrlljvfwxKXvKoEflQcE1GVC17i6vGBfVQ8i_EKY1Y1nD8tjipGGlxSelz8Ob9WblDJ9huUtoAMJNDJ-h6ptXU23SDfIoWC6jcwmrCzMalo4wHZQdp6E1E2o-0GpxIYZFRSqPUB7YYASPUG2e7W3Cskq1HnDbj4vHjSKhfhxbSeFD8-nX8_-7K4uPy8Oju9WOiaVmlR08YoWK85Z7zivBUlw4xQDHXZUMx0XUKDDVUAtRZCMKOJ0EwwoivNGMHVSfF6r7tzPsqpelHmwmEqRFbJxGpPGK-u5C7YToUb6ZWVtxs-bKQKOXEHUlDDedm2HHOaR6kavC5NQ7gmwKGhWevjFG1Yd2A09CkoNxOdn_R2Kzf-WjYN46wus8C7SSD4XwPEJDsbNTinevDDPm9BGlaPsd78gz58u4naqHwB27c-x9WjqDzlgpYEc8EytXyAytNAZ3X-aq3N-zOH9zOHzCT4nTZqiFGuvn39f_by55x9e8BuQbm0jd4N44-Lc5DuQR18jAHa-yITLMdOuauGHDtFTp2S3V4dPtC9011rVH8BR4IOMQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630499728</pqid></control><display><type>article</type><title>Evaluating the detection ability of a range of epistasis detection methods on simulated data for pure and impure epistatic models</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Russ, Dominic ; Williams, John A ; Cardoso, Victor Roth ; Bravo-Merodio, Laura ; Pendleton, Samantha C ; Aziz, Furqan ; Acharjee, Animesh ; Gkoutos, Georgios V</creator><creatorcontrib>Russ, Dominic ; Williams, John A ; Cardoso, Victor Roth ; Bravo-Merodio, Laura ; Pendleton, Samantha C ; Aziz, Furqan ; Acharjee, Animesh ; Gkoutos, Georgios V</creatorcontrib><description>Numerous approaches have been proposed for the detection of epistatic interactions within GWAS datasets in order to better understand the drivers of disease and genetics.
A selection of state-of-the-art approaches were assessed. These included the statistical tests, fast-epistasis, BOOST, logistic regression and wtest; swarm intelligence methods, namely AntEpiSeeker, epiACO and CINOEDV; and data mining approaches, including MDR, GSS, SNPRuler and MPI3SNP. Data were simulated to provide randomly generated models with no individual main effects at different heritabilities (pure epistasis) as well as models based on penetrance tables with some main effects (impure epistasis). Detection of both two and three locus interactions were assessed across a total of 1,560 simulated datasets. The different methods were also applied to a section of the UK biobank cohort for Atrial Fibrillation.
For pure, two locus interactions, PLINK's implementation of BOOST recovered the highest number of correct interactions, with 53.9% and significantly better performing than the other methods (p = 4.52e - 36). For impure two locus interactions, MDR exhibited the best performance, recovering 62.2% of the most significant impure epistatic interactions (p = 6.31e - 90 for all but one test). The assessment of three locus interaction prediction revealed that wtest recovered the highest number (17.2%) of pure epistatic interactions(p = 8.49e - 14). wtest also recovered the highest number of three locus impure epistatic interactions (p = 6.76e - 48) while AntEpiSeeker ranked as the most significant the highest number of such interactions (40.5%). Finally, when applied to a real dataset for Atrial Fibrillation, most notably finding an interaction between SYNE2 and DTNB.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0263390</identifier><identifier>PMID: 35180244</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Alleles ; Analysis ; Atrial Fibrillation - genetics ; Biology ; Biology and Life Sciences ; Cancer ; Cardiac arrhythmia ; Computer and Information Sciences ; Data mining ; Data Mining - methods ; Datasets ; Dystrophin-Associated Proteins - genetics ; Epistasis ; Epistasis, Genetic ; Evaluation ; Fibrillation ; Fuzzy sets ; Gene Frequency ; Gene loci ; Generalized linear models ; Genetic epistasis ; Genetic Loci ; Genetics ; Genome-Wide Association Study - methods ; Genomes ; Genotype ; Humans ; Intelligence ; Linear Models ; Medicine ; Medicine and Health Sciences ; Methods ; Microfilament Proteins - genetics ; Models, Genetic ; Multifactor Dimensionality Reduction ; Nerve Tissue Proteins - genetics ; Neuropeptides - genetics ; Penetrance ; Polymorphism, Single Nucleotide ; ROC Curve ; Simulation ; Statistical analysis ; Statistical tests ; Swarm intelligence</subject><ispartof>PloS one, 2022-02, Vol.17 (2), p.e0263390-e0263390</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Russ et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Russ et al 2022 Russ et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c743t-748daebb6656366f92505140e728405c72e80d4aee7c9995dc19c5951c3c55103</citedby><cites>FETCH-LOGICAL-c743t-748daebb6656366f92505140e728405c72e80d4aee7c9995dc19c5951c3c55103</cites><orcidid>0000-0002-0906-1323 ; 0000-0002-2705-2068 ; 0000-0002-0357-5454 ; 0000-0002-2061-091X ; 0000-0002-9588-6304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8856572/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8856572/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35180244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Russ, Dominic</creatorcontrib><creatorcontrib>Williams, John A</creatorcontrib><creatorcontrib>Cardoso, Victor Roth</creatorcontrib><creatorcontrib>Bravo-Merodio, Laura</creatorcontrib><creatorcontrib>Pendleton, Samantha C</creatorcontrib><creatorcontrib>Aziz, Furqan</creatorcontrib><creatorcontrib>Acharjee, Animesh</creatorcontrib><creatorcontrib>Gkoutos, Georgios V</creatorcontrib><title>Evaluating the detection ability of a range of epistasis detection methods on simulated data for pure and impure epistatic models</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Numerous approaches have been proposed for the detection of epistatic interactions within GWAS datasets in order to better understand the drivers of disease and genetics.
A selection of state-of-the-art approaches were assessed. These included the statistical tests, fast-epistasis, BOOST, logistic regression and wtest; swarm intelligence methods, namely AntEpiSeeker, epiACO and CINOEDV; and data mining approaches, including MDR, GSS, SNPRuler and MPI3SNP. Data were simulated to provide randomly generated models with no individual main effects at different heritabilities (pure epistasis) as well as models based on penetrance tables with some main effects (impure epistasis). Detection of both two and three locus interactions were assessed across a total of 1,560 simulated datasets. The different methods were also applied to a section of the UK biobank cohort for Atrial Fibrillation.
For pure, two locus interactions, PLINK's implementation of BOOST recovered the highest number of correct interactions, with 53.9% and significantly better performing than the other methods (p = 4.52e - 36). For impure two locus interactions, MDR exhibited the best performance, recovering 62.2% of the most significant impure epistatic interactions (p = 6.31e - 90 for all but one test). The assessment of three locus interaction prediction revealed that wtest recovered the highest number (17.2%) of pure epistatic interactions(p = 8.49e - 14). wtest also recovered the highest number of three locus impure epistatic interactions (p = 6.76e - 48) while AntEpiSeeker ranked as the most significant the highest number of such interactions (40.5%). Finally, when applied to a real dataset for Atrial Fibrillation, most notably finding an interaction between SYNE2 and DTNB.</description><subject>Algorithms</subject><subject>Alleles</subject><subject>Analysis</subject><subject>Atrial Fibrillation - genetics</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>Cardiac arrhythmia</subject><subject>Computer and Information Sciences</subject><subject>Data mining</subject><subject>Data Mining - methods</subject><subject>Datasets</subject><subject>Dystrophin-Associated Proteins - genetics</subject><subject>Epistasis</subject><subject>Epistasis, Genetic</subject><subject>Evaluation</subject><subject>Fibrillation</subject><subject>Fuzzy sets</subject><subject>Gene Frequency</subject><subject>Gene loci</subject><subject>Generalized linear models</subject><subject>Genetic epistasis</subject><subject>Genetic Loci</subject><subject>Genetics</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Genotype</subject><subject>Humans</subject><subject>Intelligence</subject><subject>Linear Models</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Microfilament Proteins - genetics</subject><subject>Models, Genetic</subject><subject>Multifactor Dimensionality Reduction</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Neuropeptides - genetics</subject><subject>Penetrance</subject><subject>Polymorphism, Single Nucleotide</subject><subject>ROC Curve</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Swarm intelligence</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99vFCEQxzdGY2v1PzBKYmL04U7YBXZ5MWmaqpc0aeKvV8LB7B0Nu5zANvbR_1y2t21uTR-EBybwme8MA1MULwlekqomH678EHrlljvfwxKXvKoEflQcE1GVC17i6vGBfVQ8i_EKY1Y1nD8tjipGGlxSelz8Ob9WblDJ9huUtoAMJNDJ-h6ptXU23SDfIoWC6jcwmrCzMalo4wHZQdp6E1E2o-0GpxIYZFRSqPUB7YYASPUG2e7W3Cskq1HnDbj4vHjSKhfhxbSeFD8-nX8_-7K4uPy8Oju9WOiaVmlR08YoWK85Z7zivBUlw4xQDHXZUMx0XUKDDVUAtRZCMKOJ0EwwoivNGMHVSfF6r7tzPsqpelHmwmEqRFbJxGpPGK-u5C7YToUb6ZWVtxs-bKQKOXEHUlDDedm2HHOaR6kavC5NQ7gmwKGhWevjFG1Yd2A09CkoNxOdn_R2Kzf-WjYN46wus8C7SSD4XwPEJDsbNTinevDDPm9BGlaPsd78gz58u4naqHwB27c-x9WjqDzlgpYEc8EytXyAytNAZ3X-aq3N-zOH9zOHzCT4nTZqiFGuvn39f_by55x9e8BuQbm0jd4N44-Lc5DuQR18jAHa-yITLMdOuauGHDtFTp2S3V4dPtC9011rVH8BR4IOMQ</recordid><startdate>20220218</startdate><enddate>20220218</enddate><creator>Russ, Dominic</creator><creator>Williams, John A</creator><creator>Cardoso, Victor Roth</creator><creator>Bravo-Merodio, Laura</creator><creator>Pendleton, Samantha C</creator><creator>Aziz, Furqan</creator><creator>Acharjee, Animesh</creator><creator>Gkoutos, Georgios V</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0906-1323</orcidid><orcidid>https://orcid.org/0000-0002-2705-2068</orcidid><orcidid>https://orcid.org/0000-0002-0357-5454</orcidid><orcidid>https://orcid.org/0000-0002-2061-091X</orcidid><orcidid>https://orcid.org/0000-0002-9588-6304</orcidid></search><sort><creationdate>20220218</creationdate><title>Evaluating the detection ability of a range of epistasis detection methods on simulated data for pure and impure epistatic models</title><author>Russ, Dominic ; Williams, John A ; Cardoso, Victor Roth ; Bravo-Merodio, Laura ; Pendleton, Samantha C ; Aziz, Furqan ; Acharjee, Animesh ; Gkoutos, Georgios V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c743t-748daebb6656366f92505140e728405c72e80d4aee7c9995dc19c5951c3c55103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Alleles</topic><topic>Analysis</topic><topic>Atrial Fibrillation - genetics</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>Cardiac arrhythmia</topic><topic>Computer and Information Sciences</topic><topic>Data mining</topic><topic>Data Mining - methods</topic><topic>Datasets</topic><topic>Dystrophin-Associated Proteins - genetics</topic><topic>Epistasis</topic><topic>Epistasis, Genetic</topic><topic>Evaluation</topic><topic>Fibrillation</topic><topic>Fuzzy sets</topic><topic>Gene Frequency</topic><topic>Gene loci</topic><topic>Generalized linear models</topic><topic>Genetic epistasis</topic><topic>Genetic Loci</topic><topic>Genetics</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Genotype</topic><topic>Humans</topic><topic>Intelligence</topic><topic>Linear Models</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Microfilament Proteins - genetics</topic><topic>Models, Genetic</topic><topic>Multifactor Dimensionality Reduction</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Neuropeptides - genetics</topic><topic>Penetrance</topic><topic>Polymorphism, Single Nucleotide</topic><topic>ROC Curve</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russ, Dominic</creatorcontrib><creatorcontrib>Williams, John A</creatorcontrib><creatorcontrib>Cardoso, Victor Roth</creatorcontrib><creatorcontrib>Bravo-Merodio, Laura</creatorcontrib><creatorcontrib>Pendleton, Samantha C</creatorcontrib><creatorcontrib>Aziz, Furqan</creatorcontrib><creatorcontrib>Acharjee, Animesh</creatorcontrib><creatorcontrib>Gkoutos, Georgios V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Russ, Dominic</au><au>Williams, John A</au><au>Cardoso, Victor Roth</au><au>Bravo-Merodio, Laura</au><au>Pendleton, Samantha C</au><au>Aziz, Furqan</au><au>Acharjee, Animesh</au><au>Gkoutos, Georgios V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the detection ability of a range of epistasis detection methods on simulated data for pure and impure epistatic models</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-02-18</date><risdate>2022</risdate><volume>17</volume><issue>2</issue><spage>e0263390</spage><epage>e0263390</epage><pages>e0263390-e0263390</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Numerous approaches have been proposed for the detection of epistatic interactions within GWAS datasets in order to better understand the drivers of disease and genetics.
A selection of state-of-the-art approaches were assessed. These included the statistical tests, fast-epistasis, BOOST, logistic regression and wtest; swarm intelligence methods, namely AntEpiSeeker, epiACO and CINOEDV; and data mining approaches, including MDR, GSS, SNPRuler and MPI3SNP. Data were simulated to provide randomly generated models with no individual main effects at different heritabilities (pure epistasis) as well as models based on penetrance tables with some main effects (impure epistasis). Detection of both two and three locus interactions were assessed across a total of 1,560 simulated datasets. The different methods were also applied to a section of the UK biobank cohort for Atrial Fibrillation.
For pure, two locus interactions, PLINK's implementation of BOOST recovered the highest number of correct interactions, with 53.9% and significantly better performing than the other methods (p = 4.52e - 36). For impure two locus interactions, MDR exhibited the best performance, recovering 62.2% of the most significant impure epistatic interactions (p = 6.31e - 90 for all but one test). The assessment of three locus interaction prediction revealed that wtest recovered the highest number (17.2%) of pure epistatic interactions(p = 8.49e - 14). wtest also recovered the highest number of three locus impure epistatic interactions (p = 6.76e - 48) while AntEpiSeeker ranked as the most significant the highest number of such interactions (40.5%). Finally, when applied to a real dataset for Atrial Fibrillation, most notably finding an interaction between SYNE2 and DTNB.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35180244</pmid><doi>10.1371/journal.pone.0263390</doi><tpages>e0263390</tpages><orcidid>https://orcid.org/0000-0002-0906-1323</orcidid><orcidid>https://orcid.org/0000-0002-2705-2068</orcidid><orcidid>https://orcid.org/0000-0002-0357-5454</orcidid><orcidid>https://orcid.org/0000-0002-2061-091X</orcidid><orcidid>https://orcid.org/0000-0002-9588-6304</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-02, Vol.17 (2), p.e0263390-e0263390 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2630499728 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Algorithms Alleles Analysis Atrial Fibrillation - genetics Biology Biology and Life Sciences Cancer Cardiac arrhythmia Computer and Information Sciences Data mining Data Mining - methods Datasets Dystrophin-Associated Proteins - genetics Epistasis Epistasis, Genetic Evaluation Fibrillation Fuzzy sets Gene Frequency Gene loci Generalized linear models Genetic epistasis Genetic Loci Genetics Genome-Wide Association Study - methods Genomes Genotype Humans Intelligence Linear Models Medicine Medicine and Health Sciences Methods Microfilament Proteins - genetics Models, Genetic Multifactor Dimensionality Reduction Nerve Tissue Proteins - genetics Neuropeptides - genetics Penetrance Polymorphism, Single Nucleotide ROC Curve Simulation Statistical analysis Statistical tests Swarm intelligence |
title | Evaluating the detection ability of a range of epistasis detection methods on simulated data for pure and impure epistatic models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20detection%20ability%20of%20a%20range%20of%20epistasis%20detection%20methods%20on%20simulated%20data%20for%20pure%20and%20impure%20epistatic%20models&rft.jtitle=PloS%20one&rft.au=Russ,%20Dominic&rft.date=2022-02-18&rft.volume=17&rft.issue=2&rft.spage=e0263390&rft.epage=e0263390&rft.pages=e0263390-e0263390&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0263390&rft_dat=%3Cgale_plos_%3EA694210695%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2630499728&rft_id=info:pmid/35180244&rft_galeid=A694210695&rft_doaj_id=oai_doaj_org_article_94d662ff60644442a80b2d816c1e6e84&rfr_iscdi=true |