Proton range monitoring using 13N peak for proton therapy applications

The Monte Carlo method is employed in this study to simulate the proton irradiation of a water-gel phantom. Positron-emitting radionuclides such as 11C, 15O, and 13N are scored using the Particle and Heavy Ion Transport Code System Monte Carlo code package. Previously, it was reported that as a resu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-02, Vol.17 (2), p.e0263521-e0263521
Hauptverfasser: Islam, M Rafiqul, Shahmohammadi Beni, Mehrdad, Ng, Chor-Yi, Miyake, Masayasu, Rahman, Mahabubur, Ito, Shigeki, Gotoh, Shinichi, Yamaya, Taiga, Watabe, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0263521
container_issue 2
container_start_page e0263521
container_title PloS one
container_volume 17
creator Islam, M Rafiqul
Shahmohammadi Beni, Mehrdad
Ng, Chor-Yi
Miyake, Masayasu
Rahman, Mahabubur
Ito, Shigeki
Gotoh, Shinichi
Yamaya, Taiga
Watabe, Hiroshi
description The Monte Carlo method is employed in this study to simulate the proton irradiation of a water-gel phantom. Positron-emitting radionuclides such as 11C, 15O, and 13N are scored using the Particle and Heavy Ion Transport Code System Monte Carlo code package. Previously, it was reported that as a result of 16O(p,2p2n)13N nuclear reaction, whose threshold energy is relatively low (5.660 MeV), a 13N peak is formed near the actual Bragg peak. Considering the generated 13N peak, we obtain offset distance values between the 13N peak and the actual Bragg peak for various incident proton energies ranging from 45 to 250 MeV, with an energy interval of 5 MeV. The offset distances fluctuate between 1.0 and 2.0 mm. For example, the offset distances between the 13N peak and the Bragg peak are 2.0, 2.0, and 1.0 mm for incident proton energies of 80, 160, and 240 MeV, respectively. These slight fluctuations for different incident proton energies are due to the relatively stable energy-dependent cross-section data for the 16O(p,2p2n)13N nuclear reaction. Hence, we develop an open-source computer program that performs linear and non-linear interpolations of offset distance data against the incident proton energy, which further reduces the energy interval from 5 to 0.1 MeV. In addition, we perform spectral analysis to reconstruct the 13N Bragg peak, and the results are consistent with those predicted from Monte Carlo computations. Hence, the results are used to generate three-dimensional scatter plots of the 13N radionuclide distribution in the modeled phantom. The obtained results and the developed methodologies will facilitate future investigations into proton range monitoring for therapeutic applications.
doi_str_mv 10.1371/journal.pone.0263521
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2629050000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9c00f1fa8f4645d2818573a1d63c5059</doaj_id><sourcerecordid>2629389044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4371-818e9ba5f67091db28ace1c68887ad76bf20755e39780f870def664ba1fd0e003</originalsourceid><addsrcrecordid>eNptkktv1DAUhS0Eos9_gCASm25muLbjRzZIVUWhUgUs2rV149jTDBk72AlS_z2ZJq1axMa27O-ee651CHlHYU25op-2cUwBu3Ufg1sDk1ww-ooc0oqzlWTAXz87H5CjnLcAgmsp35IDLqhUQleH5PJnikMMRcKwccUuhnaIqQ2bYsz7lfLvRe_wV-FjKvoZHe5cwv6-wL7vWotDG0M-IW88dtmdLvsxub38cnPxbXX94-vVxfn1ypaT55Wm2lU1Ci8VVLSpmUbrqJVaa4WNkrVnoIRwvFIavFbQOC9lWSP1DTgAfkw-zLp9F7NZviAbJlkFAuCBuJqJJuLW9KndYbo3EVvzcBHTxmAaWts5U1kATz1qX8pSNGxyJxRH2khuBYhq0vq8dBvrnWusC0PC7oXoy5fQ3plN_GO0LqVgehI4WwRS_D26PJhdm63rOgwujrNvrisoywn9-A_6_-nKmbIp5pycfzJDwexj8Vhl9rEwSyymsvfPB3kqeswB_wttiLT8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629050000</pqid></control><display><type>article</type><title>Proton range monitoring using 13N peak for proton therapy applications</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Islam, M Rafiqul ; Shahmohammadi Beni, Mehrdad ; Ng, Chor-Yi ; Miyake, Masayasu ; Rahman, Mahabubur ; Ito, Shigeki ; Gotoh, Shinichi ; Yamaya, Taiga ; Watabe, Hiroshi</creator><contributor>Hadizadeh, Mohammadreza</contributor><creatorcontrib>Islam, M Rafiqul ; Shahmohammadi Beni, Mehrdad ; Ng, Chor-Yi ; Miyake, Masayasu ; Rahman, Mahabubur ; Ito, Shigeki ; Gotoh, Shinichi ; Yamaya, Taiga ; Watabe, Hiroshi ; Hadizadeh, Mohammadreza</creatorcontrib><description>The Monte Carlo method is employed in this study to simulate the proton irradiation of a water-gel phantom. Positron-emitting radionuclides such as 11C, 15O, and 13N are scored using the Particle and Heavy Ion Transport Code System Monte Carlo code package. Previously, it was reported that as a result of 16O(p,2p2n)13N nuclear reaction, whose threshold energy is relatively low (5.660 MeV), a 13N peak is formed near the actual Bragg peak. Considering the generated 13N peak, we obtain offset distance values between the 13N peak and the actual Bragg peak for various incident proton energies ranging from 45 to 250 MeV, with an energy interval of 5 MeV. The offset distances fluctuate between 1.0 and 2.0 mm. For example, the offset distances between the 13N peak and the Bragg peak are 2.0, 2.0, and 1.0 mm for incident proton energies of 80, 160, and 240 MeV, respectively. These slight fluctuations for different incident proton energies are due to the relatively stable energy-dependent cross-section data for the 16O(p,2p2n)13N nuclear reaction. Hence, we develop an open-source computer program that performs linear and non-linear interpolations of offset distance data against the incident proton energy, which further reduces the energy interval from 5 to 0.1 MeV. In addition, we perform spectral analysis to reconstruct the 13N Bragg peak, and the results are consistent with those predicted from Monte Carlo computations. Hence, the results are used to generate three-dimensional scatter plots of the 13N radionuclide distribution in the modeled phantom. The obtained results and the developed methodologies will facilitate future investigations into proton range monitoring for therapeutic applications.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0263521</identifier><identifier>PMID: 35167589</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acoustics ; Algorithms ; Biology and Life Sciences ; Biomedical engineering ; Bragg curve ; Computer and Information Sciences ; Energy ; Gamma rays ; Heavy ions ; Humans ; Ion transport ; Irradiation ; Medicine and Health Sciences ; Monitoring ; Monte Carlo Method ; Monte Carlo simulation ; Nitrogen isotopes ; Nitrogen Radioisotopes - pharmacology ; Nuclear reactions ; Phantoms, Imaging ; Physical Sciences ; Proton energy ; Proton irradiation ; Proton Therapy - methods ; Protons ; Radiation therapy ; Radiography ; Radioisotopes ; Research and Analysis Methods ; Spectral analysis ; Spectrum analysis ; Therapeutic applications ; Tomography</subject><ispartof>PloS one, 2022-02, Vol.17 (2), p.e0263521-e0263521</ispartof><rights>2022 Islam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Islam et al 2022 Islam et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4371-818e9ba5f67091db28ace1c68887ad76bf20755e39780f870def664ba1fd0e003</citedby><cites>FETCH-LOGICAL-c4371-818e9ba5f67091db28ace1c68887ad76bf20755e39780f870def664ba1fd0e003</cites><orcidid>0000-0001-6257-7735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8846528/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8846528/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35167589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hadizadeh, Mohammadreza</contributor><creatorcontrib>Islam, M Rafiqul</creatorcontrib><creatorcontrib>Shahmohammadi Beni, Mehrdad</creatorcontrib><creatorcontrib>Ng, Chor-Yi</creatorcontrib><creatorcontrib>Miyake, Masayasu</creatorcontrib><creatorcontrib>Rahman, Mahabubur</creatorcontrib><creatorcontrib>Ito, Shigeki</creatorcontrib><creatorcontrib>Gotoh, Shinichi</creatorcontrib><creatorcontrib>Yamaya, Taiga</creatorcontrib><creatorcontrib>Watabe, Hiroshi</creatorcontrib><title>Proton range monitoring using 13N peak for proton therapy applications</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The Monte Carlo method is employed in this study to simulate the proton irradiation of a water-gel phantom. Positron-emitting radionuclides such as 11C, 15O, and 13N are scored using the Particle and Heavy Ion Transport Code System Monte Carlo code package. Previously, it was reported that as a result of 16O(p,2p2n)13N nuclear reaction, whose threshold energy is relatively low (5.660 MeV), a 13N peak is formed near the actual Bragg peak. Considering the generated 13N peak, we obtain offset distance values between the 13N peak and the actual Bragg peak for various incident proton energies ranging from 45 to 250 MeV, with an energy interval of 5 MeV. The offset distances fluctuate between 1.0 and 2.0 mm. For example, the offset distances between the 13N peak and the Bragg peak are 2.0, 2.0, and 1.0 mm for incident proton energies of 80, 160, and 240 MeV, respectively. These slight fluctuations for different incident proton energies are due to the relatively stable energy-dependent cross-section data for the 16O(p,2p2n)13N nuclear reaction. Hence, we develop an open-source computer program that performs linear and non-linear interpolations of offset distance data against the incident proton energy, which further reduces the energy interval from 5 to 0.1 MeV. In addition, we perform spectral analysis to reconstruct the 13N Bragg peak, and the results are consistent with those predicted from Monte Carlo computations. Hence, the results are used to generate three-dimensional scatter plots of the 13N radionuclide distribution in the modeled phantom. The obtained results and the developed methodologies will facilitate future investigations into proton range monitoring for therapeutic applications.</description><subject>Acoustics</subject><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Bragg curve</subject><subject>Computer and Information Sciences</subject><subject>Energy</subject><subject>Gamma rays</subject><subject>Heavy ions</subject><subject>Humans</subject><subject>Ion transport</subject><subject>Irradiation</subject><subject>Medicine and Health Sciences</subject><subject>Monitoring</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Nitrogen isotopes</subject><subject>Nitrogen Radioisotopes - pharmacology</subject><subject>Nuclear reactions</subject><subject>Phantoms, Imaging</subject><subject>Physical Sciences</subject><subject>Proton energy</subject><subject>Proton irradiation</subject><subject>Proton Therapy - methods</subject><subject>Protons</subject><subject>Radiation therapy</subject><subject>Radiography</subject><subject>Radioisotopes</subject><subject>Research and Analysis Methods</subject><subject>Spectral analysis</subject><subject>Spectrum analysis</subject><subject>Therapeutic applications</subject><subject>Tomography</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptkktv1DAUhS0Eos9_gCASm25muLbjRzZIVUWhUgUs2rV149jTDBk72AlS_z2ZJq1axMa27O-ee651CHlHYU25op-2cUwBu3Ufg1sDk1ww-ooc0oqzlWTAXz87H5CjnLcAgmsp35IDLqhUQleH5PJnikMMRcKwccUuhnaIqQ2bYsz7lfLvRe_wV-FjKvoZHe5cwv6-wL7vWotDG0M-IW88dtmdLvsxub38cnPxbXX94-vVxfn1ypaT55Wm2lU1Ci8VVLSpmUbrqJVaa4WNkrVnoIRwvFIavFbQOC9lWSP1DTgAfkw-zLp9F7NZviAbJlkFAuCBuJqJJuLW9KndYbo3EVvzcBHTxmAaWts5U1kATz1qX8pSNGxyJxRH2khuBYhq0vq8dBvrnWusC0PC7oXoy5fQ3plN_GO0LqVgehI4WwRS_D26PJhdm63rOgwujrNvrisoywn9-A_6_-nKmbIp5pycfzJDwexj8Vhl9rEwSyymsvfPB3kqeswB_wttiLT8</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Islam, M Rafiqul</creator><creator>Shahmohammadi Beni, Mehrdad</creator><creator>Ng, Chor-Yi</creator><creator>Miyake, Masayasu</creator><creator>Rahman, Mahabubur</creator><creator>Ito, Shigeki</creator><creator>Gotoh, Shinichi</creator><creator>Yamaya, Taiga</creator><creator>Watabe, Hiroshi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6257-7735</orcidid></search><sort><creationdate>20220215</creationdate><title>Proton range monitoring using 13N peak for proton therapy applications</title><author>Islam, M Rafiqul ; Shahmohammadi Beni, Mehrdad ; Ng, Chor-Yi ; Miyake, Masayasu ; Rahman, Mahabubur ; Ito, Shigeki ; Gotoh, Shinichi ; Yamaya, Taiga ; Watabe, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4371-818e9ba5f67091db28ace1c68887ad76bf20755e39780f870def664ba1fd0e003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustics</topic><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Bragg curve</topic><topic>Computer and Information Sciences</topic><topic>Energy</topic><topic>Gamma rays</topic><topic>Heavy ions</topic><topic>Humans</topic><topic>Ion transport</topic><topic>Irradiation</topic><topic>Medicine and Health Sciences</topic><topic>Monitoring</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Nitrogen isotopes</topic><topic>Nitrogen Radioisotopes - pharmacology</topic><topic>Nuclear reactions</topic><topic>Phantoms, Imaging</topic><topic>Physical Sciences</topic><topic>Proton energy</topic><topic>Proton irradiation</topic><topic>Proton Therapy - methods</topic><topic>Protons</topic><topic>Radiation therapy</topic><topic>Radiography</topic><topic>Radioisotopes</topic><topic>Research and Analysis Methods</topic><topic>Spectral analysis</topic><topic>Spectrum analysis</topic><topic>Therapeutic applications</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, M Rafiqul</creatorcontrib><creatorcontrib>Shahmohammadi Beni, Mehrdad</creatorcontrib><creatorcontrib>Ng, Chor-Yi</creatorcontrib><creatorcontrib>Miyake, Masayasu</creatorcontrib><creatorcontrib>Rahman, Mahabubur</creatorcontrib><creatorcontrib>Ito, Shigeki</creatorcontrib><creatorcontrib>Gotoh, Shinichi</creatorcontrib><creatorcontrib>Yamaya, Taiga</creatorcontrib><creatorcontrib>Watabe, Hiroshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Islam, M Rafiqul</au><au>Shahmohammadi Beni, Mehrdad</au><au>Ng, Chor-Yi</au><au>Miyake, Masayasu</au><au>Rahman, Mahabubur</au><au>Ito, Shigeki</au><au>Gotoh, Shinichi</au><au>Yamaya, Taiga</au><au>Watabe, Hiroshi</au><au>Hadizadeh, Mohammadreza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton range monitoring using 13N peak for proton therapy applications</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-02-15</date><risdate>2022</risdate><volume>17</volume><issue>2</issue><spage>e0263521</spage><epage>e0263521</epage><pages>e0263521-e0263521</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The Monte Carlo method is employed in this study to simulate the proton irradiation of a water-gel phantom. Positron-emitting radionuclides such as 11C, 15O, and 13N are scored using the Particle and Heavy Ion Transport Code System Monte Carlo code package. Previously, it was reported that as a result of 16O(p,2p2n)13N nuclear reaction, whose threshold energy is relatively low (5.660 MeV), a 13N peak is formed near the actual Bragg peak. Considering the generated 13N peak, we obtain offset distance values between the 13N peak and the actual Bragg peak for various incident proton energies ranging from 45 to 250 MeV, with an energy interval of 5 MeV. The offset distances fluctuate between 1.0 and 2.0 mm. For example, the offset distances between the 13N peak and the Bragg peak are 2.0, 2.0, and 1.0 mm for incident proton energies of 80, 160, and 240 MeV, respectively. These slight fluctuations for different incident proton energies are due to the relatively stable energy-dependent cross-section data for the 16O(p,2p2n)13N nuclear reaction. Hence, we develop an open-source computer program that performs linear and non-linear interpolations of offset distance data against the incident proton energy, which further reduces the energy interval from 5 to 0.1 MeV. In addition, we perform spectral analysis to reconstruct the 13N Bragg peak, and the results are consistent with those predicted from Monte Carlo computations. Hence, the results are used to generate three-dimensional scatter plots of the 13N radionuclide distribution in the modeled phantom. The obtained results and the developed methodologies will facilitate future investigations into proton range monitoring for therapeutic applications.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35167589</pmid><doi>10.1371/journal.pone.0263521</doi><orcidid>https://orcid.org/0000-0001-6257-7735</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-02, Vol.17 (2), p.e0263521-e0263521
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2629050000
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acoustics
Algorithms
Biology and Life Sciences
Biomedical engineering
Bragg curve
Computer and Information Sciences
Energy
Gamma rays
Heavy ions
Humans
Ion transport
Irradiation
Medicine and Health Sciences
Monitoring
Monte Carlo Method
Monte Carlo simulation
Nitrogen isotopes
Nitrogen Radioisotopes - pharmacology
Nuclear reactions
Phantoms, Imaging
Physical Sciences
Proton energy
Proton irradiation
Proton Therapy - methods
Protons
Radiation therapy
Radiography
Radioisotopes
Research and Analysis Methods
Spectral analysis
Spectrum analysis
Therapeutic applications
Tomography
title Proton range monitoring using 13N peak for proton therapy applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T04%3A48%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton%20range%20monitoring%20using%2013N%20peak%20for%20proton%20therapy%20applications&rft.jtitle=PloS%20one&rft.au=Islam,%20M%20Rafiqul&rft.date=2022-02-15&rft.volume=17&rft.issue=2&rft.spage=e0263521&rft.epage=e0263521&rft.pages=e0263521-e0263521&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0263521&rft_dat=%3Cproquest_plos_%3E2629389044%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629050000&rft_id=info:pmid/35167589&rft_doaj_id=oai_doaj_org_article_9c00f1fa8f4645d2818573a1d63c5059&rfr_iscdi=true