Pre-training Model Based on Parallel Cross-Modality Fusion Layer
Visual Question Answering (VQA) is a learning task that combines computer vision with natural language processing. In VQA, it is important to understand the alignment between visual concepts and linguistic semantics. In this paper, we proposed a Pre-training Model Based on Parallel Cross-Modality Fu...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-02, Vol.17 (2), p.e0260784 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | e0260784 |
container_title | PloS one |
container_volume | 17 |
creator | Li, Xuewei Han, Dezhi Chang, Chin-Chen |
description | Visual Question Answering (VQA) is a learning task that combines computer vision with natural language processing. In VQA, it is important to understand the alignment between visual concepts and linguistic semantics. In this paper, we proposed a Pre-training Model Based on Parallel Cross-Modality Fusion Layer (P-PCFL) to learn the fine-grained relationship between vision and language. The P-PCFL model is composed of three Encoders: Object Encoder, Language Encoder, and Parallel Cross-Modality Fusion Encoder, with Transformer as the core. We use four different Pre-training missions, namely, Cross-Modality Mask Language Modeling, Cross-Modality Mask Region Modeling, Image-Text Matching, and Image-Text Q&A, to pre-train the P-PCFL model and improve its reasoning and universality, which help to learn the relationship between Intra-modality and Inter-modality. Experimental results on the platform of Visual Question Answering dataset VQA v2.0 show that the Pre-trained P-PCFL model has a good effect after fine-tuning the parameters. In addition, we also conduct ablation experiments and provide some results of Attention visualization to verify the effectiveness of P-PCFL model. |
doi_str_mv | 10.1371/journal.pone.0260784 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2625264697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A691678844</galeid><doaj_id>oai_doaj_org_article_1f8a9768a6d14d06894e135d52951a47</doaj_id><sourcerecordid>A691678844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-34e40bb689b091b272f7985cc8bc69a6ada30cdfd90451ea2230dac86c7d1ad3</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhiMEYmPwDxBUQkJwkeKvOPENYlQMKhVtgolb68R2Wldu3NkJov8ed82mBu0C-cLWOc957XP8ZtlLjKaYlvjD2vehBTfd-tZMEeGorNij7BQLSnJOEH18dD7JnsW4RqigFedPsxNaYJyO5DT7dBVM3gWwrW2Xk-9eGzf5DNHoiW8nVxDAuRSZBR9jnrLgbLebXPTRpvQCdiY8z5404KJ5Mexn2fXFl-vZt3xx-XU-O1_kijPc5ZQZhuqaV6JGAtekJE0pqkKpqlZcAAcNFCndaIFYgQ0QQpEGVXFVagyanmWvD7Jb56Mceo-ScFIQzrgoEzE_ENrDWm6D3UDYSQ9W3gZ8WEoInVXOSNxUIEpeAdeYaZQexQymhS6IKDCwvdbH4ba-3hitTJtG5Eai40xrV3Lpf8uqwkQgkQTeDQLB3_QmdnJjozLOQWt8f_tujhAtiyKhb_5BH-5uoJaQGrBt49O9ai8qz7nAvKwqxhI1fYBKS5uNVckojU3xUcH7UUFiOvOnW0Ifo5z__PH_7OWvMfv2iF0ZcN0qetd3yTdxDLIDqPYWC6a5HzJGcu_zu2nIvc_l4PNU9ur4g-6L7oxN_wJ4RvYb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625264697</pqid></control><display><type>article</type><title>Pre-training Model Based on Parallel Cross-Modality Fusion Layer</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Xuewei ; Han, Dezhi ; Chang, Chin-Chen</creator><contributor>Chen, Chi-Hua</contributor><creatorcontrib>Li, Xuewei ; Han, Dezhi ; Chang, Chin-Chen ; Chen, Chi-Hua</creatorcontrib><description>Visual Question Answering (VQA) is a learning task that combines computer vision with natural language processing. In VQA, it is important to understand the alignment between visual concepts and linguistic semantics. In this paper, we proposed a Pre-training Model Based on Parallel Cross-Modality Fusion Layer (P-PCFL) to learn the fine-grained relationship between vision and language. The P-PCFL model is composed of three Encoders: Object Encoder, Language Encoder, and Parallel Cross-Modality Fusion Encoder, with Transformer as the core. We use four different Pre-training missions, namely, Cross-Modality Mask Language Modeling, Cross-Modality Mask Region Modeling, Image-Text Matching, and Image-Text Q&A, to pre-train the P-PCFL model and improve its reasoning and universality, which help to learn the relationship between Intra-modality and Inter-modality. Experimental results on the platform of Visual Question Answering dataset VQA v2.0 show that the Pre-trained P-PCFL model has a good effect after fine-tuning the parameters. In addition, we also conduct ablation experiments and provide some results of Attention visualization to verify the effectiveness of P-PCFL model.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0260784</identifier><identifier>PMID: 35113862</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Ablation ; Algorithms ; Biology and Life Sciences ; Coders ; Cognitive tasks ; Computational linguistics ; Computer and Information Sciences ; Computer vision ; Consortia ; Datasets ; Humans ; Language ; Language processing ; Machine vision ; Modelling ; Natural language interfaces ; Natural Language Processing ; Questions ; Semantics ; Social Sciences ; Training</subject><ispartof>PloS one, 2022-02, Vol.17 (2), p.e0260784</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Li et al 2022 Li et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c641t-34e40bb689b091b272f7985cc8bc69a6ada30cdfd90451ea2230dac86c7d1ad3</cites><orcidid>0000-0001-8861-5461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8812909/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8812909/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35113862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chen, Chi-Hua</contributor><creatorcontrib>Li, Xuewei</creatorcontrib><creatorcontrib>Han, Dezhi</creatorcontrib><creatorcontrib>Chang, Chin-Chen</creatorcontrib><title>Pre-training Model Based on Parallel Cross-Modality Fusion Layer</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Visual Question Answering (VQA) is a learning task that combines computer vision with natural language processing. In VQA, it is important to understand the alignment between visual concepts and linguistic semantics. In this paper, we proposed a Pre-training Model Based on Parallel Cross-Modality Fusion Layer (P-PCFL) to learn the fine-grained relationship between vision and language. The P-PCFL model is composed of three Encoders: Object Encoder, Language Encoder, and Parallel Cross-Modality Fusion Encoder, with Transformer as the core. We use four different Pre-training missions, namely, Cross-Modality Mask Language Modeling, Cross-Modality Mask Region Modeling, Image-Text Matching, and Image-Text Q&A, to pre-train the P-PCFL model and improve its reasoning and universality, which help to learn the relationship between Intra-modality and Inter-modality. Experimental results on the platform of Visual Question Answering dataset VQA v2.0 show that the Pre-trained P-PCFL model has a good effect after fine-tuning the parameters. In addition, we also conduct ablation experiments and provide some results of Attention visualization to verify the effectiveness of P-PCFL model.</description><subject>Ablation</subject><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Coders</subject><subject>Cognitive tasks</subject><subject>Computational linguistics</subject><subject>Computer and Information Sciences</subject><subject>Computer vision</subject><subject>Consortia</subject><subject>Datasets</subject><subject>Humans</subject><subject>Language</subject><subject>Language processing</subject><subject>Machine vision</subject><subject>Modelling</subject><subject>Natural language interfaces</subject><subject>Natural Language Processing</subject><subject>Questions</subject><subject>Semantics</subject><subject>Social Sciences</subject><subject>Training</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1v0zAUhiMEYmPwDxBUQkJwkeKvOPENYlQMKhVtgolb68R2Wldu3NkJov8ed82mBu0C-cLWOc957XP8ZtlLjKaYlvjD2vehBTfd-tZMEeGorNij7BQLSnJOEH18dD7JnsW4RqigFedPsxNaYJyO5DT7dBVM3gWwrW2Xk-9eGzf5DNHoiW8nVxDAuRSZBR9jnrLgbLebXPTRpvQCdiY8z5404KJ5Mexn2fXFl-vZt3xx-XU-O1_kijPc5ZQZhuqaV6JGAtekJE0pqkKpqlZcAAcNFCndaIFYgQ0QQpEGVXFVagyanmWvD7Jb56Mceo-ScFIQzrgoEzE_ENrDWm6D3UDYSQ9W3gZ8WEoInVXOSNxUIEpeAdeYaZQexQymhS6IKDCwvdbH4ba-3hitTJtG5Eai40xrV3Lpf8uqwkQgkQTeDQLB3_QmdnJjozLOQWt8f_tujhAtiyKhb_5BH-5uoJaQGrBt49O9ai8qz7nAvKwqxhI1fYBKS5uNVckojU3xUcH7UUFiOvOnW0Ifo5z__PH_7OWvMfv2iF0ZcN0qetd3yTdxDLIDqPYWC6a5HzJGcu_zu2nIvc_l4PNU9ur4g-6L7oxN_wJ4RvYb</recordid><startdate>20220203</startdate><enddate>20220203</enddate><creator>Li, Xuewei</creator><creator>Han, Dezhi</creator><creator>Chang, Chin-Chen</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8861-5461</orcidid></search><sort><creationdate>20220203</creationdate><title>Pre-training Model Based on Parallel Cross-Modality Fusion Layer</title><author>Li, Xuewei ; Han, Dezhi ; Chang, Chin-Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-34e40bb689b091b272f7985cc8bc69a6ada30cdfd90451ea2230dac86c7d1ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Coders</topic><topic>Cognitive tasks</topic><topic>Computational linguistics</topic><topic>Computer and Information Sciences</topic><topic>Computer vision</topic><topic>Consortia</topic><topic>Datasets</topic><topic>Humans</topic><topic>Language</topic><topic>Language processing</topic><topic>Machine vision</topic><topic>Modelling</topic><topic>Natural language interfaces</topic><topic>Natural Language Processing</topic><topic>Questions</topic><topic>Semantics</topic><topic>Social Sciences</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xuewei</creatorcontrib><creatorcontrib>Han, Dezhi</creatorcontrib><creatorcontrib>Chang, Chin-Chen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xuewei</au><au>Han, Dezhi</au><au>Chang, Chin-Chen</au><au>Chen, Chi-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pre-training Model Based on Parallel Cross-Modality Fusion Layer</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-02-03</date><risdate>2022</risdate><volume>17</volume><issue>2</issue><spage>e0260784</spage><pages>e0260784-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Visual Question Answering (VQA) is a learning task that combines computer vision with natural language processing. In VQA, it is important to understand the alignment between visual concepts and linguistic semantics. In this paper, we proposed a Pre-training Model Based on Parallel Cross-Modality Fusion Layer (P-PCFL) to learn the fine-grained relationship between vision and language. The P-PCFL model is composed of three Encoders: Object Encoder, Language Encoder, and Parallel Cross-Modality Fusion Encoder, with Transformer as the core. We use four different Pre-training missions, namely, Cross-Modality Mask Language Modeling, Cross-Modality Mask Region Modeling, Image-Text Matching, and Image-Text Q&A, to pre-train the P-PCFL model and improve its reasoning and universality, which help to learn the relationship between Intra-modality and Inter-modality. Experimental results on the platform of Visual Question Answering dataset VQA v2.0 show that the Pre-trained P-PCFL model has a good effect after fine-tuning the parameters. In addition, we also conduct ablation experiments and provide some results of Attention visualization to verify the effectiveness of P-PCFL model.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35113862</pmid><doi>10.1371/journal.pone.0260784</doi><tpages>e0260784</tpages><orcidid>https://orcid.org/0000-0001-8861-5461</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-02, Vol.17 (2), p.e0260784 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2625264697 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Ablation Algorithms Biology and Life Sciences Coders Cognitive tasks Computational linguistics Computer and Information Sciences Computer vision Consortia Datasets Humans Language Language processing Machine vision Modelling Natural language interfaces Natural Language Processing Questions Semantics Social Sciences Training |
title | Pre-training Model Based on Parallel Cross-Modality Fusion Layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pre-training%20Model%20Based%20on%20Parallel%20Cross-Modality%20Fusion%20Layer&rft.jtitle=PloS%20one&rft.au=Li,%20Xuewei&rft.date=2022-02-03&rft.volume=17&rft.issue=2&rft.spage=e0260784&rft.pages=e0260784-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0260784&rft_dat=%3Cgale_plos_%3EA691678844%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625264697&rft_id=info:pmid/35113862&rft_galeid=A691678844&rft_doaj_id=oai_doaj_org_article_1f8a9768a6d14d06894e135d52951a47&rfr_iscdi=true |