How minimizing conflicts could lead to polarization on social media: An agent-based model investigation
Social media represent an important source of news for many users. They are, however, affected by misinformation and they might be playing a role in the growth of political polarization. In this paper, we create an agent based model to investigate how policing content and backlash on social media (i...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-01, Vol.17 (1), p.e0263184-e0263184 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0263184 |
---|---|
container_issue | 1 |
container_start_page | e0263184 |
container_title | PloS one |
container_volume | 17 |
creator | Coscia, Michele Rossi, Luca |
description | Social media represent an important source of news for many users. They are, however, affected by misinformation and they might be playing a role in the growth of political polarization. In this paper, we create an agent based model to investigate how policing content and backlash on social media (i.e. conflict) can lead to an increase in polarization for both users and news sources. Our model is an advancement over previously proposed models because it allows us to study the polarization of both users and news sources, the evolution of the audience connections between users and sources, and it makes more realistic assumptions about the starting conditions of the system. We find that the tendency of users and sources to avoid policing, backlash and conflict in general can increase polarization online. Specifically polarization comes from the ease of sharing political posts, intolerance for opposing points of view causing backlash and policing, and volatility in changing one's opinion when faced with new information. On the other hand, it seems that the integrity of a news source in trying to resist the backlash and policing has little effect. |
doi_str_mv | 10.1371/journal.pone.0263184 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2623346578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A690682403</galeid><doaj_id>oai_doaj_org_article_acf258fa191c413eb04d4628d32db32c</doaj_id><sourcerecordid>A690682403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6074-1021b5b9839c6f4de4f2821b566dc2868f152b89bd6251e61b3f00550fe9a383</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLguhFx3w1k3ohDIu6AwsLungb0nx0MqTJ2LSr7q83nekuU9kLaaDh9Dlvct6ek2UvIVhAvIQftmHovHCLXfB6ARDFkJFH2SmsMCooAvjx0f4kexbjFoASM0qfZie4BKzEtDzNmovwK2-tt629tb7JZfDGWdnHtBucyp0WKu9DvgtOdPZW9Db4PK0YpBUub7Wy4mO-8rlotO-LWkSt8jYo7XLrb3TsbbPPeZ49McJF_WJ6n2XXXz5fn18Ul1df1-ery0JSsCQFBAjWZV0xXElqiNLEIDaGKFUSMcoMLFHNqlpRVEJNYY1NKqsERlcCM3yWvT7I7lyIfLIockQRxoSWy5FYHwgVxJbvOtuK7g8PwvJ9IHQNF11vpdNcSINKZgSsoCQQ6xoQRShiCiNVYyST1qfptKFOTsjkQCfcTHT-xdsNb8INZ8uKpEKSwLtJoAs_h-QWb22U2jnhdRgO92YMLffom3_Qh6ubqEakAqw3IZ0rR1G-ohWgDBGAE7V4gEqP0q1NHaCNTfFZwvtZQmJ6_btvxBAjX3__9v_s1Y85-_aI3Wjh-k0Mbhg7Js5BcgBlF2LstLk3GQI-jsOdG3wcBz6NQ0p7dfyD7pPu-h__BZ3kBJY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623346578</pqid></control><display><type>article</type><title>How minimizing conflicts could lead to polarization on social media: An agent-based model investigation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Coscia, Michele ; Rossi, Luca</creator><contributor>Sasahara, Kazutoshi</contributor><creatorcontrib>Coscia, Michele ; Rossi, Luca ; Sasahara, Kazutoshi</creatorcontrib><description>Social media represent an important source of news for many users. They are, however, affected by misinformation and they might be playing a role in the growth of political polarization. In this paper, we create an agent based model to investigate how policing content and backlash on social media (i.e. conflict) can lead to an increase in polarization for both users and news sources. Our model is an advancement over previously proposed models because it allows us to study the polarization of both users and news sources, the evolution of the audience connections between users and sources, and it makes more realistic assumptions about the starting conditions of the system. We find that the tendency of users and sources to avoid policing, backlash and conflict in general can increase polarization online. Specifically polarization comes from the ease of sharing political posts, intolerance for opposing points of view causing backlash and policing, and volatility in changing one's opinion when faced with new information. On the other hand, it seems that the integrity of a news source in trying to resist the backlash and policing has little effect.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0263184</identifier><identifier>PMID: 35085365</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agent-based models ; Biology and Life Sciences ; Causes of ; Communication ; Computer and Information Sciences ; Conflict management ; Digital media ; Ecology and Environmental Sciences ; Humans ; Information Dissemination - methods ; Information Seeking Behavior ; Intolerance ; Modelling ; Models, Theoretical ; Motivation ; News ; Normal distribution ; Physical Sciences ; Polarization ; Polarization (Social sciences) ; Political aspects ; Political polarization ; Politics ; Public Opinion ; Research and Analysis Methods ; Social aspects ; Social Media ; Social Networking ; Social networks ; Social Sciences ; Systems Analysis ; Values ; Volatility</subject><ispartof>PloS one, 2022-01, Vol.17 (1), p.e0263184-e0263184</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Coscia, Rossi. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Coscia, Rossi 2022 Coscia, Rossi</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6074-1021b5b9839c6f4de4f2821b566dc2868f152b89bd6251e61b3f00550fe9a383</citedby><cites>FETCH-LOGICAL-c6074-1021b5b9839c6f4de4f2821b566dc2868f152b89bd6251e61b3f00550fe9a383</cites><orcidid>0000-0001-5984-5137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794152/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794152/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35085365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sasahara, Kazutoshi</contributor><creatorcontrib>Coscia, Michele</creatorcontrib><creatorcontrib>Rossi, Luca</creatorcontrib><title>How minimizing conflicts could lead to polarization on social media: An agent-based model investigation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Social media represent an important source of news for many users. They are, however, affected by misinformation and they might be playing a role in the growth of political polarization. In this paper, we create an agent based model to investigate how policing content and backlash on social media (i.e. conflict) can lead to an increase in polarization for both users and news sources. Our model is an advancement over previously proposed models because it allows us to study the polarization of both users and news sources, the evolution of the audience connections between users and sources, and it makes more realistic assumptions about the starting conditions of the system. We find that the tendency of users and sources to avoid policing, backlash and conflict in general can increase polarization online. Specifically polarization comes from the ease of sharing political posts, intolerance for opposing points of view causing backlash and policing, and volatility in changing one's opinion when faced with new information. On the other hand, it seems that the integrity of a news source in trying to resist the backlash and policing has little effect.</description><subject>Agent-based models</subject><subject>Biology and Life Sciences</subject><subject>Causes of</subject><subject>Communication</subject><subject>Computer and Information Sciences</subject><subject>Conflict management</subject><subject>Digital media</subject><subject>Ecology and Environmental Sciences</subject><subject>Humans</subject><subject>Information Dissemination - methods</subject><subject>Information Seeking Behavior</subject><subject>Intolerance</subject><subject>Modelling</subject><subject>Models, Theoretical</subject><subject>Motivation</subject><subject>News</subject><subject>Normal distribution</subject><subject>Physical Sciences</subject><subject>Polarization</subject><subject>Polarization (Social sciences)</subject><subject>Political aspects</subject><subject>Political polarization</subject><subject>Politics</subject><subject>Public Opinion</subject><subject>Research and Analysis Methods</subject><subject>Social aspects</subject><subject>Social Media</subject><subject>Social Networking</subject><subject>Social networks</subject><subject>Social Sciences</subject><subject>Systems Analysis</subject><subject>Values</subject><subject>Volatility</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLguhFx3w1k3ohDIu6AwsLungb0nx0MqTJ2LSr7q83nekuU9kLaaDh9Dlvct6ek2UvIVhAvIQftmHovHCLXfB6ARDFkJFH2SmsMCooAvjx0f4kexbjFoASM0qfZie4BKzEtDzNmovwK2-tt629tb7JZfDGWdnHtBucyp0WKu9DvgtOdPZW9Db4PK0YpBUub7Wy4mO-8rlotO-LWkSt8jYo7XLrb3TsbbPPeZ49McJF_WJ6n2XXXz5fn18Ul1df1-ery0JSsCQFBAjWZV0xXElqiNLEIDaGKFUSMcoMLFHNqlpRVEJNYY1NKqsERlcCM3yWvT7I7lyIfLIockQRxoSWy5FYHwgVxJbvOtuK7g8PwvJ9IHQNF11vpdNcSINKZgSsoCQQ6xoQRShiCiNVYyST1qfptKFOTsjkQCfcTHT-xdsNb8INZ8uKpEKSwLtJoAs_h-QWb22U2jnhdRgO92YMLffom3_Qh6ubqEakAqw3IZ0rR1G-ohWgDBGAE7V4gEqP0q1NHaCNTfFZwvtZQmJ6_btvxBAjX3__9v_s1Y85-_aI3Wjh-k0Mbhg7Js5BcgBlF2LstLk3GQI-jsOdG3wcBz6NQ0p7dfyD7pPu-h__BZ3kBJY</recordid><startdate>20220127</startdate><enddate>20220127</enddate><creator>Coscia, Michele</creator><creator>Rossi, Luca</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5984-5137</orcidid></search><sort><creationdate>20220127</creationdate><title>How minimizing conflicts could lead to polarization on social media: An agent-based model investigation</title><author>Coscia, Michele ; Rossi, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6074-1021b5b9839c6f4de4f2821b566dc2868f152b89bd6251e61b3f00550fe9a383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agent-based models</topic><topic>Biology and Life Sciences</topic><topic>Causes of</topic><topic>Communication</topic><topic>Computer and Information Sciences</topic><topic>Conflict management</topic><topic>Digital media</topic><topic>Ecology and Environmental Sciences</topic><topic>Humans</topic><topic>Information Dissemination - methods</topic><topic>Information Seeking Behavior</topic><topic>Intolerance</topic><topic>Modelling</topic><topic>Models, Theoretical</topic><topic>Motivation</topic><topic>News</topic><topic>Normal distribution</topic><topic>Physical Sciences</topic><topic>Polarization</topic><topic>Polarization (Social sciences)</topic><topic>Political aspects</topic><topic>Political polarization</topic><topic>Politics</topic><topic>Public Opinion</topic><topic>Research and Analysis Methods</topic><topic>Social aspects</topic><topic>Social Media</topic><topic>Social Networking</topic><topic>Social networks</topic><topic>Social Sciences</topic><topic>Systems Analysis</topic><topic>Values</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coscia, Michele</creatorcontrib><creatorcontrib>Rossi, Luca</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coscia, Michele</au><au>Rossi, Luca</au><au>Sasahara, Kazutoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How minimizing conflicts could lead to polarization on social media: An agent-based model investigation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-01-27</date><risdate>2022</risdate><volume>17</volume><issue>1</issue><spage>e0263184</spage><epage>e0263184</epage><pages>e0263184-e0263184</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Social media represent an important source of news for many users. They are, however, affected by misinformation and they might be playing a role in the growth of political polarization. In this paper, we create an agent based model to investigate how policing content and backlash on social media (i.e. conflict) can lead to an increase in polarization for both users and news sources. Our model is an advancement over previously proposed models because it allows us to study the polarization of both users and news sources, the evolution of the audience connections between users and sources, and it makes more realistic assumptions about the starting conditions of the system. We find that the tendency of users and sources to avoid policing, backlash and conflict in general can increase polarization online. Specifically polarization comes from the ease of sharing political posts, intolerance for opposing points of view causing backlash and policing, and volatility in changing one's opinion when faced with new information. On the other hand, it seems that the integrity of a news source in trying to resist the backlash and policing has little effect.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35085365</pmid><doi>10.1371/journal.pone.0263184</doi><tpages>e0263184</tpages><orcidid>https://orcid.org/0000-0001-5984-5137</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-01, Vol.17 (1), p.e0263184-e0263184 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2623346578 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Agent-based models Biology and Life Sciences Causes of Communication Computer and Information Sciences Conflict management Digital media Ecology and Environmental Sciences Humans Information Dissemination - methods Information Seeking Behavior Intolerance Modelling Models, Theoretical Motivation News Normal distribution Physical Sciences Polarization Polarization (Social sciences) Political aspects Political polarization Politics Public Opinion Research and Analysis Methods Social aspects Social Media Social Networking Social networks Social Sciences Systems Analysis Values Volatility |
title | How minimizing conflicts could lead to polarization on social media: An agent-based model investigation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20minimizing%20conflicts%20could%20lead%20to%20polarization%20on%20social%20media:%20An%20agent-based%20model%20investigation&rft.jtitle=PloS%20one&rft.au=Coscia,%20Michele&rft.date=2022-01-27&rft.volume=17&rft.issue=1&rft.spage=e0263184&rft.epage=e0263184&rft.pages=e0263184-e0263184&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0263184&rft_dat=%3Cgale_plos_%3EA690682403%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623346578&rft_id=info:pmid/35085365&rft_galeid=A690682403&rft_doaj_id=oai_doaj_org_article_acf258fa191c413eb04d4628d32db32c&rfr_iscdi=true |