Numerical study of aeolian vibration characteristics and fatigue life estimation of transmission conductors
The 2D computational fluid dynamics (CFD) model of transmission conductor is set up to simulate the aerodynamic forces varying with time on the conductor. Taking into account the geometrical nonlinearity of conductor lines, the finite element (FE) models of single span and two-span transmission line...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-01, Vol.17 (1), p.e0263163-e0263163 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0263163 |
---|---|
container_issue | 1 |
container_start_page | e0263163 |
container_title | PloS one |
container_volume | 17 |
creator | Liu, Jiaqiong Yan, Bo Mou, Zheyue Gao, Yingbo Niu, Getu Li, Xiaolin |
description | The 2D computational fluid dynamics (CFD) model of transmission conductor is set up to simulate the aerodynamic forces varying with time on the conductor. Taking into account the geometrical nonlinearity of conductor lines, the finite element (FE) models of single span and two-span transmission lines discretized with beam elements are established. By means of the FE models, the aeolian vibrations of the conductor lines excited by the aerodynamic forces under different wind velocities are numerically simulated. The nonlinear resonant characteristics, the amplitude-frequency relations of the conductor lines during aeolian vibration are investigated, and the influences of the span length as well as the initial tension in conductors on the aeolian vibration characteristics are analyzed. Furthermore, a 3D FE model of a conductor segment and the suspension clamp is created to study the stress distributions of the 3D model corresponding to different lines during aeolian vibrations. Finally, based on the stress analysis of the 3D model, the fatigue lives of the transmission conductors during aeolian vibration under different wind velocities are estimated. The jump phenomenon induced by the nonlinear vibration is reflected by the numerical simulation considering the geometric nonlinearity, and it is found that the energy balance principle (EBP) overestimates the vibration amplitudes because it cannot take the influences of the geometrical nonlinearity and span length into account. The obtained results may provide some instructions for the prevention design of aeolian vibration. |
doi_str_mv | 10.1371/journal.pone.0263163 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2622946942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A690547642</galeid><doaj_id>oai_doaj_org_article_5a3d8ddc0647435e86d51fab5cf4a7b1</doaj_id><sourcerecordid>A690547642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-de9b3b5324baaefa155f6b76e4b9e0a1e0051576f54e6dc3b4bd9cdb507d579c3</originalsourceid><addsrcrecordid>eNqNk9uO0zAQhiMEYpeFN0AQCQnBRUscH9LcIK1WHCqtWInTrTW2x62LGxc7WbFvj9tmVy3aC5SLRONvfs8_kymK56SaEtqQd6swxA78dBM6nFa1oETQB8UpaWk9EXVFHx58nxRPUlpVFaczIR4XJ5RXM0IacVr8-jKsMToNvkz9YG7KYEvA4B105bVTEXoXulIvIYLuM5h6p1MJnSltPloMWHpnscQcX-_ZLNBH6NLapbTLDZ0ZdB9ielo8suATPhvfZ8WPjx--X3yeXF59ml-cX060aOt-YrBVVHFaMwWAFgjnVqhGIFMtVkAw-yC8EZYzFEZTxZRptVG8agxvWk3Pipd73Y0PSY59SrIWdd0y0bI6E_M9YQKs5Cbm2uONDODkLhDiQkLMTj1KDtTMjNGVYA2jHGfCcGJBcW0ZNIpkrffjbYNao9HYZfv-SPT4pHNLuQjXcta0hLVNFngzCsTwe8idlLl1Gr2HDsOwq5vSOo93W_erf9D73Y3UArIB19mQ79VbUXku2oqzRuyo6T1UfgyuXR4aWpfjRwlvjxIy0-OffgFDSnL-7ev_s1c_j9nXB-wSwffLFPyw_ZvSMcj2oI4hpYj2rsmkktuduO2G3O6EHHcip704HNBd0u0S0L9-ZQm8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622946942</pqid></control><display><type>article</type><title>Numerical study of aeolian vibration characteristics and fatigue life estimation of transmission conductors</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Jiaqiong ; Yan, Bo ; Mou, Zheyue ; Gao, Yingbo ; Niu, Getu ; Li, Xiaolin</creator><contributor>Nawab, Yasir</contributor><creatorcontrib>Liu, Jiaqiong ; Yan, Bo ; Mou, Zheyue ; Gao, Yingbo ; Niu, Getu ; Li, Xiaolin ; Nawab, Yasir</creatorcontrib><description>The 2D computational fluid dynamics (CFD) model of transmission conductor is set up to simulate the aerodynamic forces varying with time on the conductor. Taking into account the geometrical nonlinearity of conductor lines, the finite element (FE) models of single span and two-span transmission lines discretized with beam elements are established. By means of the FE models, the aeolian vibrations of the conductor lines excited by the aerodynamic forces under different wind velocities are numerically simulated. The nonlinear resonant characteristics, the amplitude-frequency relations of the conductor lines during aeolian vibration are investigated, and the influences of the span length as well as the initial tension in conductors on the aeolian vibration characteristics are analyzed. Furthermore, a 3D FE model of a conductor segment and the suspension clamp is created to study the stress distributions of the 3D model corresponding to different lines during aeolian vibrations. Finally, based on the stress analysis of the 3D model, the fatigue lives of the transmission conductors during aeolian vibration under different wind velocities are estimated. The jump phenomenon induced by the nonlinear vibration is reflected by the numerical simulation considering the geometric nonlinearity, and it is found that the energy balance principle (EBP) overestimates the vibration amplitudes because it cannot take the influences of the geometrical nonlinearity and span length into account. The obtained results may provide some instructions for the prevention design of aeolian vibration.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0263163</identifier><identifier>PMID: 35081176</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aerodynamic forces ; Aerodynamics ; Aerospace engineering ; Aluminum ; Amplitudes ; Analysis ; Bending stresses ; Computational fluid dynamics ; Computer applications ; Computer Simulation ; Conductors ; Electric Conductivity ; Electric Wiring ; Energy balance ; Eolian processes ; Experiments ; Fatigue ; Fatigue life ; Fatigue testing machines ; Finite Element Analysis ; Finite element method ; Fluid dynamics ; Geometric nonlinearity ; Hydrodynamics ; Materials ; Materials fatigue ; Mathematical models ; Measurement ; Methods ; Models, Theoretical ; Nonlinear systems ; Numerical simulations ; Physical Sciences ; Poles and towers ; Power lines ; Semiconductors ; Stress analysis ; Three dimensional models ; Transmission lines ; Two dimensional models ; Vibration ; Vibration analysis ; Vibrations ; Vortices ; Wind ; Wind speed ; Wind velocities</subject><ispartof>PloS one, 2022-01, Vol.17 (1), p.e0263163-e0263163</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Liu et al 2022 Liu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-de9b3b5324baaefa155f6b76e4b9e0a1e0051576f54e6dc3b4bd9cdb507d579c3</citedby><cites>FETCH-LOGICAL-c692t-de9b3b5324baaefa155f6b76e4b9e0a1e0051576f54e6dc3b4bd9cdb507d579c3</cites><orcidid>0000-0002-1251-2674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791497/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791497/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35081176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Nawab, Yasir</contributor><creatorcontrib>Liu, Jiaqiong</creatorcontrib><creatorcontrib>Yan, Bo</creatorcontrib><creatorcontrib>Mou, Zheyue</creatorcontrib><creatorcontrib>Gao, Yingbo</creatorcontrib><creatorcontrib>Niu, Getu</creatorcontrib><creatorcontrib>Li, Xiaolin</creatorcontrib><title>Numerical study of aeolian vibration characteristics and fatigue life estimation of transmission conductors</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The 2D computational fluid dynamics (CFD) model of transmission conductor is set up to simulate the aerodynamic forces varying with time on the conductor. Taking into account the geometrical nonlinearity of conductor lines, the finite element (FE) models of single span and two-span transmission lines discretized with beam elements are established. By means of the FE models, the aeolian vibrations of the conductor lines excited by the aerodynamic forces under different wind velocities are numerically simulated. The nonlinear resonant characteristics, the amplitude-frequency relations of the conductor lines during aeolian vibration are investigated, and the influences of the span length as well as the initial tension in conductors on the aeolian vibration characteristics are analyzed. Furthermore, a 3D FE model of a conductor segment and the suspension clamp is created to study the stress distributions of the 3D model corresponding to different lines during aeolian vibrations. Finally, based on the stress analysis of the 3D model, the fatigue lives of the transmission conductors during aeolian vibration under different wind velocities are estimated. The jump phenomenon induced by the nonlinear vibration is reflected by the numerical simulation considering the geometric nonlinearity, and it is found that the energy balance principle (EBP) overestimates the vibration amplitudes because it cannot take the influences of the geometrical nonlinearity and span length into account. The obtained results may provide some instructions for the prevention design of aeolian vibration.</description><subject>Aerodynamic forces</subject><subject>Aerodynamics</subject><subject>Aerospace engineering</subject><subject>Aluminum</subject><subject>Amplitudes</subject><subject>Analysis</subject><subject>Bending stresses</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Conductors</subject><subject>Electric Conductivity</subject><subject>Electric Wiring</subject><subject>Energy balance</subject><subject>Eolian processes</subject><subject>Experiments</subject><subject>Fatigue</subject><subject>Fatigue life</subject><subject>Fatigue testing machines</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Fluid dynamics</subject><subject>Geometric nonlinearity</subject><subject>Hydrodynamics</subject><subject>Materials</subject><subject>Materials fatigue</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Nonlinear systems</subject><subject>Numerical simulations</subject><subject>Physical Sciences</subject><subject>Poles and towers</subject><subject>Power lines</subject><subject>Semiconductors</subject><subject>Stress analysis</subject><subject>Three dimensional models</subject><subject>Transmission lines</subject><subject>Two dimensional models</subject><subject>Vibration</subject><subject>Vibration analysis</subject><subject>Vibrations</subject><subject>Vortices</subject><subject>Wind</subject><subject>Wind speed</subject><subject>Wind velocities</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9uO0zAQhiMEYpeFN0AQCQnBRUscH9LcIK1WHCqtWInTrTW2x62LGxc7WbFvj9tmVy3aC5SLRONvfs8_kymK56SaEtqQd6swxA78dBM6nFa1oETQB8UpaWk9EXVFHx58nxRPUlpVFaczIR4XJ5RXM0IacVr8-jKsMToNvkz9YG7KYEvA4B105bVTEXoXulIvIYLuM5h6p1MJnSltPloMWHpnscQcX-_ZLNBH6NLapbTLDZ0ZdB9ielo8suATPhvfZ8WPjx--X3yeXF59ml-cX060aOt-YrBVVHFaMwWAFgjnVqhGIFMtVkAw-yC8EZYzFEZTxZRptVG8agxvWk3Pipd73Y0PSY59SrIWdd0y0bI6E_M9YQKs5Cbm2uONDODkLhDiQkLMTj1KDtTMjNGVYA2jHGfCcGJBcW0ZNIpkrffjbYNao9HYZfv-SPT4pHNLuQjXcta0hLVNFngzCsTwe8idlLl1Gr2HDsOwq5vSOo93W_erf9D73Y3UArIB19mQ79VbUXku2oqzRuyo6T1UfgyuXR4aWpfjRwlvjxIy0-OffgFDSnL-7ev_s1c_j9nXB-wSwffLFPyw_ZvSMcj2oI4hpYj2rsmkktuduO2G3O6EHHcip704HNBd0u0S0L9-ZQm8</recordid><startdate>20220126</startdate><enddate>20220126</enddate><creator>Liu, Jiaqiong</creator><creator>Yan, Bo</creator><creator>Mou, Zheyue</creator><creator>Gao, Yingbo</creator><creator>Niu, Getu</creator><creator>Li, Xiaolin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1251-2674</orcidid></search><sort><creationdate>20220126</creationdate><title>Numerical study of aeolian vibration characteristics and fatigue life estimation of transmission conductors</title><author>Liu, Jiaqiong ; Yan, Bo ; Mou, Zheyue ; Gao, Yingbo ; Niu, Getu ; Li, Xiaolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-de9b3b5324baaefa155f6b76e4b9e0a1e0051576f54e6dc3b4bd9cdb507d579c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerodynamic forces</topic><topic>Aerodynamics</topic><topic>Aerospace engineering</topic><topic>Aluminum</topic><topic>Amplitudes</topic><topic>Analysis</topic><topic>Bending stresses</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Conductors</topic><topic>Electric Conductivity</topic><topic>Electric Wiring</topic><topic>Energy balance</topic><topic>Eolian processes</topic><topic>Experiments</topic><topic>Fatigue</topic><topic>Fatigue life</topic><topic>Fatigue testing machines</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Fluid dynamics</topic><topic>Geometric nonlinearity</topic><topic>Hydrodynamics</topic><topic>Materials</topic><topic>Materials fatigue</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Nonlinear systems</topic><topic>Numerical simulations</topic><topic>Physical Sciences</topic><topic>Poles and towers</topic><topic>Power lines</topic><topic>Semiconductors</topic><topic>Stress analysis</topic><topic>Three dimensional models</topic><topic>Transmission lines</topic><topic>Two dimensional models</topic><topic>Vibration</topic><topic>Vibration analysis</topic><topic>Vibrations</topic><topic>Vortices</topic><topic>Wind</topic><topic>Wind speed</topic><topic>Wind velocities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiaqiong</creatorcontrib><creatorcontrib>Yan, Bo</creatorcontrib><creatorcontrib>Mou, Zheyue</creatorcontrib><creatorcontrib>Gao, Yingbo</creatorcontrib><creatorcontrib>Niu, Getu</creatorcontrib><creatorcontrib>Li, Xiaolin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jiaqiong</au><au>Yan, Bo</au><au>Mou, Zheyue</au><au>Gao, Yingbo</au><au>Niu, Getu</au><au>Li, Xiaolin</au><au>Nawab, Yasir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study of aeolian vibration characteristics and fatigue life estimation of transmission conductors</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-01-26</date><risdate>2022</risdate><volume>17</volume><issue>1</issue><spage>e0263163</spage><epage>e0263163</epage><pages>e0263163-e0263163</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The 2D computational fluid dynamics (CFD) model of transmission conductor is set up to simulate the aerodynamic forces varying with time on the conductor. Taking into account the geometrical nonlinearity of conductor lines, the finite element (FE) models of single span and two-span transmission lines discretized with beam elements are established. By means of the FE models, the aeolian vibrations of the conductor lines excited by the aerodynamic forces under different wind velocities are numerically simulated. The nonlinear resonant characteristics, the amplitude-frequency relations of the conductor lines during aeolian vibration are investigated, and the influences of the span length as well as the initial tension in conductors on the aeolian vibration characteristics are analyzed. Furthermore, a 3D FE model of a conductor segment and the suspension clamp is created to study the stress distributions of the 3D model corresponding to different lines during aeolian vibrations. Finally, based on the stress analysis of the 3D model, the fatigue lives of the transmission conductors during aeolian vibration under different wind velocities are estimated. The jump phenomenon induced by the nonlinear vibration is reflected by the numerical simulation considering the geometric nonlinearity, and it is found that the energy balance principle (EBP) overestimates the vibration amplitudes because it cannot take the influences of the geometrical nonlinearity and span length into account. The obtained results may provide some instructions for the prevention design of aeolian vibration.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35081176</pmid><doi>10.1371/journal.pone.0263163</doi><tpages>e0263163</tpages><orcidid>https://orcid.org/0000-0002-1251-2674</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-01, Vol.17 (1), p.e0263163-e0263163 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2622946942 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aerodynamic forces Aerodynamics Aerospace engineering Aluminum Amplitudes Analysis Bending stresses Computational fluid dynamics Computer applications Computer Simulation Conductors Electric Conductivity Electric Wiring Energy balance Eolian processes Experiments Fatigue Fatigue life Fatigue testing machines Finite Element Analysis Finite element method Fluid dynamics Geometric nonlinearity Hydrodynamics Materials Materials fatigue Mathematical models Measurement Methods Models, Theoretical Nonlinear systems Numerical simulations Physical Sciences Poles and towers Power lines Semiconductors Stress analysis Three dimensional models Transmission lines Two dimensional models Vibration Vibration analysis Vibrations Vortices Wind Wind speed Wind velocities |
title | Numerical study of aeolian vibration characteristics and fatigue life estimation of transmission conductors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20of%20aeolian%20vibration%20characteristics%20and%20fatigue%20life%20estimation%20of%20transmission%20conductors&rft.jtitle=PloS%20one&rft.au=Liu,%20Jiaqiong&rft.date=2022-01-26&rft.volume=17&rft.issue=1&rft.spage=e0263163&rft.epage=e0263163&rft.pages=e0263163-e0263163&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0263163&rft_dat=%3Cgale_plos_%3EA690547642%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622946942&rft_id=info:pmid/35081176&rft_galeid=A690547642&rft_doaj_id=oai_doaj_org_article_5a3d8ddc0647435e86d51fab5cf4a7b1&rfr_iscdi=true |