Transforming and comparing data between standard SQUID and OPM-MEG systems

Optically pumped magnetometers (OPMs) have recently become so sensitive that they are suitable for use in magnetoencephalography (MEG). These sensors solve operational problems of the current standard MEG, where superconducting quantum interference device (SQUID) gradiometers and magnetometers are b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-01, Vol.17 (1), p.e0262669-e0262669
Hauptverfasser: Marhl, Urban, Jodko-Władzińska, Anna, Brühl, Rüdiger, Sander, Tilmann, Jazbinšek, Vojko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0262669
container_issue 1
container_start_page e0262669
container_title PloS one
container_volume 17
creator Marhl, Urban
Jodko-Władzińska, Anna
Brühl, Rüdiger
Sander, Tilmann
Jazbinšek, Vojko
description Optically pumped magnetometers (OPMs) have recently become so sensitive that they are suitable for use in magnetoencephalography (MEG). These sensors solve operational problems of the current standard MEG, where superconducting quantum interference device (SQUID) gradiometers and magnetometers are being used. The main advantage of OPMs is that they do not require cryogenics for cooling. Therefore, they can be placed closer to the scalp and are much easier to use. Here, we measured auditory evoked fields (AEFs) with both SQUID- and OPM-based MEG systems for a group of subjects to better understand the usage of a limited sensor count OPM-MEG. We present a theoretical framework that transforms the within subject data and equivalent simulation data from one MEG system to the other. This approach works on the principle of solving the inverse problem with one system, and then using the forward model to calculate the magnetic fields expected for the other system. For the source reconstruction, we used a minimum norm estimate (MNE) of the current distribution. Two different volume conductor models were compared: the homogeneous conducting sphere and the three-shell model of the head. The transformation results are characterized by a relative error and cross-correlation between the measured and the estimated magnetic field maps of the AEFs. The results for both models are encouraging. Since some commercial OPMs measure multiple components of the magnetic field simultaneously, we additionally analyzed the effect of tangential field components. Overall, our dual-axis OPM-MEG with 15 sensors yields similar information to a 62-channel SQUID-MEG with its field of view restricted to the right hemisphere.
doi_str_mv 10.1371/journal.pone.0262669
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2621254536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A689909090</galeid><doaj_id>oai_doaj_org_article_2be4c981d62f46a78a9473d04c74376a</doaj_id><sourcerecordid>A689909090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-90f4caa4ef77724f3645aa3dc49e993fe5ed0e5b22a3175c11d06b19910ffd073</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhiMEYmPwDxBEQkJw0WLHX_XNpGmMUbSpwDZurVPbaTMlcbEdYP8eZ82mBu0C-cJfz3mPz_GbZS8xmmIi8Idr1_kW6unGtXaKCl5wLh9l-1iSYsILRB7vrPeyZyFcI8TIjPOn2R5hiDKMxH725dJDG0rnm6pd5dCaXLtmA77fGYiQL238bW2bh5guwZv84tvV_OMtufh6Pjk_Oc3DTYi2Cc-zJyXUwb4Y5oPs6tPJ5fHnydnidH58dDbRXBZxIlFJNQC1pRCioCXhlAEQo6m0UpLSMmuQZcuiAIIF0xgbxJdYSozK0iBBDrLXW91N7YIa2hBU6gAuGGWEJ2K-JYyDa7XxVQP-Rjmo1O2B8ysFPla6tqpYWqrlDBtelJSDmIGkghhEtaBEcEhah0O2btlYo20bPdQj0fFNW63Vyv1SM5HKlf1z3w0C3v3sbIiqqYK2dQ2tdd323ZxxxmRC3_yDPlzdQK0gFVC1pUt5dS-qjvhMStSPRE0foNIwtql08kxZpfNRwPtRQGKi_RNX0IWg5hff_59d_Bizb3fYtYU6roOru1i5NoxBugW1dyF4W943GSPVW_6uG6q3vBosn8Je7X7QfdCdx8lflyn5pA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621254536</pqid></control><display><type>article</type><title>Transforming and comparing data between standard SQUID and OPM-MEG systems</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Marhl, Urban ; Jodko-Władzińska, Anna ; Brühl, Rüdiger ; Sander, Tilmann ; Jazbinšek, Vojko</creator><contributor>Papadelis, Christos</contributor><creatorcontrib>Marhl, Urban ; Jodko-Władzińska, Anna ; Brühl, Rüdiger ; Sander, Tilmann ; Jazbinšek, Vojko ; Papadelis, Christos</creatorcontrib><description>Optically pumped magnetometers (OPMs) have recently become so sensitive that they are suitable for use in magnetoencephalography (MEG). These sensors solve operational problems of the current standard MEG, where superconducting quantum interference device (SQUID) gradiometers and magnetometers are being used. The main advantage of OPMs is that they do not require cryogenics for cooling. Therefore, they can be placed closer to the scalp and are much easier to use. Here, we measured auditory evoked fields (AEFs) with both SQUID- and OPM-based MEG systems for a group of subjects to better understand the usage of a limited sensor count OPM-MEG. We present a theoretical framework that transforms the within subject data and equivalent simulation data from one MEG system to the other. This approach works on the principle of solving the inverse problem with one system, and then using the forward model to calculate the magnetic fields expected for the other system. For the source reconstruction, we used a minimum norm estimate (MNE) of the current distribution. Two different volume conductor models were compared: the homogeneous conducting sphere and the three-shell model of the head. The transformation results are characterized by a relative error and cross-correlation between the measured and the estimated magnetic field maps of the AEFs. The results for both models are encouraging. Since some commercial OPMs measure multiple components of the magnetic field simultaneously, we additionally analyzed the effect of tangential field components. Overall, our dual-axis OPM-MEG with 15 sensors yields similar information to a 62-channel SQUID-MEG with its field of view restricted to the right hemisphere.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0262669</identifier><identifier>PMID: 35045107</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Auditory evoked response ; Biology and Life Sciences ; Brain - physiology ; Brain mapping ; Comparative analysis ; Computer Simulation ; Conduction ; Conductors ; Cross correlation ; Current distribution ; Engineering and Technology ; Equipment Design ; Error analysis ; Field of view ; Gradiometers ; Hemispheric laterality ; Humans ; Inverse problems ; Magnetic Fields ; Magnetic measurement ; Magnetoencephalography ; Magnetoencephalography - methods ; Magnetometer ; Magnetometers ; Magnetometry - methods ; Mathematics ; Medicine and Health Sciences ; Methods ; Modelling ; Noise ; Operational problems ; Optics and Photonics ; Performance evaluation ; Physical Sciences ; Research and Analysis Methods ; Scalp ; Sensors ; Superconducting quantum interference devices ; Superconductivity</subject><ispartof>PloS one, 2022-01, Vol.17 (1), p.e0262669-e0262669</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Marhl et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Marhl et al 2022 Marhl et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-90f4caa4ef77724f3645aa3dc49e993fe5ed0e5b22a3175c11d06b19910ffd073</citedby><cites>FETCH-LOGICAL-c692t-90f4caa4ef77724f3645aa3dc49e993fe5ed0e5b22a3175c11d06b19910ffd073</cites><orcidid>0000-0001-5856-2872 ; 0000-0003-1562-8434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769297/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769297/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35045107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Papadelis, Christos</contributor><creatorcontrib>Marhl, Urban</creatorcontrib><creatorcontrib>Jodko-Władzińska, Anna</creatorcontrib><creatorcontrib>Brühl, Rüdiger</creatorcontrib><creatorcontrib>Sander, Tilmann</creatorcontrib><creatorcontrib>Jazbinšek, Vojko</creatorcontrib><title>Transforming and comparing data between standard SQUID and OPM-MEG systems</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Optically pumped magnetometers (OPMs) have recently become so sensitive that they are suitable for use in magnetoencephalography (MEG). These sensors solve operational problems of the current standard MEG, where superconducting quantum interference device (SQUID) gradiometers and magnetometers are being used. The main advantage of OPMs is that they do not require cryogenics for cooling. Therefore, they can be placed closer to the scalp and are much easier to use. Here, we measured auditory evoked fields (AEFs) with both SQUID- and OPM-based MEG systems for a group of subjects to better understand the usage of a limited sensor count OPM-MEG. We present a theoretical framework that transforms the within subject data and equivalent simulation data from one MEG system to the other. This approach works on the principle of solving the inverse problem with one system, and then using the forward model to calculate the magnetic fields expected for the other system. For the source reconstruction, we used a minimum norm estimate (MNE) of the current distribution. Two different volume conductor models were compared: the homogeneous conducting sphere and the three-shell model of the head. The transformation results are characterized by a relative error and cross-correlation between the measured and the estimated magnetic field maps of the AEFs. The results for both models are encouraging. Since some commercial OPMs measure multiple components of the magnetic field simultaneously, we additionally analyzed the effect of tangential field components. Overall, our dual-axis OPM-MEG with 15 sensors yields similar information to a 62-channel SQUID-MEG with its field of view restricted to the right hemisphere.</description><subject>Animals</subject><subject>Auditory evoked response</subject><subject>Biology and Life Sciences</subject><subject>Brain - physiology</subject><subject>Brain mapping</subject><subject>Comparative analysis</subject><subject>Computer Simulation</subject><subject>Conduction</subject><subject>Conductors</subject><subject>Cross correlation</subject><subject>Current distribution</subject><subject>Engineering and Technology</subject><subject>Equipment Design</subject><subject>Error analysis</subject><subject>Field of view</subject><subject>Gradiometers</subject><subject>Hemispheric laterality</subject><subject>Humans</subject><subject>Inverse problems</subject><subject>Magnetic Fields</subject><subject>Magnetic measurement</subject><subject>Magnetoencephalography</subject><subject>Magnetoencephalography - methods</subject><subject>Magnetometer</subject><subject>Magnetometers</subject><subject>Magnetometry - methods</subject><subject>Mathematics</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Modelling</subject><subject>Noise</subject><subject>Operational problems</subject><subject>Optics and Photonics</subject><subject>Performance evaluation</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Scalp</subject><subject>Sensors</subject><subject>Superconducting quantum interference devices</subject><subject>Superconductivity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1v0zAUhiMEYmPwDxBEQkJw0WLHX_XNpGmMUbSpwDZurVPbaTMlcbEdYP8eZ82mBu0C-cJfz3mPz_GbZS8xmmIi8Idr1_kW6unGtXaKCl5wLh9l-1iSYsILRB7vrPeyZyFcI8TIjPOn2R5hiDKMxH725dJDG0rnm6pd5dCaXLtmA77fGYiQL238bW2bh5guwZv84tvV_OMtufh6Pjk_Oc3DTYi2Cc-zJyXUwb4Y5oPs6tPJ5fHnydnidH58dDbRXBZxIlFJNQC1pRCioCXhlAEQo6m0UpLSMmuQZcuiAIIF0xgbxJdYSozK0iBBDrLXW91N7YIa2hBU6gAuGGWEJ2K-JYyDa7XxVQP-Rjmo1O2B8ysFPla6tqpYWqrlDBtelJSDmIGkghhEtaBEcEhah0O2btlYo20bPdQj0fFNW63Vyv1SM5HKlf1z3w0C3v3sbIiqqYK2dQ2tdd323ZxxxmRC3_yDPlzdQK0gFVC1pUt5dS-qjvhMStSPRE0foNIwtql08kxZpfNRwPtRQGKi_RNX0IWg5hff_59d_Bizb3fYtYU6roOru1i5NoxBugW1dyF4W943GSPVW_6uG6q3vBosn8Je7X7QfdCdx8lflyn5pA</recordid><startdate>20220119</startdate><enddate>20220119</enddate><creator>Marhl, Urban</creator><creator>Jodko-Władzińska, Anna</creator><creator>Brühl, Rüdiger</creator><creator>Sander, Tilmann</creator><creator>Jazbinšek, Vojko</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5856-2872</orcidid><orcidid>https://orcid.org/0000-0003-1562-8434</orcidid></search><sort><creationdate>20220119</creationdate><title>Transforming and comparing data between standard SQUID and OPM-MEG systems</title><author>Marhl, Urban ; Jodko-Władzińska, Anna ; Brühl, Rüdiger ; Sander, Tilmann ; Jazbinšek, Vojko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-90f4caa4ef77724f3645aa3dc49e993fe5ed0e5b22a3175c11d06b19910ffd073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Auditory evoked response</topic><topic>Biology and Life Sciences</topic><topic>Brain - physiology</topic><topic>Brain mapping</topic><topic>Comparative analysis</topic><topic>Computer Simulation</topic><topic>Conduction</topic><topic>Conductors</topic><topic>Cross correlation</topic><topic>Current distribution</topic><topic>Engineering and Technology</topic><topic>Equipment Design</topic><topic>Error analysis</topic><topic>Field of view</topic><topic>Gradiometers</topic><topic>Hemispheric laterality</topic><topic>Humans</topic><topic>Inverse problems</topic><topic>Magnetic Fields</topic><topic>Magnetic measurement</topic><topic>Magnetoencephalography</topic><topic>Magnetoencephalography - methods</topic><topic>Magnetometer</topic><topic>Magnetometers</topic><topic>Magnetometry - methods</topic><topic>Mathematics</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Modelling</topic><topic>Noise</topic><topic>Operational problems</topic><topic>Optics and Photonics</topic><topic>Performance evaluation</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Scalp</topic><topic>Sensors</topic><topic>Superconducting quantum interference devices</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marhl, Urban</creatorcontrib><creatorcontrib>Jodko-Władzińska, Anna</creatorcontrib><creatorcontrib>Brühl, Rüdiger</creatorcontrib><creatorcontrib>Sander, Tilmann</creatorcontrib><creatorcontrib>Jazbinšek, Vojko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marhl, Urban</au><au>Jodko-Władzińska, Anna</au><au>Brühl, Rüdiger</au><au>Sander, Tilmann</au><au>Jazbinšek, Vojko</au><au>Papadelis, Christos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transforming and comparing data between standard SQUID and OPM-MEG systems</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-01-19</date><risdate>2022</risdate><volume>17</volume><issue>1</issue><spage>e0262669</spage><epage>e0262669</epage><pages>e0262669-e0262669</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Optically pumped magnetometers (OPMs) have recently become so sensitive that they are suitable for use in magnetoencephalography (MEG). These sensors solve operational problems of the current standard MEG, where superconducting quantum interference device (SQUID) gradiometers and magnetometers are being used. The main advantage of OPMs is that they do not require cryogenics for cooling. Therefore, they can be placed closer to the scalp and are much easier to use. Here, we measured auditory evoked fields (AEFs) with both SQUID- and OPM-based MEG systems for a group of subjects to better understand the usage of a limited sensor count OPM-MEG. We present a theoretical framework that transforms the within subject data and equivalent simulation data from one MEG system to the other. This approach works on the principle of solving the inverse problem with one system, and then using the forward model to calculate the magnetic fields expected for the other system. For the source reconstruction, we used a minimum norm estimate (MNE) of the current distribution. Two different volume conductor models were compared: the homogeneous conducting sphere and the three-shell model of the head. The transformation results are characterized by a relative error and cross-correlation between the measured and the estimated magnetic field maps of the AEFs. The results for both models are encouraging. Since some commercial OPMs measure multiple components of the magnetic field simultaneously, we additionally analyzed the effect of tangential field components. Overall, our dual-axis OPM-MEG with 15 sensors yields similar information to a 62-channel SQUID-MEG with its field of view restricted to the right hemisphere.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35045107</pmid><doi>10.1371/journal.pone.0262669</doi><tpages>e0262669</tpages><orcidid>https://orcid.org/0000-0001-5856-2872</orcidid><orcidid>https://orcid.org/0000-0003-1562-8434</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-01, Vol.17 (1), p.e0262669-e0262669
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2621254536
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Auditory evoked response
Biology and Life Sciences
Brain - physiology
Brain mapping
Comparative analysis
Computer Simulation
Conduction
Conductors
Cross correlation
Current distribution
Engineering and Technology
Equipment Design
Error analysis
Field of view
Gradiometers
Hemispheric laterality
Humans
Inverse problems
Magnetic Fields
Magnetic measurement
Magnetoencephalography
Magnetoencephalography - methods
Magnetometer
Magnetometers
Magnetometry - methods
Mathematics
Medicine and Health Sciences
Methods
Modelling
Noise
Operational problems
Optics and Photonics
Performance evaluation
Physical Sciences
Research and Analysis Methods
Scalp
Sensors
Superconducting quantum interference devices
Superconductivity
title Transforming and comparing data between standard SQUID and OPM-MEG systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transforming%20and%20comparing%20data%20between%20standard%20SQUID%20and%20OPM-MEG%20systems&rft.jtitle=PloS%20one&rft.au=Marhl,%20Urban&rft.date=2022-01-19&rft.volume=17&rft.issue=1&rft.spage=e0262669&rft.epage=e0262669&rft.pages=e0262669-e0262669&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0262669&rft_dat=%3Cgale_plos_%3EA689909090%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621254536&rft_id=info:pmid/35045107&rft_galeid=A689909090&rft_doaj_id=oai_doaj_org_article_2be4c981d62f46a78a9473d04c74376a&rfr_iscdi=true