Tweezepy: A Python package for calibrating forces in single-molecule video-tracking experiments
Single-molecule force spectroscopy (SMFS) instruments (e.g., magnetic and optical tweezers) often use video tracking to measure the three-dimensional position of micron-scale beads under an applied force. The force in these experiments is calibrated by comparing the bead trajectory to a thermal moti...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-12, Vol.16 (12), p.e0262028-e0262028 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0262028 |
---|---|
container_issue | 12 |
container_start_page | e0262028 |
container_title | PloS one |
container_volume | 16 |
creator | Morgan, Ian L Saleh, Omar A |
description | Single-molecule force spectroscopy (SMFS) instruments (e.g., magnetic and optical tweezers) often use video tracking to measure the three-dimensional position of micron-scale beads under an applied force. The force in these experiments is calibrated by comparing the bead trajectory to a thermal motion-based model with the drag coefficient, γ, and trap spring constant, κ, as parameters. Estimating accurate parameters is complicated by systematic biases from spectral distortions, the camera exposure time, parasitic noise, and least-squares fitting methods. However, while robust calibration methods exist that correct for these biases, they are not always used because they can be complex to implement computationally. To address this barrier, we present Tweezepy: a Python package for calibrating forces in SMFS video-tracking experiments. Tweezepy uses maximum likelihood estimation (MLE) to estimate parameters and their uncertainties from a single bead trajectory via the power spectral density (PSD) and Allan variance (AV). It is well-documented, fast, easy to use, and accounts for most common sources of biases in SMFS video-tracking experiments. Here, we provide a comprehensive overview of Tweezepy's calibration scheme, including a review of the theory underlying thermal motion-based parameter estimates, a discussion of the PSD, AV, and MLE, and an explanation of their implementation. |
doi_str_mv | 10.1371/journal.pone.0262028 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2615610931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A688366367</galeid><doaj_id>oai_doaj_org_article_50ca444d3a9d48d291cd5181a9172cb9</doaj_id><sourcerecordid>A688366367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-88da50d763129f5b68f4aff1a6ada46715bac7b5131edf4801b1ae003fe185783</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoqXwDxBEQkJwyGLHieNwQFpVfKxUqQgKV2viTLIu3jjYSeny63HYtNpFPaAcnLGf97Vn7Imip5QsKCvom0s7ug7MorcdLkjKU5KKe9ExLVmahIDd3_s_ih55f0lIzgTnD6MjlpVFSjk5juTFL8Tf2G_fxsv483ZY2y7uQf2AFuPGuliB0ZWDQXftFCv0se5iH0KDycYaVKPB-ErXaJPBBeEE4nWPTm-wG_zj6EEDxuOTeTyJvn14f3H6KTk7_7g6XZ4lipfpkAhRQ07qgjOalk1ecdFk0DQUONSQ8YLmFaiiyimjWDeZILSigISwBqnIC8FOouc7395YL-faeJlymnNKSkYDsdoRtYVL2YfzgdtKC1r-nbCuleAGrQzKnCjIsqxmUNaZqNOSqjqngkJJi1RVZfB6N-82VhusVcjUgTkwPVzp9Fq29kqKgpZFMRm8mg2c_TmiH-RGe4XGQId23J27TAM7ZfbiH_Tu7GaqhZCA7ho73cZkKpdcCMY540WgFndQ4atxo1V4SI0O8weC1weCwAx4PbQwei9XX7_8P3v-_ZB9uceuEcyw9taMg7adPwSzHaic9d5hc1tkSuTUBzfVkFMfyLkPguzZ_gXdim4ePvsDrs4DFw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615610931</pqid></control><display><type>article</type><title>Tweezepy: A Python package for calibrating forces in single-molecule video-tracking experiments</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Morgan, Ian L ; Saleh, Omar A</creator><contributor>Blank, Kerstin G.</contributor><creatorcontrib>Morgan, Ian L ; Saleh, Omar A ; Blank, Kerstin G.</creatorcontrib><description>Single-molecule force spectroscopy (SMFS) instruments (e.g., magnetic and optical tweezers) often use video tracking to measure the three-dimensional position of micron-scale beads under an applied force. The force in these experiments is calibrated by comparing the bead trajectory to a thermal motion-based model with the drag coefficient, γ, and trap spring constant, κ, as parameters. Estimating accurate parameters is complicated by systematic biases from spectral distortions, the camera exposure time, parasitic noise, and least-squares fitting methods. However, while robust calibration methods exist that correct for these biases, they are not always used because they can be complex to implement computationally. To address this barrier, we present Tweezepy: a Python package for calibrating forces in SMFS video-tracking experiments. Tweezepy uses maximum likelihood estimation (MLE) to estimate parameters and their uncertainties from a single bead trajectory via the power spectral density (PSD) and Allan variance (AV). It is well-documented, fast, easy to use, and accounts for most common sources of biases in SMFS video-tracking experiments. Here, we provide a comprehensive overview of Tweezepy's calibration scheme, including a review of the theory underlying thermal motion-based parameter estimates, a discussion of the PSD, AV, and MLE, and an explanation of their implementation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0262028</identifier><identifier>PMID: 34972160</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Beads ; Calibration ; Drag coefficients ; Engineering and Technology ; Estimates ; Evaluation ; Experiments ; Force and energy ; Fourier Analysis ; Gravitation ; Least-Squares Analysis ; Likelihood Functions ; Magnetics - methods ; Maximum likelihood estimates ; Maximum likelihood estimation ; Mechanical Phenomena ; Models, Statistical ; Monte Carlo Method ; Motion ; Noise ; Normal Distribution ; Optical Tweezers ; Parameter estimation ; Parameter uncertainty ; Physical Sciences ; Polymers ; Polymers - chemistry ; Position measurement ; Power ; Power spectral density ; Programming Languages ; Research and Analysis Methods ; Single Molecule Imaging - methods ; Software ; Spectroscopy ; Spectrum analysis ; Spring constant ; Torque ; Tracking</subject><ispartof>PloS one, 2021-12, Vol.16 (12), p.e0262028-e0262028</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Morgan, Saleh. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Morgan, Saleh 2021 Morgan, Saleh</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-88da50d763129f5b68f4aff1a6ada46715bac7b5131edf4801b1ae003fe185783</citedby><cites>FETCH-LOGICAL-c692t-88da50d763129f5b68f4aff1a6ada46715bac7b5131edf4801b1ae003fe185783</cites><orcidid>0000-0001-6772-6883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8719779/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8719779/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34972160$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Blank, Kerstin G.</contributor><creatorcontrib>Morgan, Ian L</creatorcontrib><creatorcontrib>Saleh, Omar A</creatorcontrib><title>Tweezepy: A Python package for calibrating forces in single-molecule video-tracking experiments</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Single-molecule force spectroscopy (SMFS) instruments (e.g., magnetic and optical tweezers) often use video tracking to measure the three-dimensional position of micron-scale beads under an applied force. The force in these experiments is calibrated by comparing the bead trajectory to a thermal motion-based model with the drag coefficient, γ, and trap spring constant, κ, as parameters. Estimating accurate parameters is complicated by systematic biases from spectral distortions, the camera exposure time, parasitic noise, and least-squares fitting methods. However, while robust calibration methods exist that correct for these biases, they are not always used because they can be complex to implement computationally. To address this barrier, we present Tweezepy: a Python package for calibrating forces in SMFS video-tracking experiments. Tweezepy uses maximum likelihood estimation (MLE) to estimate parameters and their uncertainties from a single bead trajectory via the power spectral density (PSD) and Allan variance (AV). It is well-documented, fast, easy to use, and accounts for most common sources of biases in SMFS video-tracking experiments. Here, we provide a comprehensive overview of Tweezepy's calibration scheme, including a review of the theory underlying thermal motion-based parameter estimates, a discussion of the PSD, AV, and MLE, and an explanation of their implementation.</description><subject>Analysis</subject><subject>Beads</subject><subject>Calibration</subject><subject>Drag coefficients</subject><subject>Engineering and Technology</subject><subject>Estimates</subject><subject>Evaluation</subject><subject>Experiments</subject><subject>Force and energy</subject><subject>Fourier Analysis</subject><subject>Gravitation</subject><subject>Least-Squares Analysis</subject><subject>Likelihood Functions</subject><subject>Magnetics - methods</subject><subject>Maximum likelihood estimates</subject><subject>Maximum likelihood estimation</subject><subject>Mechanical Phenomena</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Motion</subject><subject>Noise</subject><subject>Normal Distribution</subject><subject>Optical Tweezers</subject><subject>Parameter estimation</subject><subject>Parameter uncertainty</subject><subject>Physical Sciences</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Position measurement</subject><subject>Power</subject><subject>Power spectral density</subject><subject>Programming Languages</subject><subject>Research and Analysis Methods</subject><subject>Single Molecule Imaging - methods</subject><subject>Software</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spring constant</subject><subject>Torque</subject><subject>Tracking</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoqXwDxBEQkJwyGLHieNwQFpVfKxUqQgKV2viTLIu3jjYSeny63HYtNpFPaAcnLGf97Vn7Imip5QsKCvom0s7ug7MorcdLkjKU5KKe9ExLVmahIDd3_s_ih55f0lIzgTnD6MjlpVFSjk5juTFL8Tf2G_fxsv483ZY2y7uQf2AFuPGuliB0ZWDQXftFCv0se5iH0KDycYaVKPB-ErXaJPBBeEE4nWPTm-wG_zj6EEDxuOTeTyJvn14f3H6KTk7_7g6XZ4lipfpkAhRQ07qgjOalk1ecdFk0DQUONSQ8YLmFaiiyimjWDeZILSigISwBqnIC8FOouc7395YL-faeJlymnNKSkYDsdoRtYVL2YfzgdtKC1r-nbCuleAGrQzKnCjIsqxmUNaZqNOSqjqngkJJi1RVZfB6N-82VhusVcjUgTkwPVzp9Fq29kqKgpZFMRm8mg2c_TmiH-RGe4XGQId23J27TAM7ZfbiH_Tu7GaqhZCA7ho73cZkKpdcCMY540WgFndQ4atxo1V4SI0O8weC1weCwAx4PbQwei9XX7_8P3v-_ZB9uceuEcyw9taMg7adPwSzHaic9d5hc1tkSuTUBzfVkFMfyLkPguzZ_gXdim4ePvsDrs4DFw</recordid><startdate>20211231</startdate><enddate>20211231</enddate><creator>Morgan, Ian L</creator><creator>Saleh, Omar A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6772-6883</orcidid></search><sort><creationdate>20211231</creationdate><title>Tweezepy: A Python package for calibrating forces in single-molecule video-tracking experiments</title><author>Morgan, Ian L ; Saleh, Omar A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-88da50d763129f5b68f4aff1a6ada46715bac7b5131edf4801b1ae003fe185783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Beads</topic><topic>Calibration</topic><topic>Drag coefficients</topic><topic>Engineering and Technology</topic><topic>Estimates</topic><topic>Evaluation</topic><topic>Experiments</topic><topic>Force and energy</topic><topic>Fourier Analysis</topic><topic>Gravitation</topic><topic>Least-Squares Analysis</topic><topic>Likelihood Functions</topic><topic>Magnetics - methods</topic><topic>Maximum likelihood estimates</topic><topic>Maximum likelihood estimation</topic><topic>Mechanical Phenomena</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Motion</topic><topic>Noise</topic><topic>Normal Distribution</topic><topic>Optical Tweezers</topic><topic>Parameter estimation</topic><topic>Parameter uncertainty</topic><topic>Physical Sciences</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Position measurement</topic><topic>Power</topic><topic>Power spectral density</topic><topic>Programming Languages</topic><topic>Research and Analysis Methods</topic><topic>Single Molecule Imaging - methods</topic><topic>Software</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spring constant</topic><topic>Torque</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morgan, Ian L</creatorcontrib><creatorcontrib>Saleh, Omar A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morgan, Ian L</au><au>Saleh, Omar A</au><au>Blank, Kerstin G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tweezepy: A Python package for calibrating forces in single-molecule video-tracking experiments</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-12-31</date><risdate>2021</risdate><volume>16</volume><issue>12</issue><spage>e0262028</spage><epage>e0262028</epage><pages>e0262028-e0262028</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Single-molecule force spectroscopy (SMFS) instruments (e.g., magnetic and optical tweezers) often use video tracking to measure the three-dimensional position of micron-scale beads under an applied force. The force in these experiments is calibrated by comparing the bead trajectory to a thermal motion-based model with the drag coefficient, γ, and trap spring constant, κ, as parameters. Estimating accurate parameters is complicated by systematic biases from spectral distortions, the camera exposure time, parasitic noise, and least-squares fitting methods. However, while robust calibration methods exist that correct for these biases, they are not always used because they can be complex to implement computationally. To address this barrier, we present Tweezepy: a Python package for calibrating forces in SMFS video-tracking experiments. Tweezepy uses maximum likelihood estimation (MLE) to estimate parameters and their uncertainties from a single bead trajectory via the power spectral density (PSD) and Allan variance (AV). It is well-documented, fast, easy to use, and accounts for most common sources of biases in SMFS video-tracking experiments. Here, we provide a comprehensive overview of Tweezepy's calibration scheme, including a review of the theory underlying thermal motion-based parameter estimates, a discussion of the PSD, AV, and MLE, and an explanation of their implementation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34972160</pmid><doi>10.1371/journal.pone.0262028</doi><tpages>e0262028</tpages><orcidid>https://orcid.org/0000-0001-6772-6883</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-12, Vol.16 (12), p.e0262028-e0262028 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2615610931 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Beads Calibration Drag coefficients Engineering and Technology Estimates Evaluation Experiments Force and energy Fourier Analysis Gravitation Least-Squares Analysis Likelihood Functions Magnetics - methods Maximum likelihood estimates Maximum likelihood estimation Mechanical Phenomena Models, Statistical Monte Carlo Method Motion Noise Normal Distribution Optical Tweezers Parameter estimation Parameter uncertainty Physical Sciences Polymers Polymers - chemistry Position measurement Power Power spectral density Programming Languages Research and Analysis Methods Single Molecule Imaging - methods Software Spectroscopy Spectrum analysis Spring constant Torque Tracking |
title | Tweezepy: A Python package for calibrating forces in single-molecule video-tracking experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tweezepy:%20A%20Python%20package%20for%20calibrating%20forces%20in%20single-molecule%20video-tracking%20experiments&rft.jtitle=PloS%20one&rft.au=Morgan,%20Ian%20L&rft.date=2021-12-31&rft.volume=16&rft.issue=12&rft.spage=e0262028&rft.epage=e0262028&rft.pages=e0262028-e0262028&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0262028&rft_dat=%3Cgale_plos_%3EA688366367%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615610931&rft_id=info:pmid/34972160&rft_galeid=A688366367&rft_doaj_id=oai_doaj_org_article_50ca444d3a9d48d291cd5181a9172cb9&rfr_iscdi=true |