Inferred expression regulator activities suggest genes mediating cardiometabolic genetic signals
Expression QTL (eQTL) analyses have suggested many genes mediating genome-wide association study (GWAS) signals but most GWAS signals still lack compelling explanatory genes. We have leveraged an adipose-specific gene regulatory network to infer expression regulator activities and phenotypic master...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2021-11, Vol.17 (11), p.e1009563-e1009563 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009563 |
---|---|
container_issue | 11 |
container_start_page | e1009563 |
container_title | PLoS computational biology |
container_volume | 17 |
creator | Hoskins, Jason W Chung, Charles C O'Brien, Aidan Zhong, Jun Connelly, Katelyn Collins, Irene Shi, Jianxin Amundadottir, Laufey T |
description | Expression QTL (eQTL) analyses have suggested many genes mediating genome-wide association study (GWAS) signals but most GWAS signals still lack compelling explanatory genes. We have leveraged an adipose-specific gene regulatory network to infer expression regulator activities and phenotypic master regulators (MRs), which were used to detect activity QTLs (aQTLs) at cardiometabolic trait GWAS loci. Regulator activities were inferred with the VIPER algorithm that integrates enrichment of expected expression changes among a regulator's target genes with confidence in their regulator-target network interactions and target overlap between different regulators (i.e., pleiotropy). Phenotypic MRs were identified as those regulators whose activities were most important in predicting their respective phenotypes using random forest modeling. While eQTLs were typically more significant than aQTLs in cis, the opposite was true among candidate MRs in trans. Several GWAS loci colocalized with MR trans-eQTLs/aQTLs in the absence of colocalized cis-QTLs. Intriguingly, at the 1p36.1 BMI GWAS locus the EPHB2 cis-aQTL was stronger than its cis-eQTL and colocalized with the GWAS signal and 35 BMI MR trans-aQTLs, suggesting the GWAS signal may be mediated by effects on EPHB2 activity and its downstream effects on a network of BMI MRs. These MR and aQTL analyses represent systems genetic methods that may be broadly applied to supplement standard eQTL analyses for suggesting molecular effects mediating GWAS signals. |
doi_str_mv | 10.1371/journal.pcbi.1009563 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2610946237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684564141</galeid><doaj_id>oai_doaj_org_article_3cfa69e4504e4ee18a45f811c36157b1</doaj_id><sourcerecordid>A684564141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-6d055e84d59268c9cd6c69c4fef9083b326343f5f62367fe4c4fbcb3ae570c9b3</originalsourceid><addsrcrecordid>eNqVUttu1DAQjRCIXuAPEETiBR52seNL4hekquKyUgUSl2fjOOPgVdZebKcqf1-nm1YN6gvyw9iec87MHE1RvMBojUmN3239GJwa1nvd2jVGSDBOHhXHmDGyqglrHt-7HxUnMW4RylfBnxZHhNaCUFodF782zkAI0JVwtQ8Qo_WuDNCPg0o-lEone2mThVjGse8hprIHl1876KxK1vWlVqGzfgdJtX6w-iafcoy2z-3FZ8UTkwM8n-Np8fPjhx_nn1cXXz9tzs8uVppznFa8Q4xBQzsmKt5ooTuuudDUgBGoIS2pOKHEMMMrwmsDNKda3RIFrEZatOS0eHXQ3Q8-ytmcKCuOkaCZVGfE5oDovNrKfbA7Ff5Kr6y8-fChlyrkzgeQRBvFBVCGKFAA3CjKTIOxJhyzusVZ6_1cbWyzFRpcCmpYiC4zzv6Wvb-UDScC8UngzSwQ_J8x-yp3NmoYBuXAj7lvJgRuCBY8Q1__A314uhnVqzyAdcbnunoSlWe8oYxTTKey6wdQ-XSws9o7MDb_LwhvF4SMSXCVejXGKDffv_0H9ssSSw9YHXyMAcyddxjJab9vh5TTfst5vzPt5X3f70i3C02uAdZS96M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610946237</pqid></control><display><type>article</type><title>Inferred expression regulator activities suggest genes mediating cardiometabolic genetic signals</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Hoskins, Jason W ; Chung, Charles C ; O'Brien, Aidan ; Zhong, Jun ; Connelly, Katelyn ; Collins, Irene ; Shi, Jianxin ; Amundadottir, Laufey T</creator><contributor>Sun, Xiaoqiang</contributor><creatorcontrib>Hoskins, Jason W ; Chung, Charles C ; O'Brien, Aidan ; Zhong, Jun ; Connelly, Katelyn ; Collins, Irene ; Shi, Jianxin ; Amundadottir, Laufey T ; Sun, Xiaoqiang</creatorcontrib><description>Expression QTL (eQTL) analyses have suggested many genes mediating genome-wide association study (GWAS) signals but most GWAS signals still lack compelling explanatory genes. We have leveraged an adipose-specific gene regulatory network to infer expression regulator activities and phenotypic master regulators (MRs), which were used to detect activity QTLs (aQTLs) at cardiometabolic trait GWAS loci. Regulator activities were inferred with the VIPER algorithm that integrates enrichment of expected expression changes among a regulator's target genes with confidence in their regulator-target network interactions and target overlap between different regulators (i.e., pleiotropy). Phenotypic MRs were identified as those regulators whose activities were most important in predicting their respective phenotypes using random forest modeling. While eQTLs were typically more significant than aQTLs in cis, the opposite was true among candidate MRs in trans. Several GWAS loci colocalized with MR trans-eQTLs/aQTLs in the absence of colocalized cis-QTLs. Intriguingly, at the 1p36.1 BMI GWAS locus the EPHB2 cis-aQTL was stronger than its cis-eQTL and colocalized with the GWAS signal and 35 BMI MR trans-aQTLs, suggesting the GWAS signal may be mediated by effects on EPHB2 activity and its downstream effects on a network of BMI MRs. These MR and aQTL analyses represent systems genetic methods that may be broadly applied to supplement standard eQTL analyses for suggesting molecular effects mediating GWAS signals.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009563</identifier><identifier>PMID: 34793442</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Biology and Life Sciences ; Body fat ; Body mass index ; Downstream effects ; Gene expression ; Gene Regulatory Networks ; Genes ; Genetic analysis ; Genome-wide association studies ; Genome-Wide Association Study - methods ; Genomes ; Genotype & phenotype ; Humans ; Identification and classification ; Lipids ; Loci ; Methods ; Myocardium - metabolism ; Phenotype ; Phenotypes ; Pleiotropy ; Polymorphism, Single Nucleotide ; Quantitative Trait Loci ; Receptor, EphB2 - genetics ; Signal transduction ; Subcutaneous Fat - metabolism ; Transcriptome ; Triglycerides</subject><ispartof>PLoS computational biology, 2021-11, Vol.17 (11), p.e1009563-e1009563</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-6d055e84d59268c9cd6c69c4fef9083b326343f5f62367fe4c4fbcb3ae570c9b3</citedby><cites>FETCH-LOGICAL-c661t-6d055e84d59268c9cd6c69c4fef9083b326343f5f62367fe4c4fbcb3ae570c9b3</cites><orcidid>0000-0001-6944-1996 ; 0000-0001-5434-4659 ; 0000-0002-1693-5519 ; 0000-0003-2188-4223 ; 0000-0002-3700-9434 ; 0000-0001-8606-4707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639061/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639061/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34793442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sun, Xiaoqiang</contributor><creatorcontrib>Hoskins, Jason W</creatorcontrib><creatorcontrib>Chung, Charles C</creatorcontrib><creatorcontrib>O'Brien, Aidan</creatorcontrib><creatorcontrib>Zhong, Jun</creatorcontrib><creatorcontrib>Connelly, Katelyn</creatorcontrib><creatorcontrib>Collins, Irene</creatorcontrib><creatorcontrib>Shi, Jianxin</creatorcontrib><creatorcontrib>Amundadottir, Laufey T</creatorcontrib><title>Inferred expression regulator activities suggest genes mediating cardiometabolic genetic signals</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Expression QTL (eQTL) analyses have suggested many genes mediating genome-wide association study (GWAS) signals but most GWAS signals still lack compelling explanatory genes. We have leveraged an adipose-specific gene regulatory network to infer expression regulator activities and phenotypic master regulators (MRs), which were used to detect activity QTLs (aQTLs) at cardiometabolic trait GWAS loci. Regulator activities were inferred with the VIPER algorithm that integrates enrichment of expected expression changes among a regulator's target genes with confidence in their regulator-target network interactions and target overlap between different regulators (i.e., pleiotropy). Phenotypic MRs were identified as those regulators whose activities were most important in predicting their respective phenotypes using random forest modeling. While eQTLs were typically more significant than aQTLs in cis, the opposite was true among candidate MRs in trans. Several GWAS loci colocalized with MR trans-eQTLs/aQTLs in the absence of colocalized cis-QTLs. Intriguingly, at the 1p36.1 BMI GWAS locus the EPHB2 cis-aQTL was stronger than its cis-eQTL and colocalized with the GWAS signal and 35 BMI MR trans-aQTLs, suggesting the GWAS signal may be mediated by effects on EPHB2 activity and its downstream effects on a network of BMI MRs. These MR and aQTL analyses represent systems genetic methods that may be broadly applied to supplement standard eQTL analyses for suggesting molecular effects mediating GWAS signals.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Body fat</subject><subject>Body mass index</subject><subject>Downstream effects</subject><subject>Gene expression</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Genetic analysis</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Genotype & phenotype</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Lipids</subject><subject>Loci</subject><subject>Methods</subject><subject>Myocardium - metabolism</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Pleiotropy</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Quantitative Trait Loci</subject><subject>Receptor, EphB2 - genetics</subject><subject>Signal transduction</subject><subject>Subcutaneous Fat - metabolism</subject><subject>Transcriptome</subject><subject>Triglycerides</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVUttu1DAQjRCIXuAPEETiBR52seNL4hekquKyUgUSl2fjOOPgVdZebKcqf1-nm1YN6gvyw9iec87MHE1RvMBojUmN3239GJwa1nvd2jVGSDBOHhXHmDGyqglrHt-7HxUnMW4RylfBnxZHhNaCUFodF782zkAI0JVwtQ8Qo_WuDNCPg0o-lEone2mThVjGse8hprIHl1876KxK1vWlVqGzfgdJtX6w-iafcoy2z-3FZ8UTkwM8n-Np8fPjhx_nn1cXXz9tzs8uVppznFa8Q4xBQzsmKt5ooTuuudDUgBGoIS2pOKHEMMMrwmsDNKda3RIFrEZatOS0eHXQ3Q8-ytmcKCuOkaCZVGfE5oDovNrKfbA7Ff5Kr6y8-fChlyrkzgeQRBvFBVCGKFAA3CjKTIOxJhyzusVZ6_1cbWyzFRpcCmpYiC4zzv6Wvb-UDScC8UngzSwQ_J8x-yp3NmoYBuXAj7lvJgRuCBY8Q1__A314uhnVqzyAdcbnunoSlWe8oYxTTKey6wdQ-XSws9o7MDb_LwhvF4SMSXCVejXGKDffv_0H9ssSSw9YHXyMAcyddxjJab9vh5TTfst5vzPt5X3f70i3C02uAdZS96M</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Hoskins, Jason W</creator><creator>Chung, Charles C</creator><creator>O'Brien, Aidan</creator><creator>Zhong, Jun</creator><creator>Connelly, Katelyn</creator><creator>Collins, Irene</creator><creator>Shi, Jianxin</creator><creator>Amundadottir, Laufey T</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6944-1996</orcidid><orcidid>https://orcid.org/0000-0001-5434-4659</orcidid><orcidid>https://orcid.org/0000-0002-1693-5519</orcidid><orcidid>https://orcid.org/0000-0003-2188-4223</orcidid><orcidid>https://orcid.org/0000-0002-3700-9434</orcidid><orcidid>https://orcid.org/0000-0001-8606-4707</orcidid></search><sort><creationdate>20211101</creationdate><title>Inferred expression regulator activities suggest genes mediating cardiometabolic genetic signals</title><author>Hoskins, Jason W ; Chung, Charles C ; O'Brien, Aidan ; Zhong, Jun ; Connelly, Katelyn ; Collins, Irene ; Shi, Jianxin ; Amundadottir, Laufey T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-6d055e84d59268c9cd6c69c4fef9083b326343f5f62367fe4c4fbcb3ae570c9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Body fat</topic><topic>Body mass index</topic><topic>Downstream effects</topic><topic>Gene expression</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Genetic analysis</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Genotype & phenotype</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Lipids</topic><topic>Loci</topic><topic>Methods</topic><topic>Myocardium - metabolism</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Pleiotropy</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Quantitative Trait Loci</topic><topic>Receptor, EphB2 - genetics</topic><topic>Signal transduction</topic><topic>Subcutaneous Fat - metabolism</topic><topic>Transcriptome</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoskins, Jason W</creatorcontrib><creatorcontrib>Chung, Charles C</creatorcontrib><creatorcontrib>O'Brien, Aidan</creatorcontrib><creatorcontrib>Zhong, Jun</creatorcontrib><creatorcontrib>Connelly, Katelyn</creatorcontrib><creatorcontrib>Collins, Irene</creatorcontrib><creatorcontrib>Shi, Jianxin</creatorcontrib><creatorcontrib>Amundadottir, Laufey T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoskins, Jason W</au><au>Chung, Charles C</au><au>O'Brien, Aidan</au><au>Zhong, Jun</au><au>Connelly, Katelyn</au><au>Collins, Irene</au><au>Shi, Jianxin</au><au>Amundadottir, Laufey T</au><au>Sun, Xiaoqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferred expression regulator activities suggest genes mediating cardiometabolic genetic signals</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>17</volume><issue>11</issue><spage>e1009563</spage><epage>e1009563</epage><pages>e1009563-e1009563</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Expression QTL (eQTL) analyses have suggested many genes mediating genome-wide association study (GWAS) signals but most GWAS signals still lack compelling explanatory genes. We have leveraged an adipose-specific gene regulatory network to infer expression regulator activities and phenotypic master regulators (MRs), which were used to detect activity QTLs (aQTLs) at cardiometabolic trait GWAS loci. Regulator activities were inferred with the VIPER algorithm that integrates enrichment of expected expression changes among a regulator's target genes with confidence in their regulator-target network interactions and target overlap between different regulators (i.e., pleiotropy). Phenotypic MRs were identified as those regulators whose activities were most important in predicting their respective phenotypes using random forest modeling. While eQTLs were typically more significant than aQTLs in cis, the opposite was true among candidate MRs in trans. Several GWAS loci colocalized with MR trans-eQTLs/aQTLs in the absence of colocalized cis-QTLs. Intriguingly, at the 1p36.1 BMI GWAS locus the EPHB2 cis-aQTL was stronger than its cis-eQTL and colocalized with the GWAS signal and 35 BMI MR trans-aQTLs, suggesting the GWAS signal may be mediated by effects on EPHB2 activity and its downstream effects on a network of BMI MRs. These MR and aQTL analyses represent systems genetic methods that may be broadly applied to supplement standard eQTL analyses for suggesting molecular effects mediating GWAS signals.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34793442</pmid><doi>10.1371/journal.pcbi.1009563</doi><orcidid>https://orcid.org/0000-0001-6944-1996</orcidid><orcidid>https://orcid.org/0000-0001-5434-4659</orcidid><orcidid>https://orcid.org/0000-0002-1693-5519</orcidid><orcidid>https://orcid.org/0000-0003-2188-4223</orcidid><orcidid>https://orcid.org/0000-0002-3700-9434</orcidid><orcidid>https://orcid.org/0000-0001-8606-4707</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2021-11, Vol.17 (11), p.e1009563-e1009563 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2610946237 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algorithms Analysis Biology and Life Sciences Body fat Body mass index Downstream effects Gene expression Gene Regulatory Networks Genes Genetic analysis Genome-wide association studies Genome-Wide Association Study - methods Genomes Genotype & phenotype Humans Identification and classification Lipids Loci Methods Myocardium - metabolism Phenotype Phenotypes Pleiotropy Polymorphism, Single Nucleotide Quantitative Trait Loci Receptor, EphB2 - genetics Signal transduction Subcutaneous Fat - metabolism Transcriptome Triglycerides |
title | Inferred expression regulator activities suggest genes mediating cardiometabolic genetic signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferred%20expression%20regulator%20activities%20suggest%20genes%20mediating%20cardiometabolic%20genetic%20signals&rft.jtitle=PLoS%20computational%20biology&rft.au=Hoskins,%20Jason%20W&rft.date=2021-11-01&rft.volume=17&rft.issue=11&rft.spage=e1009563&rft.epage=e1009563&rft.pages=e1009563-e1009563&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009563&rft_dat=%3Cgale_plos_%3EA684564141%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610946237&rft_id=info:pmid/34793442&rft_galeid=A684564141&rft_doaj_id=oai_doaj_org_article_3cfa69e4504e4ee18a45f811c36157b1&rfr_iscdi=true |