linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser
In biology, we are often confronted with information-rich, large-scale trajectory data, but exploring and communicating patterns in such data can be a cumbersome task. Ideally, the data should be wrapped with an interactive visualisation in one concise packet that makes it straightforward to create...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2021-11, Vol.17 (11), p.e1009503-e1009503 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009503 |
---|---|
container_issue | 11 |
container_start_page | e1009503 |
container_title | PLoS computational biology |
container_volume | 17 |
creator | Waschke, Johannes Hlawitschka, Mario Anlas, Kerim Trivedi, Vikas Roeder, Ingo Huisken, Jan Scherf, Nico |
description | In biology, we are often confronted with information-rich, large-scale trajectory data, but exploring and communicating patterns in such data can be a cumbersome task. Ideally, the data should be wrapped with an interactive visualisation in one concise packet that makes it straightforward to create and test hypotheses collaboratively. To address these challenges, we have developed a tool, linus, which makes the process of exploring and sharing 3D trajectories as easy as browsing a website. We provide a python script that reads trajectory data, enriches them with additional features such as edge bundling or custom axes, and generates an interactive web-based visualisation that can be shared online. linus facilitates the collaborative discovery of patterns in complex trajectory data. |
doi_str_mv | 10.1371/journal.pcbi.1009503 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2610946129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684564204</galeid><doaj_id>oai_doaj_org_article_b5a0ed5bb1d9464189b5206b3878d55f</doaj_id><sourcerecordid>A684564204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-adcde7506d1abe0dda68556e7754c0a5ccb76734bb172f3c270ad432b598f4b23</originalsourceid><addsrcrecordid>eNqVUttuEzEQXSEQLYU_QGCJF5BIsNe3XR6QqohLpQokLs-WL7NbR846tXfb5u9xSFo1iBfkhxnNnHPm4qmq5wTPCZXk3TJOadBhvrbGzwnGLcf0QXVMOKczSXnz8J5_VD3JeYlxcVvxuDqiTNa05c1x1Qc_TPk9WsThCgYPwxg2CG7WISZ4i_KF3ho9OLROkEsWBZ16mGWrAyDjY4i9Lz4ak16CHWPaIKdHjfyANLoGg0yK1xnS0-pRp0OGZ3t7Uv369PHn4svs_Nvns8Xp-cwKSseZdtaB5Fg4og1g57RoOBcgJWcWa26tkUJSZgyRdUdtLbF2jNaGt03HTE1Pqpc73TJBVvsdZVULglsmSN0WxNkO4aJeqnXyK502Kmqv_gRi6pVOo7cBlOEag-OlmCtkRprW8BoLQxvZOM67ovVhX20yK3C2LCjpcCB6mBn8herjlWp4wySXReD1XiDFywnyqFY-WwhBDxCn0jdva0oEY9vJXv0F_fd08x2qLx-k_NDFUteW52DlbRyg8yV-KhrGBasxK4Q3B4SCGeFm7PWUszr78f0_sF8PsWyHtSnmnKC72wrBanvAt-2r7QGr_QEX2ov7G70j3V4s_Q1Qfe1j</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610946129</pqid></control><display><type>article</type><title>linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Waschke, Johannes ; Hlawitschka, Mario ; Anlas, Kerim ; Trivedi, Vikas ; Roeder, Ingo ; Huisken, Jan ; Scherf, Nico</creator><contributor>Marz, Manja</contributor><creatorcontrib>Waschke, Johannes ; Hlawitschka, Mario ; Anlas, Kerim ; Trivedi, Vikas ; Roeder, Ingo ; Huisken, Jan ; Scherf, Nico ; Marz, Manja</creatorcontrib><description>In biology, we are often confronted with information-rich, large-scale trajectory data, but exploring and communicating patterns in such data can be a cumbersome task. Ideally, the data should be wrapped with an interactive visualisation in one concise packet that makes it straightforward to create and test hypotheses collaboratively. To address these challenges, we have developed a tool, linus, which makes the process of exploring and sharing 3D trajectories as easy as browsing a website. We provide a python script that reads trajectory data, enriches them with additional features such as edge bundling or custom axes, and generates an interactive web-based visualisation that can be shared online. linus facilitates the collaborative discovery of patterns in complex trajectory data.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009503</identifier><identifier>PMID: 34723958</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; Biology and Life Sciences ; Browsing ; Communication ; Computational Biology - methods ; Computer and Information Sciences ; Datasets ; Engineering and Technology ; Information Dissemination - methods ; Internet ; JavaScript ; Medical imaging ; Microscopy ; Programming Languages ; Research and Analysis Methods ; Social Sciences ; Software ; User interface ; User-Computer Interface ; Visualization ; Web browsers ; Websites</subject><ispartof>PLoS computational biology, 2021-11, Vol.17 (11), p.e1009503-e1009503</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Waschke et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Waschke et al 2021 Waschke et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-adcde7506d1abe0dda68556e7754c0a5ccb76734bb172f3c270ad432b598f4b23</citedby><cites>FETCH-LOGICAL-c633t-adcde7506d1abe0dda68556e7754c0a5ccb76734bb172f3c270ad432b598f4b23</cites><orcidid>0000-0003-2364-0986 ; 0000-0002-9272-8626 ; 0000-0003-0953-0553 ; 0000-0003-4003-9121 ; 0000-0001-7250-3756 ; 0000-0002-6741-0608 ; 0000-0002-2334-3511</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584757/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584757/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2101,2927,23865,27923,27924,53790,53792,79471,79472</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34723958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Marz, Manja</contributor><creatorcontrib>Waschke, Johannes</creatorcontrib><creatorcontrib>Hlawitschka, Mario</creatorcontrib><creatorcontrib>Anlas, Kerim</creatorcontrib><creatorcontrib>Trivedi, Vikas</creatorcontrib><creatorcontrib>Roeder, Ingo</creatorcontrib><creatorcontrib>Huisken, Jan</creatorcontrib><creatorcontrib>Scherf, Nico</creatorcontrib><title>linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>In biology, we are often confronted with information-rich, large-scale trajectory data, but exploring and communicating patterns in such data can be a cumbersome task. Ideally, the data should be wrapped with an interactive visualisation in one concise packet that makes it straightforward to create and test hypotheses collaboratively. To address these challenges, we have developed a tool, linus, which makes the process of exploring and sharing 3D trajectories as easy as browsing a website. We provide a python script that reads trajectory data, enriches them with additional features such as edge bundling or custom axes, and generates an interactive web-based visualisation that can be shared online. linus facilitates the collaborative discovery of patterns in complex trajectory data.</description><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Browsing</subject><subject>Communication</subject><subject>Computational Biology - methods</subject><subject>Computer and Information Sciences</subject><subject>Datasets</subject><subject>Engineering and Technology</subject><subject>Information Dissemination - methods</subject><subject>Internet</subject><subject>JavaScript</subject><subject>Medical imaging</subject><subject>Microscopy</subject><subject>Programming Languages</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Software</subject><subject>User interface</subject><subject>User-Computer Interface</subject><subject>Visualization</subject><subject>Web browsers</subject><subject>Websites</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVUttuEzEQXSEQLYU_QGCJF5BIsNe3XR6QqohLpQokLs-WL7NbR846tXfb5u9xSFo1iBfkhxnNnHPm4qmq5wTPCZXk3TJOadBhvrbGzwnGLcf0QXVMOKczSXnz8J5_VD3JeYlxcVvxuDqiTNa05c1x1Qc_TPk9WsThCgYPwxg2CG7WISZ4i_KF3ho9OLROkEsWBZ16mGWrAyDjY4i9Lz4ak16CHWPaIKdHjfyANLoGg0yK1xnS0-pRp0OGZ3t7Uv369PHn4svs_Nvns8Xp-cwKSseZdtaB5Fg4og1g57RoOBcgJWcWa26tkUJSZgyRdUdtLbF2jNaGt03HTE1Pqpc73TJBVvsdZVULglsmSN0WxNkO4aJeqnXyK502Kmqv_gRi6pVOo7cBlOEag-OlmCtkRprW8BoLQxvZOM67ovVhX20yK3C2LCjpcCB6mBn8herjlWp4wySXReD1XiDFywnyqFY-WwhBDxCn0jdva0oEY9vJXv0F_fd08x2qLx-k_NDFUteW52DlbRyg8yV-KhrGBasxK4Q3B4SCGeFm7PWUszr78f0_sF8PsWyHtSnmnKC72wrBanvAt-2r7QGr_QEX2ov7G70j3V4s_Q1Qfe1j</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Waschke, Johannes</creator><creator>Hlawitschka, Mario</creator><creator>Anlas, Kerim</creator><creator>Trivedi, Vikas</creator><creator>Roeder, Ingo</creator><creator>Huisken, Jan</creator><creator>Scherf, Nico</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2364-0986</orcidid><orcidid>https://orcid.org/0000-0002-9272-8626</orcidid><orcidid>https://orcid.org/0000-0003-0953-0553</orcidid><orcidid>https://orcid.org/0000-0003-4003-9121</orcidid><orcidid>https://orcid.org/0000-0001-7250-3756</orcidid><orcidid>https://orcid.org/0000-0002-6741-0608</orcidid><orcidid>https://orcid.org/0000-0002-2334-3511</orcidid></search><sort><creationdate>202111</creationdate><title>linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser</title><author>Waschke, Johannes ; Hlawitschka, Mario ; Anlas, Kerim ; Trivedi, Vikas ; Roeder, Ingo ; Huisken, Jan ; Scherf, Nico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-adcde7506d1abe0dda68556e7754c0a5ccb76734bb172f3c270ad432b598f4b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Browsing</topic><topic>Communication</topic><topic>Computational Biology - methods</topic><topic>Computer and Information Sciences</topic><topic>Datasets</topic><topic>Engineering and Technology</topic><topic>Information Dissemination - methods</topic><topic>Internet</topic><topic>JavaScript</topic><topic>Medical imaging</topic><topic>Microscopy</topic><topic>Programming Languages</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Software</topic><topic>User interface</topic><topic>User-Computer Interface</topic><topic>Visualization</topic><topic>Web browsers</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waschke, Johannes</creatorcontrib><creatorcontrib>Hlawitschka, Mario</creatorcontrib><creatorcontrib>Anlas, Kerim</creatorcontrib><creatorcontrib>Trivedi, Vikas</creatorcontrib><creatorcontrib>Roeder, Ingo</creatorcontrib><creatorcontrib>Huisken, Jan</creatorcontrib><creatorcontrib>Scherf, Nico</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waschke, Johannes</au><au>Hlawitschka, Mario</au><au>Anlas, Kerim</au><au>Trivedi, Vikas</au><au>Roeder, Ingo</au><au>Huisken, Jan</au><au>Scherf, Nico</au><au>Marz, Manja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-11</date><risdate>2021</risdate><volume>17</volume><issue>11</issue><spage>e1009503</spage><epage>e1009503</epage><pages>e1009503-e1009503</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>In biology, we are often confronted with information-rich, large-scale trajectory data, but exploring and communicating patterns in such data can be a cumbersome task. Ideally, the data should be wrapped with an interactive visualisation in one concise packet that makes it straightforward to create and test hypotheses collaboratively. To address these challenges, we have developed a tool, linus, which makes the process of exploring and sharing 3D trajectories as easy as browsing a website. We provide a python script that reads trajectory data, enriches them with additional features such as edge bundling or custom axes, and generates an interactive web-based visualisation that can be shared online. linus facilitates the collaborative discovery of patterns in complex trajectory data.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34723958</pmid><doi>10.1371/journal.pcbi.1009503</doi><orcidid>https://orcid.org/0000-0003-2364-0986</orcidid><orcidid>https://orcid.org/0000-0002-9272-8626</orcidid><orcidid>https://orcid.org/0000-0003-0953-0553</orcidid><orcidid>https://orcid.org/0000-0003-4003-9121</orcidid><orcidid>https://orcid.org/0000-0001-7250-3756</orcidid><orcidid>https://orcid.org/0000-0002-6741-0608</orcidid><orcidid>https://orcid.org/0000-0002-2334-3511</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2021-11, Vol.17 (11), p.e1009503-e1009503 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2610946129 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Biology Biology and Life Sciences Browsing Communication Computational Biology - methods Computer and Information Sciences Datasets Engineering and Technology Information Dissemination - methods Internet JavaScript Medical imaging Microscopy Programming Languages Research and Analysis Methods Social Sciences Software User interface User-Computer Interface Visualization Web browsers Websites |
title | linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A23%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=linus:%20Conveniently%20explore,%20share,%20and%20present%20large-scale%20biological%20trajectory%20data%20in%20a%20web%20browser&rft.jtitle=PLoS%20computational%20biology&rft.au=Waschke,%20Johannes&rft.date=2021-11&rft.volume=17&rft.issue=11&rft.spage=e1009503&rft.epage=e1009503&rft.pages=e1009503-e1009503&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009503&rft_dat=%3Cgale_plos_%3EA684564204%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610946129&rft_id=info:pmid/34723958&rft_galeid=A684564204&rft_doaj_id=oai_doaj_org_article_b5a0ed5bb1d9464189b5206b3878d55f&rfr_iscdi=true |