linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser

In biology, we are often confronted with information-rich, large-scale trajectory data, but exploring and communicating patterns in such data can be a cumbersome task. Ideally, the data should be wrapped with an interactive visualisation in one concise packet that makes it straightforward to create...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2021-11, Vol.17 (11), p.e1009503-e1009503
Hauptverfasser: Waschke, Johannes, Hlawitschka, Mario, Anlas, Kerim, Trivedi, Vikas, Roeder, Ingo, Huisken, Jan, Scherf, Nico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1009503
container_issue 11
container_start_page e1009503
container_title PLoS computational biology
container_volume 17
creator Waschke, Johannes
Hlawitschka, Mario
Anlas, Kerim
Trivedi, Vikas
Roeder, Ingo
Huisken, Jan
Scherf, Nico
description In biology, we are often confronted with information-rich, large-scale trajectory data, but exploring and communicating patterns in such data can be a cumbersome task. Ideally, the data should be wrapped with an interactive visualisation in one concise packet that makes it straightforward to create and test hypotheses collaboratively. To address these challenges, we have developed a tool, linus, which makes the process of exploring and sharing 3D trajectories as easy as browsing a website. We provide a python script that reads trajectory data, enriches them with additional features such as edge bundling or custom axes, and generates an interactive web-based visualisation that can be shared online. linus facilitates the collaborative discovery of patterns in complex trajectory data.
doi_str_mv 10.1371/journal.pcbi.1009503
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2610946129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684564204</galeid><doaj_id>oai_doaj_org_article_b5a0ed5bb1d9464189b5206b3878d55f</doaj_id><sourcerecordid>A684564204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-adcde7506d1abe0dda68556e7754c0a5ccb76734bb172f3c270ad432b598f4b23</originalsourceid><addsrcrecordid>eNqVUttuEzEQXSEQLYU_QGCJF5BIsNe3XR6QqohLpQokLs-WL7NbR846tXfb5u9xSFo1iBfkhxnNnHPm4qmq5wTPCZXk3TJOadBhvrbGzwnGLcf0QXVMOKczSXnz8J5_VD3JeYlxcVvxuDqiTNa05c1x1Qc_TPk9WsThCgYPwxg2CG7WISZ4i_KF3ho9OLROkEsWBZ16mGWrAyDjY4i9Lz4ak16CHWPaIKdHjfyANLoGg0yK1xnS0-pRp0OGZ3t7Uv369PHn4svs_Nvns8Xp-cwKSseZdtaB5Fg4og1g57RoOBcgJWcWa26tkUJSZgyRdUdtLbF2jNaGt03HTE1Pqpc73TJBVvsdZVULglsmSN0WxNkO4aJeqnXyK502Kmqv_gRi6pVOo7cBlOEag-OlmCtkRprW8BoLQxvZOM67ovVhX20yK3C2LCjpcCB6mBn8herjlWp4wySXReD1XiDFywnyqFY-WwhBDxCn0jdva0oEY9vJXv0F_fd08x2qLx-k_NDFUteW52DlbRyg8yV-KhrGBasxK4Q3B4SCGeFm7PWUszr78f0_sF8PsWyHtSnmnKC72wrBanvAt-2r7QGr_QEX2ov7G70j3V4s_Q1Qfe1j</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610946129</pqid></control><display><type>article</type><title>linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Waschke, Johannes ; Hlawitschka, Mario ; Anlas, Kerim ; Trivedi, Vikas ; Roeder, Ingo ; Huisken, Jan ; Scherf, Nico</creator><contributor>Marz, Manja</contributor><creatorcontrib>Waschke, Johannes ; Hlawitschka, Mario ; Anlas, Kerim ; Trivedi, Vikas ; Roeder, Ingo ; Huisken, Jan ; Scherf, Nico ; Marz, Manja</creatorcontrib><description>In biology, we are often confronted with information-rich, large-scale trajectory data, but exploring and communicating patterns in such data can be a cumbersome task. Ideally, the data should be wrapped with an interactive visualisation in one concise packet that makes it straightforward to create and test hypotheses collaboratively. To address these challenges, we have developed a tool, linus, which makes the process of exploring and sharing 3D trajectories as easy as browsing a website. We provide a python script that reads trajectory data, enriches them with additional features such as edge bundling or custom axes, and generates an interactive web-based visualisation that can be shared online. linus facilitates the collaborative discovery of patterns in complex trajectory data.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009503</identifier><identifier>PMID: 34723958</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; Biology and Life Sciences ; Browsing ; Communication ; Computational Biology - methods ; Computer and Information Sciences ; Datasets ; Engineering and Technology ; Information Dissemination - methods ; Internet ; JavaScript ; Medical imaging ; Microscopy ; Programming Languages ; Research and Analysis Methods ; Social Sciences ; Software ; User interface ; User-Computer Interface ; Visualization ; Web browsers ; Websites</subject><ispartof>PLoS computational biology, 2021-11, Vol.17 (11), p.e1009503-e1009503</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Waschke et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Waschke et al 2021 Waschke et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-adcde7506d1abe0dda68556e7754c0a5ccb76734bb172f3c270ad432b598f4b23</citedby><cites>FETCH-LOGICAL-c633t-adcde7506d1abe0dda68556e7754c0a5ccb76734bb172f3c270ad432b598f4b23</cites><orcidid>0000-0003-2364-0986 ; 0000-0002-9272-8626 ; 0000-0003-0953-0553 ; 0000-0003-4003-9121 ; 0000-0001-7250-3756 ; 0000-0002-6741-0608 ; 0000-0002-2334-3511</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584757/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584757/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2101,2927,23865,27923,27924,53790,53792,79471,79472</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34723958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Marz, Manja</contributor><creatorcontrib>Waschke, Johannes</creatorcontrib><creatorcontrib>Hlawitschka, Mario</creatorcontrib><creatorcontrib>Anlas, Kerim</creatorcontrib><creatorcontrib>Trivedi, Vikas</creatorcontrib><creatorcontrib>Roeder, Ingo</creatorcontrib><creatorcontrib>Huisken, Jan</creatorcontrib><creatorcontrib>Scherf, Nico</creatorcontrib><title>linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>In biology, we are often confronted with information-rich, large-scale trajectory data, but exploring and communicating patterns in such data can be a cumbersome task. Ideally, the data should be wrapped with an interactive visualisation in one concise packet that makes it straightforward to create and test hypotheses collaboratively. To address these challenges, we have developed a tool, linus, which makes the process of exploring and sharing 3D trajectories as easy as browsing a website. We provide a python script that reads trajectory data, enriches them with additional features such as edge bundling or custom axes, and generates an interactive web-based visualisation that can be shared online. linus facilitates the collaborative discovery of patterns in complex trajectory data.</description><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Browsing</subject><subject>Communication</subject><subject>Computational Biology - methods</subject><subject>Computer and Information Sciences</subject><subject>Datasets</subject><subject>Engineering and Technology</subject><subject>Information Dissemination - methods</subject><subject>Internet</subject><subject>JavaScript</subject><subject>Medical imaging</subject><subject>Microscopy</subject><subject>Programming Languages</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Software</subject><subject>User interface</subject><subject>User-Computer Interface</subject><subject>Visualization</subject><subject>Web browsers</subject><subject>Websites</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVUttuEzEQXSEQLYU_QGCJF5BIsNe3XR6QqohLpQokLs-WL7NbR846tXfb5u9xSFo1iBfkhxnNnHPm4qmq5wTPCZXk3TJOadBhvrbGzwnGLcf0QXVMOKczSXnz8J5_VD3JeYlxcVvxuDqiTNa05c1x1Qc_TPk9WsThCgYPwxg2CG7WISZ4i_KF3ho9OLROkEsWBZ16mGWrAyDjY4i9Lz4ak16CHWPaIKdHjfyANLoGg0yK1xnS0-pRp0OGZ3t7Uv369PHn4svs_Nvns8Xp-cwKSseZdtaB5Fg4og1g57RoOBcgJWcWa26tkUJSZgyRdUdtLbF2jNaGt03HTE1Pqpc73TJBVvsdZVULglsmSN0WxNkO4aJeqnXyK502Kmqv_gRi6pVOo7cBlOEag-OlmCtkRprW8BoLQxvZOM67ovVhX20yK3C2LCjpcCB6mBn8herjlWp4wySXReD1XiDFywnyqFY-WwhBDxCn0jdva0oEY9vJXv0F_fd08x2qLx-k_NDFUteW52DlbRyg8yV-KhrGBasxK4Q3B4SCGeFm7PWUszr78f0_sF8PsWyHtSnmnKC72wrBanvAt-2r7QGr_QEX2ov7G70j3V4s_Q1Qfe1j</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Waschke, Johannes</creator><creator>Hlawitschka, Mario</creator><creator>Anlas, Kerim</creator><creator>Trivedi, Vikas</creator><creator>Roeder, Ingo</creator><creator>Huisken, Jan</creator><creator>Scherf, Nico</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2364-0986</orcidid><orcidid>https://orcid.org/0000-0002-9272-8626</orcidid><orcidid>https://orcid.org/0000-0003-0953-0553</orcidid><orcidid>https://orcid.org/0000-0003-4003-9121</orcidid><orcidid>https://orcid.org/0000-0001-7250-3756</orcidid><orcidid>https://orcid.org/0000-0002-6741-0608</orcidid><orcidid>https://orcid.org/0000-0002-2334-3511</orcidid></search><sort><creationdate>202111</creationdate><title>linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser</title><author>Waschke, Johannes ; Hlawitschka, Mario ; Anlas, Kerim ; Trivedi, Vikas ; Roeder, Ingo ; Huisken, Jan ; Scherf, Nico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-adcde7506d1abe0dda68556e7754c0a5ccb76734bb172f3c270ad432b598f4b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Browsing</topic><topic>Communication</topic><topic>Computational Biology - methods</topic><topic>Computer and Information Sciences</topic><topic>Datasets</topic><topic>Engineering and Technology</topic><topic>Information Dissemination - methods</topic><topic>Internet</topic><topic>JavaScript</topic><topic>Medical imaging</topic><topic>Microscopy</topic><topic>Programming Languages</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Software</topic><topic>User interface</topic><topic>User-Computer Interface</topic><topic>Visualization</topic><topic>Web browsers</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waschke, Johannes</creatorcontrib><creatorcontrib>Hlawitschka, Mario</creatorcontrib><creatorcontrib>Anlas, Kerim</creatorcontrib><creatorcontrib>Trivedi, Vikas</creatorcontrib><creatorcontrib>Roeder, Ingo</creatorcontrib><creatorcontrib>Huisken, Jan</creatorcontrib><creatorcontrib>Scherf, Nico</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waschke, Johannes</au><au>Hlawitschka, Mario</au><au>Anlas, Kerim</au><au>Trivedi, Vikas</au><au>Roeder, Ingo</au><au>Huisken, Jan</au><au>Scherf, Nico</au><au>Marz, Manja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-11</date><risdate>2021</risdate><volume>17</volume><issue>11</issue><spage>e1009503</spage><epage>e1009503</epage><pages>e1009503-e1009503</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>In biology, we are often confronted with information-rich, large-scale trajectory data, but exploring and communicating patterns in such data can be a cumbersome task. Ideally, the data should be wrapped with an interactive visualisation in one concise packet that makes it straightforward to create and test hypotheses collaboratively. To address these challenges, we have developed a tool, linus, which makes the process of exploring and sharing 3D trajectories as easy as browsing a website. We provide a python script that reads trajectory data, enriches them with additional features such as edge bundling or custom axes, and generates an interactive web-based visualisation that can be shared online. linus facilitates the collaborative discovery of patterns in complex trajectory data.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34723958</pmid><doi>10.1371/journal.pcbi.1009503</doi><orcidid>https://orcid.org/0000-0003-2364-0986</orcidid><orcidid>https://orcid.org/0000-0002-9272-8626</orcidid><orcidid>https://orcid.org/0000-0003-0953-0553</orcidid><orcidid>https://orcid.org/0000-0003-4003-9121</orcidid><orcidid>https://orcid.org/0000-0001-7250-3756</orcidid><orcidid>https://orcid.org/0000-0002-6741-0608</orcidid><orcidid>https://orcid.org/0000-0002-2334-3511</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2021-11, Vol.17 (11), p.e1009503-e1009503
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2610946129
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Biology
Biology and Life Sciences
Browsing
Communication
Computational Biology - methods
Computer and Information Sciences
Datasets
Engineering and Technology
Information Dissemination - methods
Internet
JavaScript
Medical imaging
Microscopy
Programming Languages
Research and Analysis Methods
Social Sciences
Software
User interface
User-Computer Interface
Visualization
Web browsers
Websites
title linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A23%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=linus:%20Conveniently%20explore,%20share,%20and%20present%20large-scale%20biological%20trajectory%20data%20in%20a%20web%20browser&rft.jtitle=PLoS%20computational%20biology&rft.au=Waschke,%20Johannes&rft.date=2021-11&rft.volume=17&rft.issue=11&rft.spage=e1009503&rft.epage=e1009503&rft.pages=e1009503-e1009503&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009503&rft_dat=%3Cgale_plos_%3EA684564204%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610946129&rft_id=info:pmid/34723958&rft_galeid=A684564204&rft_doaj_id=oai_doaj_org_article_b5a0ed5bb1d9464189b5206b3878d55f&rfr_iscdi=true