Comparison of metabolic states using genome-scale metabolic models

Genome-scale metabolic models (GEMs) are comprehensive knowledge bases of cellular metabolism and serve as mathematical tools for studying biological phenotypes and metabolic states or conditions in various organisms and cell types. Given the sheer size and complexity of human metabolism, selecting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2021-11, Vol.17 (11), p.e1009522-e1009522
Hauptverfasser: Sarathy, Chaitra, Breuer, Marian, Kutmon, Martina, Adriaens, Michiel E, Evelo, Chris T, Arts, Ilja C W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1009522
container_issue 11
container_start_page e1009522
container_title PLoS computational biology
container_volume 17
creator Sarathy, Chaitra
Breuer, Marian
Kutmon, Martina
Adriaens, Michiel E
Evelo, Chris T
Arts, Ilja C W
description Genome-scale metabolic models (GEMs) are comprehensive knowledge bases of cellular metabolism and serve as mathematical tools for studying biological phenotypes and metabolic states or conditions in various organisms and cell types. Given the sheer size and complexity of human metabolism, selecting parameters for existing analysis methods such as metabolic objective functions and model constraints is not straightforward in human GEMs. In particular, comparing several conditions in large GEMs to identify condition- or disease-specific metabolic features is challenging. In this study, we showcase a scalable, model-driven approach for an in-depth investigation and comparison of metabolic states in large GEMs which enables identifying the underlying functional differences. Using a combination of flux space sampling and network analysis, our approach enables extraction and visualisation of metabolically distinct network modules. Importantly, it does not rely on known or assumed objective functions. We apply this novel approach to extract the biochemical differences in adipocytes arising due to unlimited vs blocked uptake of branched-chain amino acids (BCAAs, considered as biomarkers in obesity) using a human adipocyte GEM (iAdipocytes1809). The biological significance of our approach is corroborated by literature reports confirming our identified metabolic processes (TCA cycle and Fatty acid metabolism) to be functionally related to BCAA metabolism. Additionally, our analysis predicts a specific altered uptake and secretion profile indicating a compensation for the unavailability of BCAAs. Taken together, our approach facilitates determining functional differences between any metabolic conditions of interest by offering a versatile platform for analysing and comparing flux spaces of large metabolic networks.
doi_str_mv 10.1371/journal.pcbi.1009522
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2610946092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684564171</galeid><doaj_id>oai_doaj_org_article_a7c451aa0d954083a97ba7020341a4e8</doaj_id><sourcerecordid>A684564171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-d86e8b3c892190eaf6661758420f7abda58f13baf0e4b1ed383b17deca1113f83</originalsourceid><addsrcrecordid>eNqVkktv1DAQxyMEoqXwDRCsxAUOWTzxI84Fqax4rFSBxONsTZxJ8CqJt3GC4NvjZdNqg3pBPng0_s1_PI8keQpsDTyH1zs_DT22670t3RoYK2SW3UvOQUqe5lzq-yf2WfIohB1j0SzUw-SMi1xoyeV58nbjuz0OLvh-5etVRyOWvnV2FUYcKaym4Ppm1VDvO0qDxZZOmM5X1IbHyYMa20BP5vsi-f7-3bfNx_Tq84ft5vIqtUrBmFZakS651UUGBSOsVXTnUouM1TmWFUpdAy-xZiRKoIprXkJekUUA4LXmF8nzo-6-9cHM5QeTKWCFUKzIIrE9EpXHndkPrsPht_HozF-HHxqDw-hsSwZzKyQgsqqQgmmORV5izjLGBaCgQ7Y3c7ap7Kiy1I8DtgvR5UvvfpjG_zRaMVCgosDLWWDw1xOF0XQuWGpb7MlP8d-ykFKKOLmIvvgHvbu6mWriFIzrax_z2oOouVRaSCUgh0it76Diqahz1vdUu-hfBLxaBERmpF9jg1MIZvv1y3-wn5asOLJ28CEMVN_2Dpg5bPBNkeawwWbe4Bj27LTvt0E3K8v_AHs26v0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610946092</pqid></control><display><type>article</type><title>Comparison of metabolic states using genome-scale metabolic models</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sarathy, Chaitra ; Breuer, Marian ; Kutmon, Martina ; Adriaens, Michiel E ; Evelo, Chris T ; Arts, Ilja C W</creator><contributor>Papp, Balazs</contributor><creatorcontrib>Sarathy, Chaitra ; Breuer, Marian ; Kutmon, Martina ; Adriaens, Michiel E ; Evelo, Chris T ; Arts, Ilja C W ; Papp, Balazs</creatorcontrib><description>Genome-scale metabolic models (GEMs) are comprehensive knowledge bases of cellular metabolism and serve as mathematical tools for studying biological phenotypes and metabolic states or conditions in various organisms and cell types. Given the sheer size and complexity of human metabolism, selecting parameters for existing analysis methods such as metabolic objective functions and model constraints is not straightforward in human GEMs. In particular, comparing several conditions in large GEMs to identify condition- or disease-specific metabolic features is challenging. In this study, we showcase a scalable, model-driven approach for an in-depth investigation and comparison of metabolic states in large GEMs which enables identifying the underlying functional differences. Using a combination of flux space sampling and network analysis, our approach enables extraction and visualisation of metabolically distinct network modules. Importantly, it does not rely on known or assumed objective functions. We apply this novel approach to extract the biochemical differences in adipocytes arising due to unlimited vs blocked uptake of branched-chain amino acids (BCAAs, considered as biomarkers in obesity) using a human adipocyte GEM (iAdipocytes1809). The biological significance of our approach is corroborated by literature reports confirming our identified metabolic processes (TCA cycle and Fatty acid metabolism) to be functionally related to BCAA metabolism. Additionally, our analysis predicts a specific altered uptake and secretion profile indicating a compensation for the unavailability of BCAAs. Taken together, our approach facilitates determining functional differences between any metabolic conditions of interest by offering a versatile platform for analysing and comparing flux spaces of large metabolic networks.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009522</identifier><identifier>PMID: 34748535</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adipocytes ; Adipocytes - metabolism ; Algorithms ; Amino acids ; Amino Acids, Branched-Chain - metabolism ; Analysis ; Approximation ; Biology and Life Sciences ; Biomarkers ; Cell metabolism ; Chain branching ; Citric Acid Cycle ; Computational Biology ; Computer and Information Sciences ; Computer Simulation ; Constraint modelling ; Decomposition ; Diabetes ; Fatty acids ; Fatty Acids - metabolism ; Genome, Human ; Genomes ; Genomics ; Humans ; Knowledge bases (artificial intelligence) ; Mathematical models ; Medicine and Health Sciences ; Metabolic Diseases - genetics ; Metabolic Diseases - metabolism ; Metabolic flux ; Metabolic Flux Analysis - statistics &amp; numerical data ; Metabolic networks ; Metabolic Networks and Pathways - genetics ; Metabolism ; Metabolites ; Methods ; Models, Biological ; Models, Genetic ; Network analysis ; Obesity ; Obesity - genetics ; Obesity - metabolism ; Phenotypes ; Physiology ; Principal Component Analysis ; Principal components analysis ; Probability distribution ; Tricarboxylic acid cycle</subject><ispartof>PLoS computational biology, 2021-11, Vol.17 (11), p.e1009522-e1009522</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Sarathy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Sarathy et al 2021 Sarathy et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-d86e8b3c892190eaf6661758420f7abda58f13baf0e4b1ed383b17deca1113f83</citedby><cites>FETCH-LOGICAL-c661t-d86e8b3c892190eaf6661758420f7abda58f13baf0e4b1ed383b17deca1113f83</cites><orcidid>0000-0001-6462-6692 ; 0000-0002-7699-8191 ; 0000-0002-4472-7119 ; 0000-0002-5301-3142 ; 0000-0003-1115-4323 ; 0000-0002-0529-4031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601616/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601616/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34748535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Papp, Balazs</contributor><creatorcontrib>Sarathy, Chaitra</creatorcontrib><creatorcontrib>Breuer, Marian</creatorcontrib><creatorcontrib>Kutmon, Martina</creatorcontrib><creatorcontrib>Adriaens, Michiel E</creatorcontrib><creatorcontrib>Evelo, Chris T</creatorcontrib><creatorcontrib>Arts, Ilja C W</creatorcontrib><title>Comparison of metabolic states using genome-scale metabolic models</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Genome-scale metabolic models (GEMs) are comprehensive knowledge bases of cellular metabolism and serve as mathematical tools for studying biological phenotypes and metabolic states or conditions in various organisms and cell types. Given the sheer size and complexity of human metabolism, selecting parameters for existing analysis methods such as metabolic objective functions and model constraints is not straightforward in human GEMs. In particular, comparing several conditions in large GEMs to identify condition- or disease-specific metabolic features is challenging. In this study, we showcase a scalable, model-driven approach for an in-depth investigation and comparison of metabolic states in large GEMs which enables identifying the underlying functional differences. Using a combination of flux space sampling and network analysis, our approach enables extraction and visualisation of metabolically distinct network modules. Importantly, it does not rely on known or assumed objective functions. We apply this novel approach to extract the biochemical differences in adipocytes arising due to unlimited vs blocked uptake of branched-chain amino acids (BCAAs, considered as biomarkers in obesity) using a human adipocyte GEM (iAdipocytes1809). The biological significance of our approach is corroborated by literature reports confirming our identified metabolic processes (TCA cycle and Fatty acid metabolism) to be functionally related to BCAA metabolism. Additionally, our analysis predicts a specific altered uptake and secretion profile indicating a compensation for the unavailability of BCAAs. Taken together, our approach facilitates determining functional differences between any metabolic conditions of interest by offering a versatile platform for analysing and comparing flux spaces of large metabolic networks.</description><subject>Adipocytes</subject><subject>Adipocytes - metabolism</subject><subject>Algorithms</subject><subject>Amino acids</subject><subject>Amino Acids, Branched-Chain - metabolism</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Cell metabolism</subject><subject>Chain branching</subject><subject>Citric Acid Cycle</subject><subject>Computational Biology</subject><subject>Computer and Information Sciences</subject><subject>Computer Simulation</subject><subject>Constraint modelling</subject><subject>Decomposition</subject><subject>Diabetes</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humans</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic Diseases - genetics</subject><subject>Metabolic Diseases - metabolism</subject><subject>Metabolic flux</subject><subject>Metabolic Flux Analysis - statistics &amp; numerical data</subject><subject>Metabolic networks</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methods</subject><subject>Models, Biological</subject><subject>Models, Genetic</subject><subject>Network analysis</subject><subject>Obesity</subject><subject>Obesity - genetics</subject><subject>Obesity - metabolism</subject><subject>Phenotypes</subject><subject>Physiology</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Probability distribution</subject><subject>Tricarboxylic acid cycle</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAQxyMEoqXwDRCsxAUOWTzxI84Fqax4rFSBxONsTZxJ8CqJt3GC4NvjZdNqg3pBPng0_s1_PI8keQpsDTyH1zs_DT22670t3RoYK2SW3UvOQUqe5lzq-yf2WfIohB1j0SzUw-SMi1xoyeV58nbjuz0OLvh-5etVRyOWvnV2FUYcKaym4Ppm1VDvO0qDxZZOmM5X1IbHyYMa20BP5vsi-f7-3bfNx_Tq84ft5vIqtUrBmFZakS651UUGBSOsVXTnUouM1TmWFUpdAy-xZiRKoIprXkJekUUA4LXmF8nzo-6-9cHM5QeTKWCFUKzIIrE9EpXHndkPrsPht_HozF-HHxqDw-hsSwZzKyQgsqqQgmmORV5izjLGBaCgQ7Y3c7ap7Kiy1I8DtgvR5UvvfpjG_zRaMVCgosDLWWDw1xOF0XQuWGpb7MlP8d-ykFKKOLmIvvgHvbu6mWriFIzrax_z2oOouVRaSCUgh0it76Diqahz1vdUu-hfBLxaBERmpF9jg1MIZvv1y3-wn5asOLJ28CEMVN_2Dpg5bPBNkeawwWbe4Bj27LTvt0E3K8v_AHs26v0</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Sarathy, Chaitra</creator><creator>Breuer, Marian</creator><creator>Kutmon, Martina</creator><creator>Adriaens, Michiel E</creator><creator>Evelo, Chris T</creator><creator>Arts, Ilja C W</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6462-6692</orcidid><orcidid>https://orcid.org/0000-0002-7699-8191</orcidid><orcidid>https://orcid.org/0000-0002-4472-7119</orcidid><orcidid>https://orcid.org/0000-0002-5301-3142</orcidid><orcidid>https://orcid.org/0000-0003-1115-4323</orcidid><orcidid>https://orcid.org/0000-0002-0529-4031</orcidid></search><sort><creationdate>20211101</creationdate><title>Comparison of metabolic states using genome-scale metabolic models</title><author>Sarathy, Chaitra ; Breuer, Marian ; Kutmon, Martina ; Adriaens, Michiel E ; Evelo, Chris T ; Arts, Ilja C W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-d86e8b3c892190eaf6661758420f7abda58f13baf0e4b1ed383b17deca1113f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adipocytes</topic><topic>Adipocytes - metabolism</topic><topic>Algorithms</topic><topic>Amino acids</topic><topic>Amino Acids, Branched-Chain - metabolism</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Cell metabolism</topic><topic>Chain branching</topic><topic>Citric Acid Cycle</topic><topic>Computational Biology</topic><topic>Computer and Information Sciences</topic><topic>Computer Simulation</topic><topic>Constraint modelling</topic><topic>Decomposition</topic><topic>Diabetes</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humans</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic Diseases - genetics</topic><topic>Metabolic Diseases - metabolism</topic><topic>Metabolic flux</topic><topic>Metabolic Flux Analysis - statistics &amp; numerical data</topic><topic>Metabolic networks</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methods</topic><topic>Models, Biological</topic><topic>Models, Genetic</topic><topic>Network analysis</topic><topic>Obesity</topic><topic>Obesity - genetics</topic><topic>Obesity - metabolism</topic><topic>Phenotypes</topic><topic>Physiology</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Probability distribution</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarathy, Chaitra</creatorcontrib><creatorcontrib>Breuer, Marian</creatorcontrib><creatorcontrib>Kutmon, Martina</creatorcontrib><creatorcontrib>Adriaens, Michiel E</creatorcontrib><creatorcontrib>Evelo, Chris T</creatorcontrib><creatorcontrib>Arts, Ilja C W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarathy, Chaitra</au><au>Breuer, Marian</au><au>Kutmon, Martina</au><au>Adriaens, Michiel E</au><au>Evelo, Chris T</au><au>Arts, Ilja C W</au><au>Papp, Balazs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of metabolic states using genome-scale metabolic models</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>17</volume><issue>11</issue><spage>e1009522</spage><epage>e1009522</epage><pages>e1009522-e1009522</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Genome-scale metabolic models (GEMs) are comprehensive knowledge bases of cellular metabolism and serve as mathematical tools for studying biological phenotypes and metabolic states or conditions in various organisms and cell types. Given the sheer size and complexity of human metabolism, selecting parameters for existing analysis methods such as metabolic objective functions and model constraints is not straightforward in human GEMs. In particular, comparing several conditions in large GEMs to identify condition- or disease-specific metabolic features is challenging. In this study, we showcase a scalable, model-driven approach for an in-depth investigation and comparison of metabolic states in large GEMs which enables identifying the underlying functional differences. Using a combination of flux space sampling and network analysis, our approach enables extraction and visualisation of metabolically distinct network modules. Importantly, it does not rely on known or assumed objective functions. We apply this novel approach to extract the biochemical differences in adipocytes arising due to unlimited vs blocked uptake of branched-chain amino acids (BCAAs, considered as biomarkers in obesity) using a human adipocyte GEM (iAdipocytes1809). The biological significance of our approach is corroborated by literature reports confirming our identified metabolic processes (TCA cycle and Fatty acid metabolism) to be functionally related to BCAA metabolism. Additionally, our analysis predicts a specific altered uptake and secretion profile indicating a compensation for the unavailability of BCAAs. Taken together, our approach facilitates determining functional differences between any metabolic conditions of interest by offering a versatile platform for analysing and comparing flux spaces of large metabolic networks.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34748535</pmid><doi>10.1371/journal.pcbi.1009522</doi><orcidid>https://orcid.org/0000-0001-6462-6692</orcidid><orcidid>https://orcid.org/0000-0002-7699-8191</orcidid><orcidid>https://orcid.org/0000-0002-4472-7119</orcidid><orcidid>https://orcid.org/0000-0002-5301-3142</orcidid><orcidid>https://orcid.org/0000-0003-1115-4323</orcidid><orcidid>https://orcid.org/0000-0002-0529-4031</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2021-11, Vol.17 (11), p.e1009522-e1009522
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2610946092
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adipocytes
Adipocytes - metabolism
Algorithms
Amino acids
Amino Acids, Branched-Chain - metabolism
Analysis
Approximation
Biology and Life Sciences
Biomarkers
Cell metabolism
Chain branching
Citric Acid Cycle
Computational Biology
Computer and Information Sciences
Computer Simulation
Constraint modelling
Decomposition
Diabetes
Fatty acids
Fatty Acids - metabolism
Genome, Human
Genomes
Genomics
Humans
Knowledge bases (artificial intelligence)
Mathematical models
Medicine and Health Sciences
Metabolic Diseases - genetics
Metabolic Diseases - metabolism
Metabolic flux
Metabolic Flux Analysis - statistics & numerical data
Metabolic networks
Metabolic Networks and Pathways - genetics
Metabolism
Metabolites
Methods
Models, Biological
Models, Genetic
Network analysis
Obesity
Obesity - genetics
Obesity - metabolism
Phenotypes
Physiology
Principal Component Analysis
Principal components analysis
Probability distribution
Tricarboxylic acid cycle
title Comparison of metabolic states using genome-scale metabolic models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20metabolic%20states%20using%20genome-scale%20metabolic%20models&rft.jtitle=PLoS%20computational%20biology&rft.au=Sarathy,%20Chaitra&rft.date=2021-11-01&rft.volume=17&rft.issue=11&rft.spage=e1009522&rft.epage=e1009522&rft.pages=e1009522-e1009522&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009522&rft_dat=%3Cgale_plos_%3EA684564171%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610946092&rft_id=info:pmid/34748535&rft_galeid=A684564171&rft_doaj_id=oai_doaj_org_article_a7c451aa0d954083a97ba7020341a4e8&rfr_iscdi=true