Comparison of metabolic states using genome-scale metabolic models
Genome-scale metabolic models (GEMs) are comprehensive knowledge bases of cellular metabolism and serve as mathematical tools for studying biological phenotypes and metabolic states or conditions in various organisms and cell types. Given the sheer size and complexity of human metabolism, selecting...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2021-11, Vol.17 (11), p.e1009522-e1009522 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009522 |
---|---|
container_issue | 11 |
container_start_page | e1009522 |
container_title | PLoS computational biology |
container_volume | 17 |
creator | Sarathy, Chaitra Breuer, Marian Kutmon, Martina Adriaens, Michiel E Evelo, Chris T Arts, Ilja C W |
description | Genome-scale metabolic models (GEMs) are comprehensive knowledge bases of cellular metabolism and serve as mathematical tools for studying biological phenotypes and metabolic states or conditions in various organisms and cell types. Given the sheer size and complexity of human metabolism, selecting parameters for existing analysis methods such as metabolic objective functions and model constraints is not straightforward in human GEMs. In particular, comparing several conditions in large GEMs to identify condition- or disease-specific metabolic features is challenging. In this study, we showcase a scalable, model-driven approach for an in-depth investigation and comparison of metabolic states in large GEMs which enables identifying the underlying functional differences. Using a combination of flux space sampling and network analysis, our approach enables extraction and visualisation of metabolically distinct network modules. Importantly, it does not rely on known or assumed objective functions. We apply this novel approach to extract the biochemical differences in adipocytes arising due to unlimited vs blocked uptake of branched-chain amino acids (BCAAs, considered as biomarkers in obesity) using a human adipocyte GEM (iAdipocytes1809). The biological significance of our approach is corroborated by literature reports confirming our identified metabolic processes (TCA cycle and Fatty acid metabolism) to be functionally related to BCAA metabolism. Additionally, our analysis predicts a specific altered uptake and secretion profile indicating a compensation for the unavailability of BCAAs. Taken together, our approach facilitates determining functional differences between any metabolic conditions of interest by offering a versatile platform for analysing and comparing flux spaces of large metabolic networks. |
doi_str_mv | 10.1371/journal.pcbi.1009522 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2610946092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684564171</galeid><doaj_id>oai_doaj_org_article_a7c451aa0d954083a97ba7020341a4e8</doaj_id><sourcerecordid>A684564171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-d86e8b3c892190eaf6661758420f7abda58f13baf0e4b1ed383b17deca1113f83</originalsourceid><addsrcrecordid>eNqVkktv1DAQxyMEoqXwDRCsxAUOWTzxI84Fqax4rFSBxONsTZxJ8CqJt3GC4NvjZdNqg3pBPng0_s1_PI8keQpsDTyH1zs_DT22670t3RoYK2SW3UvOQUqe5lzq-yf2WfIohB1j0SzUw-SMi1xoyeV58nbjuz0OLvh-5etVRyOWvnV2FUYcKaym4Ppm1VDvO0qDxZZOmM5X1IbHyYMa20BP5vsi-f7-3bfNx_Tq84ft5vIqtUrBmFZakS651UUGBSOsVXTnUouM1TmWFUpdAy-xZiRKoIprXkJekUUA4LXmF8nzo-6-9cHM5QeTKWCFUKzIIrE9EpXHndkPrsPht_HozF-HHxqDw-hsSwZzKyQgsqqQgmmORV5izjLGBaCgQ7Y3c7ap7Kiy1I8DtgvR5UvvfpjG_zRaMVCgosDLWWDw1xOF0XQuWGpb7MlP8d-ykFKKOLmIvvgHvbu6mWriFIzrax_z2oOouVRaSCUgh0it76Diqahz1vdUu-hfBLxaBERmpF9jg1MIZvv1y3-wn5asOLJ28CEMVN_2Dpg5bPBNkeawwWbe4Bj27LTvt0E3K8v_AHs26v0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610946092</pqid></control><display><type>article</type><title>Comparison of metabolic states using genome-scale metabolic models</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sarathy, Chaitra ; Breuer, Marian ; Kutmon, Martina ; Adriaens, Michiel E ; Evelo, Chris T ; Arts, Ilja C W</creator><contributor>Papp, Balazs</contributor><creatorcontrib>Sarathy, Chaitra ; Breuer, Marian ; Kutmon, Martina ; Adriaens, Michiel E ; Evelo, Chris T ; Arts, Ilja C W ; Papp, Balazs</creatorcontrib><description>Genome-scale metabolic models (GEMs) are comprehensive knowledge bases of cellular metabolism and serve as mathematical tools for studying biological phenotypes and metabolic states or conditions in various organisms and cell types. Given the sheer size and complexity of human metabolism, selecting parameters for existing analysis methods such as metabolic objective functions and model constraints is not straightforward in human GEMs. In particular, comparing several conditions in large GEMs to identify condition- or disease-specific metabolic features is challenging. In this study, we showcase a scalable, model-driven approach for an in-depth investigation and comparison of metabolic states in large GEMs which enables identifying the underlying functional differences. Using a combination of flux space sampling and network analysis, our approach enables extraction and visualisation of metabolically distinct network modules. Importantly, it does not rely on known or assumed objective functions. We apply this novel approach to extract the biochemical differences in adipocytes arising due to unlimited vs blocked uptake of branched-chain amino acids (BCAAs, considered as biomarkers in obesity) using a human adipocyte GEM (iAdipocytes1809). The biological significance of our approach is corroborated by literature reports confirming our identified metabolic processes (TCA cycle and Fatty acid metabolism) to be functionally related to BCAA metabolism. Additionally, our analysis predicts a specific altered uptake and secretion profile indicating a compensation for the unavailability of BCAAs. Taken together, our approach facilitates determining functional differences between any metabolic conditions of interest by offering a versatile platform for analysing and comparing flux spaces of large metabolic networks.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009522</identifier><identifier>PMID: 34748535</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adipocytes ; Adipocytes - metabolism ; Algorithms ; Amino acids ; Amino Acids, Branched-Chain - metabolism ; Analysis ; Approximation ; Biology and Life Sciences ; Biomarkers ; Cell metabolism ; Chain branching ; Citric Acid Cycle ; Computational Biology ; Computer and Information Sciences ; Computer Simulation ; Constraint modelling ; Decomposition ; Diabetes ; Fatty acids ; Fatty Acids - metabolism ; Genome, Human ; Genomes ; Genomics ; Humans ; Knowledge bases (artificial intelligence) ; Mathematical models ; Medicine and Health Sciences ; Metabolic Diseases - genetics ; Metabolic Diseases - metabolism ; Metabolic flux ; Metabolic Flux Analysis - statistics & numerical data ; Metabolic networks ; Metabolic Networks and Pathways - genetics ; Metabolism ; Metabolites ; Methods ; Models, Biological ; Models, Genetic ; Network analysis ; Obesity ; Obesity - genetics ; Obesity - metabolism ; Phenotypes ; Physiology ; Principal Component Analysis ; Principal components analysis ; Probability distribution ; Tricarboxylic acid cycle</subject><ispartof>PLoS computational biology, 2021-11, Vol.17 (11), p.e1009522-e1009522</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Sarathy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Sarathy et al 2021 Sarathy et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-d86e8b3c892190eaf6661758420f7abda58f13baf0e4b1ed383b17deca1113f83</citedby><cites>FETCH-LOGICAL-c661t-d86e8b3c892190eaf6661758420f7abda58f13baf0e4b1ed383b17deca1113f83</cites><orcidid>0000-0001-6462-6692 ; 0000-0002-7699-8191 ; 0000-0002-4472-7119 ; 0000-0002-5301-3142 ; 0000-0003-1115-4323 ; 0000-0002-0529-4031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601616/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601616/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34748535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Papp, Balazs</contributor><creatorcontrib>Sarathy, Chaitra</creatorcontrib><creatorcontrib>Breuer, Marian</creatorcontrib><creatorcontrib>Kutmon, Martina</creatorcontrib><creatorcontrib>Adriaens, Michiel E</creatorcontrib><creatorcontrib>Evelo, Chris T</creatorcontrib><creatorcontrib>Arts, Ilja C W</creatorcontrib><title>Comparison of metabolic states using genome-scale metabolic models</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Genome-scale metabolic models (GEMs) are comprehensive knowledge bases of cellular metabolism and serve as mathematical tools for studying biological phenotypes and metabolic states or conditions in various organisms and cell types. Given the sheer size and complexity of human metabolism, selecting parameters for existing analysis methods such as metabolic objective functions and model constraints is not straightforward in human GEMs. In particular, comparing several conditions in large GEMs to identify condition- or disease-specific metabolic features is challenging. In this study, we showcase a scalable, model-driven approach for an in-depth investigation and comparison of metabolic states in large GEMs which enables identifying the underlying functional differences. Using a combination of flux space sampling and network analysis, our approach enables extraction and visualisation of metabolically distinct network modules. Importantly, it does not rely on known or assumed objective functions. We apply this novel approach to extract the biochemical differences in adipocytes arising due to unlimited vs blocked uptake of branched-chain amino acids (BCAAs, considered as biomarkers in obesity) using a human adipocyte GEM (iAdipocytes1809). The biological significance of our approach is corroborated by literature reports confirming our identified metabolic processes (TCA cycle and Fatty acid metabolism) to be functionally related to BCAA metabolism. Additionally, our analysis predicts a specific altered uptake and secretion profile indicating a compensation for the unavailability of BCAAs. Taken together, our approach facilitates determining functional differences between any metabolic conditions of interest by offering a versatile platform for analysing and comparing flux spaces of large metabolic networks.</description><subject>Adipocytes</subject><subject>Adipocytes - metabolism</subject><subject>Algorithms</subject><subject>Amino acids</subject><subject>Amino Acids, Branched-Chain - metabolism</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Cell metabolism</subject><subject>Chain branching</subject><subject>Citric Acid Cycle</subject><subject>Computational Biology</subject><subject>Computer and Information Sciences</subject><subject>Computer Simulation</subject><subject>Constraint modelling</subject><subject>Decomposition</subject><subject>Diabetes</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humans</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic Diseases - genetics</subject><subject>Metabolic Diseases - metabolism</subject><subject>Metabolic flux</subject><subject>Metabolic Flux Analysis - statistics & numerical data</subject><subject>Metabolic networks</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methods</subject><subject>Models, Biological</subject><subject>Models, Genetic</subject><subject>Network analysis</subject><subject>Obesity</subject><subject>Obesity - genetics</subject><subject>Obesity - metabolism</subject><subject>Phenotypes</subject><subject>Physiology</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Probability distribution</subject><subject>Tricarboxylic acid cycle</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAQxyMEoqXwDRCsxAUOWTzxI84Fqax4rFSBxONsTZxJ8CqJt3GC4NvjZdNqg3pBPng0_s1_PI8keQpsDTyH1zs_DT22670t3RoYK2SW3UvOQUqe5lzq-yf2WfIohB1j0SzUw-SMi1xoyeV58nbjuz0OLvh-5etVRyOWvnV2FUYcKaym4Ppm1VDvO0qDxZZOmM5X1IbHyYMa20BP5vsi-f7-3bfNx_Tq84ft5vIqtUrBmFZakS651UUGBSOsVXTnUouM1TmWFUpdAy-xZiRKoIprXkJekUUA4LXmF8nzo-6-9cHM5QeTKWCFUKzIIrE9EpXHndkPrsPht_HozF-HHxqDw-hsSwZzKyQgsqqQgmmORV5izjLGBaCgQ7Y3c7ap7Kiy1I8DtgvR5UvvfpjG_zRaMVCgosDLWWDw1xOF0XQuWGpb7MlP8d-ykFKKOLmIvvgHvbu6mWriFIzrax_z2oOouVRaSCUgh0it76Diqahz1vdUu-hfBLxaBERmpF9jg1MIZvv1y3-wn5asOLJ28CEMVN_2Dpg5bPBNkeawwWbe4Bj27LTvt0E3K8v_AHs26v0</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Sarathy, Chaitra</creator><creator>Breuer, Marian</creator><creator>Kutmon, Martina</creator><creator>Adriaens, Michiel E</creator><creator>Evelo, Chris T</creator><creator>Arts, Ilja C W</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6462-6692</orcidid><orcidid>https://orcid.org/0000-0002-7699-8191</orcidid><orcidid>https://orcid.org/0000-0002-4472-7119</orcidid><orcidid>https://orcid.org/0000-0002-5301-3142</orcidid><orcidid>https://orcid.org/0000-0003-1115-4323</orcidid><orcidid>https://orcid.org/0000-0002-0529-4031</orcidid></search><sort><creationdate>20211101</creationdate><title>Comparison of metabolic states using genome-scale metabolic models</title><author>Sarathy, Chaitra ; Breuer, Marian ; Kutmon, Martina ; Adriaens, Michiel E ; Evelo, Chris T ; Arts, Ilja C W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-d86e8b3c892190eaf6661758420f7abda58f13baf0e4b1ed383b17deca1113f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adipocytes</topic><topic>Adipocytes - metabolism</topic><topic>Algorithms</topic><topic>Amino acids</topic><topic>Amino Acids, Branched-Chain - metabolism</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Cell metabolism</topic><topic>Chain branching</topic><topic>Citric Acid Cycle</topic><topic>Computational Biology</topic><topic>Computer and Information Sciences</topic><topic>Computer Simulation</topic><topic>Constraint modelling</topic><topic>Decomposition</topic><topic>Diabetes</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humans</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic Diseases - genetics</topic><topic>Metabolic Diseases - metabolism</topic><topic>Metabolic flux</topic><topic>Metabolic Flux Analysis - statistics & numerical data</topic><topic>Metabolic networks</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methods</topic><topic>Models, Biological</topic><topic>Models, Genetic</topic><topic>Network analysis</topic><topic>Obesity</topic><topic>Obesity - genetics</topic><topic>Obesity - metabolism</topic><topic>Phenotypes</topic><topic>Physiology</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Probability distribution</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarathy, Chaitra</creatorcontrib><creatorcontrib>Breuer, Marian</creatorcontrib><creatorcontrib>Kutmon, Martina</creatorcontrib><creatorcontrib>Adriaens, Michiel E</creatorcontrib><creatorcontrib>Evelo, Chris T</creatorcontrib><creatorcontrib>Arts, Ilja C W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarathy, Chaitra</au><au>Breuer, Marian</au><au>Kutmon, Martina</au><au>Adriaens, Michiel E</au><au>Evelo, Chris T</au><au>Arts, Ilja C W</au><au>Papp, Balazs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of metabolic states using genome-scale metabolic models</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>17</volume><issue>11</issue><spage>e1009522</spage><epage>e1009522</epage><pages>e1009522-e1009522</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Genome-scale metabolic models (GEMs) are comprehensive knowledge bases of cellular metabolism and serve as mathematical tools for studying biological phenotypes and metabolic states or conditions in various organisms and cell types. Given the sheer size and complexity of human metabolism, selecting parameters for existing analysis methods such as metabolic objective functions and model constraints is not straightforward in human GEMs. In particular, comparing several conditions in large GEMs to identify condition- or disease-specific metabolic features is challenging. In this study, we showcase a scalable, model-driven approach for an in-depth investigation and comparison of metabolic states in large GEMs which enables identifying the underlying functional differences. Using a combination of flux space sampling and network analysis, our approach enables extraction and visualisation of metabolically distinct network modules. Importantly, it does not rely on known or assumed objective functions. We apply this novel approach to extract the biochemical differences in adipocytes arising due to unlimited vs blocked uptake of branched-chain amino acids (BCAAs, considered as biomarkers in obesity) using a human adipocyte GEM (iAdipocytes1809). The biological significance of our approach is corroborated by literature reports confirming our identified metabolic processes (TCA cycle and Fatty acid metabolism) to be functionally related to BCAA metabolism. Additionally, our analysis predicts a specific altered uptake and secretion profile indicating a compensation for the unavailability of BCAAs. Taken together, our approach facilitates determining functional differences between any metabolic conditions of interest by offering a versatile platform for analysing and comparing flux spaces of large metabolic networks.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34748535</pmid><doi>10.1371/journal.pcbi.1009522</doi><orcidid>https://orcid.org/0000-0001-6462-6692</orcidid><orcidid>https://orcid.org/0000-0002-7699-8191</orcidid><orcidid>https://orcid.org/0000-0002-4472-7119</orcidid><orcidid>https://orcid.org/0000-0002-5301-3142</orcidid><orcidid>https://orcid.org/0000-0003-1115-4323</orcidid><orcidid>https://orcid.org/0000-0002-0529-4031</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2021-11, Vol.17 (11), p.e1009522-e1009522 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2610946092 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adipocytes Adipocytes - metabolism Algorithms Amino acids Amino Acids, Branched-Chain - metabolism Analysis Approximation Biology and Life Sciences Biomarkers Cell metabolism Chain branching Citric Acid Cycle Computational Biology Computer and Information Sciences Computer Simulation Constraint modelling Decomposition Diabetes Fatty acids Fatty Acids - metabolism Genome, Human Genomes Genomics Humans Knowledge bases (artificial intelligence) Mathematical models Medicine and Health Sciences Metabolic Diseases - genetics Metabolic Diseases - metabolism Metabolic flux Metabolic Flux Analysis - statistics & numerical data Metabolic networks Metabolic Networks and Pathways - genetics Metabolism Metabolites Methods Models, Biological Models, Genetic Network analysis Obesity Obesity - genetics Obesity - metabolism Phenotypes Physiology Principal Component Analysis Principal components analysis Probability distribution Tricarboxylic acid cycle |
title | Comparison of metabolic states using genome-scale metabolic models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20metabolic%20states%20using%20genome-scale%20metabolic%20models&rft.jtitle=PLoS%20computational%20biology&rft.au=Sarathy,%20Chaitra&rft.date=2021-11-01&rft.volume=17&rft.issue=11&rft.spage=e1009522&rft.epage=e1009522&rft.pages=e1009522-e1009522&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009522&rft_dat=%3Cgale_plos_%3EA684564171%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610946092&rft_id=info:pmid/34748535&rft_galeid=A684564171&rft_doaj_id=oai_doaj_org_article_a7c451aa0d954083a97ba7020341a4e8&rfr_iscdi=true |