Cascading epigenomic analysis for identifying disease genes from the regulatory landscape of GWAS variants

The majority of genetic variants detected in genome wide association studies (GWAS) exert their effects on phenotypes through gene regulation. Motivated by this observation, we propose a multi-omic integration method that models the cascading effects of genetic variants from epigenome to transcripto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2021-11, Vol.17 (11), p.e1009918-e1009918
Hauptverfasser: Ng, Bernard, Casazza, William, Kim, Nam Hee, Wang, Chendi, Farhadi, Farnush, Tasaki, Shinya, Bennett, David A, De Jager, Philip L, Gaiteri, Christopher, Mostafavi, Sara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1009918
container_issue 11
container_start_page e1009918
container_title PLoS genetics
container_volume 17
creator Ng, Bernard
Casazza, William
Kim, Nam Hee
Wang, Chendi
Farhadi, Farnush
Tasaki, Shinya
Bennett, David A
De Jager, Philip L
Gaiteri, Christopher
Mostafavi, Sara
description The majority of genetic variants detected in genome wide association studies (GWAS) exert their effects on phenotypes through gene regulation. Motivated by this observation, we propose a multi-omic integration method that models the cascading effects of genetic variants from epigenome to transcriptome and eventually to the phenome in identifying target genes influenced by risk alleles. This cascading epigenomic analysis for GWAS, which we refer to as CEWAS, comprises two types of models: one for linking cis genetic effects to epigenomic variation and another for linking cis epigenomic variation to gene expression. Applying these models in cascade to GWAS summary statistics generates gene level statistics that reflect genetically-driven epigenomic effects. We show on sixteen brain-related GWAS that CEWAS provides higher gene detection rate than related methods, and finds disease relevant genes and gene sets that point toward less explored biological processes. CEWAS thus presents a novel means for exploring the regulatory landscape of GWAS variants in uncovering disease mechanisms.
doi_str_mv 10.1371/journal.pgen.1009918
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2610943821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684564250</galeid><doaj_id>oai_doaj_org_article_0a57ab6aedb5448c8e665446bf4567ec</doaj_id><sourcerecordid>A684564250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-7688e1340ecbc5de9a1a1344dc999d0d6f6c858eedb2905bbeefa07af726ccd93</originalsourceid><addsrcrecordid>eNqVk99v0zAQxyMEYmPwHyCIhITgocVuHMd5QaoqGJMmJjF-PFoX-5K6SuNiJxP977nSbGrRHkB-iGN_vt-z73xJ8pyzKc8K_m7lh9BBO9002E05Y2XJ1YPklOd5NikEEw8P5ifJkxhXjGW5KovHyUkmFCtKnp0mqwVEA9Z1TYobR1Z-7UwKZLyNLqa1D6mz2PWu3u4Y6yJCxJRApN3g12m_xDRgM7TQ-7BNW-gsOW4w9XV6_mN-nd5AcND18WnyqIY24rPxe5Z8-_jh6-LT5PLq_GIxv5yYYib7SSGVQp4JhqYyucUSONCvsKYsS8usrKVRuUK01axkeVUh1sAKqEltjC2zs-Tl3nfT-qjHNEU9k5yVIlMzTsTFnrAeVnoT3BrCVntw-s-CD42G0DvTomaQF1BJoGi5EMoolJImsqpFLgs05PV-jDZUa7SGchWgPTI93uncUjf-RispFJ_lZPBmNAj-54Cx12sXDbaUSPTD7tyMU7lkJgh99Rd6_-1GqgG6gOtqT3HNzlTPpaJji1nOiJreQ9GwSC_Ad1g7Wj8SvD0SENPjr76BIUZ9cf3lP9jP_85efT9mXx-wS4S2X0bfDr3zXTwGxR40wccYsL4rCGd61z63mdO79tFj-5DsxWEx70S3_ZL9BispFf4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610943821</pqid></control><display><type>article</type><title>Cascading epigenomic analysis for identifying disease genes from the regulatory landscape of GWAS variants</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ng, Bernard ; Casazza, William ; Kim, Nam Hee ; Wang, Chendi ; Farhadi, Farnush ; Tasaki, Shinya ; Bennett, David A ; De Jager, Philip L ; Gaiteri, Christopher ; Mostafavi, Sara</creator><contributor>Kutalik, Zoltán</contributor><creatorcontrib>Ng, Bernard ; Casazza, William ; Kim, Nam Hee ; Wang, Chendi ; Farhadi, Farnush ; Tasaki, Shinya ; Bennett, David A ; De Jager, Philip L ; Gaiteri, Christopher ; Mostafavi, Sara ; Kutalik, Zoltán</creatorcontrib><description>The majority of genetic variants detected in genome wide association studies (GWAS) exert their effects on phenotypes through gene regulation. Motivated by this observation, we propose a multi-omic integration method that models the cascading effects of genetic variants from epigenome to transcriptome and eventually to the phenome in identifying target genes influenced by risk alleles. This cascading epigenomic analysis for GWAS, which we refer to as CEWAS, comprises two types of models: one for linking cis genetic effects to epigenomic variation and another for linking cis epigenomic variation to gene expression. Applying these models in cascade to GWAS summary statistics generates gene level statistics that reflect genetically-driven epigenomic effects. We show on sixteen brain-related GWAS that CEWAS provides higher gene detection rate than related methods, and finds disease relevant genes and gene sets that point toward less explored biological processes. CEWAS thus presents a novel means for exploring the regulatory landscape of GWAS variants in uncovering disease mechanisms.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1009918</identifier><identifier>PMID: 34807913</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alleles ; Biology and Life Sciences ; DNA methylation ; Epigenetic inheritance ; Epigenome - genetics ; Gene expression ; Gene regulation ; Genetic Diseases, Inborn - genetics ; Genetic Diseases, Inborn - pathology ; Genetic diversity ; Genetic Predisposition to Disease ; Genetic regulation ; Genetic variation ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Genotype &amp; phenotype ; Health aspects ; Humans ; Hypotheses ; Medicine and Health Sciences ; Methods ; Phenotype ; Phenotypes ; Polymorphism, Single Nucleotide - genetics ; Quantitative Trait Loci - genetics ; Statistical analysis ; Transcriptome - genetics ; Transcriptomes</subject><ispartof>PLoS genetics, 2021-11, Vol.17 (11), p.e1009918-e1009918</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Ng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Ng et al 2021 Ng et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-7688e1340ecbc5de9a1a1344dc999d0d6f6c858eedb2905bbeefa07af726ccd93</citedby><cites>FETCH-LOGICAL-c726t-7688e1340ecbc5de9a1a1344dc999d0d6f6c858eedb2905bbeefa07af726ccd93</cites><orcidid>0000-0003-3656-7394 ; 0000-0002-8057-2505 ; 0000-0003-3689-554X ; 0000-0002-8688-3873 ; 0000-0002-4636-4710 ; 0000-0002-0686-4024 ; 0000-0003-4698-1177 ; 0000-0003-0497-2459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648125/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648125/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34807913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kutalik, Zoltán</contributor><creatorcontrib>Ng, Bernard</creatorcontrib><creatorcontrib>Casazza, William</creatorcontrib><creatorcontrib>Kim, Nam Hee</creatorcontrib><creatorcontrib>Wang, Chendi</creatorcontrib><creatorcontrib>Farhadi, Farnush</creatorcontrib><creatorcontrib>Tasaki, Shinya</creatorcontrib><creatorcontrib>Bennett, David A</creatorcontrib><creatorcontrib>De Jager, Philip L</creatorcontrib><creatorcontrib>Gaiteri, Christopher</creatorcontrib><creatorcontrib>Mostafavi, Sara</creatorcontrib><title>Cascading epigenomic analysis for identifying disease genes from the regulatory landscape of GWAS variants</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The majority of genetic variants detected in genome wide association studies (GWAS) exert their effects on phenotypes through gene regulation. Motivated by this observation, we propose a multi-omic integration method that models the cascading effects of genetic variants from epigenome to transcriptome and eventually to the phenome in identifying target genes influenced by risk alleles. This cascading epigenomic analysis for GWAS, which we refer to as CEWAS, comprises two types of models: one for linking cis genetic effects to epigenomic variation and another for linking cis epigenomic variation to gene expression. Applying these models in cascade to GWAS summary statistics generates gene level statistics that reflect genetically-driven epigenomic effects. We show on sixteen brain-related GWAS that CEWAS provides higher gene detection rate than related methods, and finds disease relevant genes and gene sets that point toward less explored biological processes. CEWAS thus presents a novel means for exploring the regulatory landscape of GWAS variants in uncovering disease mechanisms.</description><subject>Alleles</subject><subject>Biology and Life Sciences</subject><subject>DNA methylation</subject><subject>Epigenetic inheritance</subject><subject>Epigenome - genetics</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Genetic Diseases, Inborn - genetics</subject><subject>Genetic Diseases, Inborn - pathology</subject><subject>Genetic diversity</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic regulation</subject><subject>Genetic variation</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Statistical analysis</subject><subject>Transcriptome - genetics</subject><subject>Transcriptomes</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk99v0zAQxyMEYmPwHyCIhITgocVuHMd5QaoqGJMmJjF-PFoX-5K6SuNiJxP977nSbGrRHkB-iGN_vt-z73xJ8pyzKc8K_m7lh9BBO9002E05Y2XJ1YPklOd5NikEEw8P5ifJkxhXjGW5KovHyUkmFCtKnp0mqwVEA9Z1TYobR1Z-7UwKZLyNLqa1D6mz2PWu3u4Y6yJCxJRApN3g12m_xDRgM7TQ-7BNW-gsOW4w9XV6_mN-nd5AcND18WnyqIY24rPxe5Z8-_jh6-LT5PLq_GIxv5yYYib7SSGVQp4JhqYyucUSONCvsKYsS8usrKVRuUK01axkeVUh1sAKqEltjC2zs-Tl3nfT-qjHNEU9k5yVIlMzTsTFnrAeVnoT3BrCVntw-s-CD42G0DvTomaQF1BJoGi5EMoolJImsqpFLgs05PV-jDZUa7SGchWgPTI93uncUjf-RispFJ_lZPBmNAj-54Cx12sXDbaUSPTD7tyMU7lkJgh99Rd6_-1GqgG6gOtqT3HNzlTPpaJji1nOiJreQ9GwSC_Ad1g7Wj8SvD0SENPjr76BIUZ9cf3lP9jP_85efT9mXx-wS4S2X0bfDr3zXTwGxR40wccYsL4rCGd61z63mdO79tFj-5DsxWEx70S3_ZL9BispFf4</recordid><startdate>20211122</startdate><enddate>20211122</enddate><creator>Ng, Bernard</creator><creator>Casazza, William</creator><creator>Kim, Nam Hee</creator><creator>Wang, Chendi</creator><creator>Farhadi, Farnush</creator><creator>Tasaki, Shinya</creator><creator>Bennett, David A</creator><creator>De Jager, Philip L</creator><creator>Gaiteri, Christopher</creator><creator>Mostafavi, Sara</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3656-7394</orcidid><orcidid>https://orcid.org/0000-0002-8057-2505</orcidid><orcidid>https://orcid.org/0000-0003-3689-554X</orcidid><orcidid>https://orcid.org/0000-0002-8688-3873</orcidid><orcidid>https://orcid.org/0000-0002-4636-4710</orcidid><orcidid>https://orcid.org/0000-0002-0686-4024</orcidid><orcidid>https://orcid.org/0000-0003-4698-1177</orcidid><orcidid>https://orcid.org/0000-0003-0497-2459</orcidid></search><sort><creationdate>20211122</creationdate><title>Cascading epigenomic analysis for identifying disease genes from the regulatory landscape of GWAS variants</title><author>Ng, Bernard ; Casazza, William ; Kim, Nam Hee ; Wang, Chendi ; Farhadi, Farnush ; Tasaki, Shinya ; Bennett, David A ; De Jager, Philip L ; Gaiteri, Christopher ; Mostafavi, Sara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-7688e1340ecbc5de9a1a1344dc999d0d6f6c858eedb2905bbeefa07af726ccd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alleles</topic><topic>Biology and Life Sciences</topic><topic>DNA methylation</topic><topic>Epigenetic inheritance</topic><topic>Epigenome - genetics</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Genetic Diseases, Inborn - genetics</topic><topic>Genetic Diseases, Inborn - pathology</topic><topic>Genetic diversity</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic regulation</topic><topic>Genetic variation</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Statistical analysis</topic><topic>Transcriptome - genetics</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ng, Bernard</creatorcontrib><creatorcontrib>Casazza, William</creatorcontrib><creatorcontrib>Kim, Nam Hee</creatorcontrib><creatorcontrib>Wang, Chendi</creatorcontrib><creatorcontrib>Farhadi, Farnush</creatorcontrib><creatorcontrib>Tasaki, Shinya</creatorcontrib><creatorcontrib>Bennett, David A</creatorcontrib><creatorcontrib>De Jager, Philip L</creatorcontrib><creatorcontrib>Gaiteri, Christopher</creatorcontrib><creatorcontrib>Mostafavi, Sara</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ng, Bernard</au><au>Casazza, William</au><au>Kim, Nam Hee</au><au>Wang, Chendi</au><au>Farhadi, Farnush</au><au>Tasaki, Shinya</au><au>Bennett, David A</au><au>De Jager, Philip L</au><au>Gaiteri, Christopher</au><au>Mostafavi, Sara</au><au>Kutalik, Zoltán</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cascading epigenomic analysis for identifying disease genes from the regulatory landscape of GWAS variants</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2021-11-22</date><risdate>2021</risdate><volume>17</volume><issue>11</issue><spage>e1009918</spage><epage>e1009918</epage><pages>e1009918-e1009918</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The majority of genetic variants detected in genome wide association studies (GWAS) exert their effects on phenotypes through gene regulation. Motivated by this observation, we propose a multi-omic integration method that models the cascading effects of genetic variants from epigenome to transcriptome and eventually to the phenome in identifying target genes influenced by risk alleles. This cascading epigenomic analysis for GWAS, which we refer to as CEWAS, comprises two types of models: one for linking cis genetic effects to epigenomic variation and another for linking cis epigenomic variation to gene expression. Applying these models in cascade to GWAS summary statistics generates gene level statistics that reflect genetically-driven epigenomic effects. We show on sixteen brain-related GWAS that CEWAS provides higher gene detection rate than related methods, and finds disease relevant genes and gene sets that point toward less explored biological processes. CEWAS thus presents a novel means for exploring the regulatory landscape of GWAS variants in uncovering disease mechanisms.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34807913</pmid><doi>10.1371/journal.pgen.1009918</doi><orcidid>https://orcid.org/0000-0003-3656-7394</orcidid><orcidid>https://orcid.org/0000-0002-8057-2505</orcidid><orcidid>https://orcid.org/0000-0003-3689-554X</orcidid><orcidid>https://orcid.org/0000-0002-8688-3873</orcidid><orcidid>https://orcid.org/0000-0002-4636-4710</orcidid><orcidid>https://orcid.org/0000-0002-0686-4024</orcidid><orcidid>https://orcid.org/0000-0003-4698-1177</orcidid><orcidid>https://orcid.org/0000-0003-0497-2459</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2021-11, Vol.17 (11), p.e1009918-e1009918
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2610943821
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Alleles
Biology and Life Sciences
DNA methylation
Epigenetic inheritance
Epigenome - genetics
Gene expression
Gene regulation
Genetic Diseases, Inborn - genetics
Genetic Diseases, Inborn - pathology
Genetic diversity
Genetic Predisposition to Disease
Genetic regulation
Genetic variation
Genome-wide association studies
Genome-Wide Association Study
Genomes
Genotype & phenotype
Health aspects
Humans
Hypotheses
Medicine and Health Sciences
Methods
Phenotype
Phenotypes
Polymorphism, Single Nucleotide - genetics
Quantitative Trait Loci - genetics
Statistical analysis
Transcriptome - genetics
Transcriptomes
title Cascading epigenomic analysis for identifying disease genes from the regulatory landscape of GWAS variants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A14%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cascading%20epigenomic%20analysis%20for%20identifying%20disease%20genes%20from%20the%20regulatory%20landscape%20of%20GWAS%20variants&rft.jtitle=PLoS%20genetics&rft.au=Ng,%20Bernard&rft.date=2021-11-22&rft.volume=17&rft.issue=11&rft.spage=e1009918&rft.epage=e1009918&rft.pages=e1009918-e1009918&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1009918&rft_dat=%3Cgale_plos_%3EA684564250%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610943821&rft_id=info:pmid/34807913&rft_galeid=A684564250&rft_doaj_id=oai_doaj_org_article_0a57ab6aedb5448c8e665446bf4567ec&rfr_iscdi=true