Impacts of fungal entomopathogens on survival and immune responses of Aedes albopictus and Culex pipiens mosquitoes in the context of native Wolbachia infections

Microbial control of mosquitoes via the use of symbiotic or pathogenic microbes, such as Wolbachia and entomopathogenic fungi, are promising alternatives to synthetic insecticides to tackle the rapid increase in insecticide resistance and vector-borne disease outbreaks. This study evaluated the susc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS neglected tropical diseases 2021-11, Vol.15 (11), p.e0009984-e0009984
Hauptverfasser: Ramirez, Jose L, Schumacher, Molly K, Ower, Geoff, Palmquist, Debra E, Juliano, Steven A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0009984
container_issue 11
container_start_page e0009984
container_title PLoS neglected tropical diseases
container_volume 15
creator Ramirez, Jose L
Schumacher, Molly K
Ower, Geoff
Palmquist, Debra E
Juliano, Steven A
description Microbial control of mosquitoes via the use of symbiotic or pathogenic microbes, such as Wolbachia and entomopathogenic fungi, are promising alternatives to synthetic insecticides to tackle the rapid increase in insecticide resistance and vector-borne disease outbreaks. This study evaluated the susceptibility and host responses of two important mosquito vectors, Ae. albopictus and Cx. pipiens, that naturally carry Wolbachia, to infections by entomopathogenic fungi. Our study indicated that while Wolbachia presence did not provide a protective advantage against entomopathogenic fungal infection, it nevertheless influenced the bacterial / fungal load and the expression of select anti-microbial effectors and phenoloxidase cascade genes in mosquitoes. Furthermore, although host responses from Ae. albopictus and Cx. pipiens were mostly similar, we observed contrasting phenotypes with regards to susceptibility and immune responses to fungal entomopathogenic infection in these two mosquitoes. This study provides new insights into the intricate multipartite interaction between the mosquito host, its native symbiont and pathogenic microbes that might be employed to control mosquito populations.
doi_str_mv 10.1371/journal.pntd.0009984
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2610942333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A685872732</galeid><sourcerecordid>A685872732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-3fca217f1aa780ef0e0f21d9a4568667290808245ae1873f4f18f3a6cca543413</originalsourceid><addsrcrecordid>eNptksFq3DAQhk1padJt36C0hkLoZbeSZVvyJbAsaRsI9NLSo9DKo7WCLDmWtKSP0zetvHHCbol8kPB8_8zwz2TZe4xWmFD85dbF0QqzGmxoVwihpmHli-wcN6RaFpRUL4_eZ9kb728RqpqK4dfZGSlZSUpKz7O_1_0gZPC5U7mKdidMDja43g0idG4HNkVs7uO41_sUE7bNdd9HC_kIfnDWw0G6hjY9hNm6QcsQ_QHcRAP3-aAHPaXpnb-LOrjEaZuHDnLpbID7MOmtCHoP-W9ntkJ2WiREgQw6FXibvVLCeHg334vs19ern5vvy5sf364365ulrCoWlkRJUWCqsBCUIVAIkCpw24iyqlld06JBDLGirARgRokqFWaKiFpKUSUvMFlkHx_yDsZ5PrvreVFj1JQFSWeRXc5E3PbQymTUKAwfRt2L8Q93QvPTiNUd37k9ZzVFFNcpwec5wejuIvjAe-0lGCMsuDjVQiVLvRQT-uk_9PmOZirNDXjyzKW6ckrK1zWrGE3DLxK1eoZKXwu9TkMApdP_E8HFkaADYULnnYmHeZyC5QMoR-f9COrJDIz4tKWPXfNpS_m8pUn24djIJ9HjWpJ_n3bnkg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610942333</pqid></control><display><type>article</type><title>Impacts of fungal entomopathogens on survival and immune responses of Aedes albopictus and Culex pipiens mosquitoes in the context of native Wolbachia infections</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Ramirez, Jose L ; Schumacher, Molly K ; Ower, Geoff ; Palmquist, Debra E ; Juliano, Steven A</creator><contributor>Jiggins, Francis Michael</contributor><creatorcontrib>Ramirez, Jose L ; Schumacher, Molly K ; Ower, Geoff ; Palmquist, Debra E ; Juliano, Steven A ; Jiggins, Francis Michael</creatorcontrib><description>Microbial control of mosquitoes via the use of symbiotic or pathogenic microbes, such as Wolbachia and entomopathogenic fungi, are promising alternatives to synthetic insecticides to tackle the rapid increase in insecticide resistance and vector-borne disease outbreaks. This study evaluated the susceptibility and host responses of two important mosquito vectors, Ae. albopictus and Cx. pipiens, that naturally carry Wolbachia, to infections by entomopathogenic fungi. Our study indicated that while Wolbachia presence did not provide a protective advantage against entomopathogenic fungal infection, it nevertheless influenced the bacterial / fungal load and the expression of select anti-microbial effectors and phenoloxidase cascade genes in mosquitoes. Furthermore, although host responses from Ae. albopictus and Cx. pipiens were mostly similar, we observed contrasting phenotypes with regards to susceptibility and immune responses to fungal entomopathogenic infection in these two mosquitoes. This study provides new insights into the intricate multipartite interaction between the mosquito host, its native symbiont and pathogenic microbes that might be employed to control mosquito populations.</description><identifier>ISSN: 1935-2735</identifier><identifier>ISSN: 1935-2727</identifier><identifier>EISSN: 1935-2735</identifier><identifier>DOI: 10.1371/journal.pntd.0009984</identifier><identifier>PMID: 34843477</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aedes ; Aedes - drug effects ; Aedes - genetics ; Aedes - immunology ; Aedes - microbiology ; Aedes albopictus ; Animals ; Antiinfectives and antibacterials ; Aquatic insects ; Bacteria ; Bioassays ; Biological assays ; Biological control ; Biology and Life Sciences ; Culex - drug effects ; Culex - genetics ; Culex - immunology ; Culex - microbiology ; Culicidae ; Disease outbreaks ; Disease resistance ; Eggs ; Entomopathogenic fungi ; Fungal infections ; Fungi ; Gene Expression ; Genes ; Immune response ; Immune system ; Immunity - genetics ; Infections ; Infectious diseases ; Insect pests ; Insecticide Resistance ; Insecticides ; Insects ; Insects as carriers of disease ; Medicine and Health Sciences ; Microbiota ; Microorganisms ; Monophenol Monooxygenase - genetics ; Monophenol Monooxygenase - metabolism ; Mosquito Vectors - immunology ; Mosquito Vectors - microbiology ; Mosquitoes ; Pathogens ; Pest outbreaks ; Pesticide resistance ; Phenoloxidase ; Phenotypes ; Physiological aspects ; Public health ; Sucrose ; Survival ; Symbionts ; Symbiosis ; Tropical diseases ; Vector Borne Diseases ; Vectors ; Wolbachia ; Wolbachia - genetics</subject><ispartof>PLoS neglected tropical diseases, 2021-11, Vol.15 (11), p.e0009984-e0009984</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-3fca217f1aa780ef0e0f21d9a4568667290808245ae1873f4f18f3a6cca543413</citedby><cites>FETCH-LOGICAL-c558t-3fca217f1aa780ef0e0f21d9a4568667290808245ae1873f4f18f3a6cca543413</cites><orcidid>0000-0001-9607-1097 ; 0000-0002-6178-4553 ; 0000-0003-0847-1715 ; 0000-0002-9770-2345</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670716/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670716/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34843477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Jiggins, Francis Michael</contributor><creatorcontrib>Ramirez, Jose L</creatorcontrib><creatorcontrib>Schumacher, Molly K</creatorcontrib><creatorcontrib>Ower, Geoff</creatorcontrib><creatorcontrib>Palmquist, Debra E</creatorcontrib><creatorcontrib>Juliano, Steven A</creatorcontrib><title>Impacts of fungal entomopathogens on survival and immune responses of Aedes albopictus and Culex pipiens mosquitoes in the context of native Wolbachia infections</title><title>PLoS neglected tropical diseases</title><addtitle>PLoS Negl Trop Dis</addtitle><description>Microbial control of mosquitoes via the use of symbiotic or pathogenic microbes, such as Wolbachia and entomopathogenic fungi, are promising alternatives to synthetic insecticides to tackle the rapid increase in insecticide resistance and vector-borne disease outbreaks. This study evaluated the susceptibility and host responses of two important mosquito vectors, Ae. albopictus and Cx. pipiens, that naturally carry Wolbachia, to infections by entomopathogenic fungi. Our study indicated that while Wolbachia presence did not provide a protective advantage against entomopathogenic fungal infection, it nevertheless influenced the bacterial / fungal load and the expression of select anti-microbial effectors and phenoloxidase cascade genes in mosquitoes. Furthermore, although host responses from Ae. albopictus and Cx. pipiens were mostly similar, we observed contrasting phenotypes with regards to susceptibility and immune responses to fungal entomopathogenic infection in these two mosquitoes. This study provides new insights into the intricate multipartite interaction between the mosquito host, its native symbiont and pathogenic microbes that might be employed to control mosquito populations.</description><subject>Aedes</subject><subject>Aedes - drug effects</subject><subject>Aedes - genetics</subject><subject>Aedes - immunology</subject><subject>Aedes - microbiology</subject><subject>Aedes albopictus</subject><subject>Animals</subject><subject>Antiinfectives and antibacterials</subject><subject>Aquatic insects</subject><subject>Bacteria</subject><subject>Bioassays</subject><subject>Biological assays</subject><subject>Biological control</subject><subject>Biology and Life Sciences</subject><subject>Culex - drug effects</subject><subject>Culex - genetics</subject><subject>Culex - immunology</subject><subject>Culex - microbiology</subject><subject>Culicidae</subject><subject>Disease outbreaks</subject><subject>Disease resistance</subject><subject>Eggs</subject><subject>Entomopathogenic fungi</subject><subject>Fungal infections</subject><subject>Fungi</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunity - genetics</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Insect pests</subject><subject>Insecticide Resistance</subject><subject>Insecticides</subject><subject>Insects</subject><subject>Insects as carriers of disease</subject><subject>Medicine and Health Sciences</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Monophenol Monooxygenase - genetics</subject><subject>Monophenol Monooxygenase - metabolism</subject><subject>Mosquito Vectors - immunology</subject><subject>Mosquito Vectors - microbiology</subject><subject>Mosquitoes</subject><subject>Pathogens</subject><subject>Pest outbreaks</subject><subject>Pesticide resistance</subject><subject>Phenoloxidase</subject><subject>Phenotypes</subject><subject>Physiological aspects</subject><subject>Public health</subject><subject>Sucrose</subject><subject>Survival</subject><subject>Symbionts</subject><subject>Symbiosis</subject><subject>Tropical diseases</subject><subject>Vector Borne Diseases</subject><subject>Vectors</subject><subject>Wolbachia</subject><subject>Wolbachia - genetics</subject><issn>1935-2735</issn><issn>1935-2727</issn><issn>1935-2735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptksFq3DAQhk1padJt36C0hkLoZbeSZVvyJbAsaRsI9NLSo9DKo7WCLDmWtKSP0zetvHHCbol8kPB8_8zwz2TZe4xWmFD85dbF0QqzGmxoVwihpmHli-wcN6RaFpRUL4_eZ9kb728RqpqK4dfZGSlZSUpKz7O_1_0gZPC5U7mKdidMDja43g0idG4HNkVs7uO41_sUE7bNdd9HC_kIfnDWw0G6hjY9hNm6QcsQ_QHcRAP3-aAHPaXpnb-LOrjEaZuHDnLpbID7MOmtCHoP-W9ntkJ2WiREgQw6FXibvVLCeHg334vs19ern5vvy5sf364365ulrCoWlkRJUWCqsBCUIVAIkCpw24iyqlld06JBDLGirARgRokqFWaKiFpKUSUvMFlkHx_yDsZ5PrvreVFj1JQFSWeRXc5E3PbQymTUKAwfRt2L8Q93QvPTiNUd37k9ZzVFFNcpwec5wejuIvjAe-0lGCMsuDjVQiVLvRQT-uk_9PmOZirNDXjyzKW6ckrK1zWrGE3DLxK1eoZKXwu9TkMApdP_E8HFkaADYULnnYmHeZyC5QMoR-f9COrJDIz4tKWPXfNpS_m8pUn24djIJ9HjWpJ_n3bnkg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Ramirez, Jose L</creator><creator>Schumacher, Molly K</creator><creator>Ower, Geoff</creator><creator>Palmquist, Debra E</creator><creator>Juliano, Steven A</creator><general>Public Library of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7T2</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9607-1097</orcidid><orcidid>https://orcid.org/0000-0002-6178-4553</orcidid><orcidid>https://orcid.org/0000-0003-0847-1715</orcidid><orcidid>https://orcid.org/0000-0002-9770-2345</orcidid></search><sort><creationdate>20211101</creationdate><title>Impacts of fungal entomopathogens on survival and immune responses of Aedes albopictus and Culex pipiens mosquitoes in the context of native Wolbachia infections</title><author>Ramirez, Jose L ; Schumacher, Molly K ; Ower, Geoff ; Palmquist, Debra E ; Juliano, Steven A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-3fca217f1aa780ef0e0f21d9a4568667290808245ae1873f4f18f3a6cca543413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aedes</topic><topic>Aedes - drug effects</topic><topic>Aedes - genetics</topic><topic>Aedes - immunology</topic><topic>Aedes - microbiology</topic><topic>Aedes albopictus</topic><topic>Animals</topic><topic>Antiinfectives and antibacterials</topic><topic>Aquatic insects</topic><topic>Bacteria</topic><topic>Bioassays</topic><topic>Biological assays</topic><topic>Biological control</topic><topic>Biology and Life Sciences</topic><topic>Culex - drug effects</topic><topic>Culex - genetics</topic><topic>Culex - immunology</topic><topic>Culex - microbiology</topic><topic>Culicidae</topic><topic>Disease outbreaks</topic><topic>Disease resistance</topic><topic>Eggs</topic><topic>Entomopathogenic fungi</topic><topic>Fungal infections</topic><topic>Fungi</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunity - genetics</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Insect pests</topic><topic>Insecticide Resistance</topic><topic>Insecticides</topic><topic>Insects</topic><topic>Insects as carriers of disease</topic><topic>Medicine and Health Sciences</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Monophenol Monooxygenase - genetics</topic><topic>Monophenol Monooxygenase - metabolism</topic><topic>Mosquito Vectors - immunology</topic><topic>Mosquito Vectors - microbiology</topic><topic>Mosquitoes</topic><topic>Pathogens</topic><topic>Pest outbreaks</topic><topic>Pesticide resistance</topic><topic>Phenoloxidase</topic><topic>Phenotypes</topic><topic>Physiological aspects</topic><topic>Public health</topic><topic>Sucrose</topic><topic>Survival</topic><topic>Symbionts</topic><topic>Symbiosis</topic><topic>Tropical diseases</topic><topic>Vector Borne Diseases</topic><topic>Vectors</topic><topic>Wolbachia</topic><topic>Wolbachia - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramirez, Jose L</creatorcontrib><creatorcontrib>Schumacher, Molly K</creatorcontrib><creatorcontrib>Ower, Geoff</creatorcontrib><creatorcontrib>Palmquist, Debra E</creatorcontrib><creatorcontrib>Juliano, Steven A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PLoS neglected tropical diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramirez, Jose L</au><au>Schumacher, Molly K</au><au>Ower, Geoff</au><au>Palmquist, Debra E</au><au>Juliano, Steven A</au><au>Jiggins, Francis Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impacts of fungal entomopathogens on survival and immune responses of Aedes albopictus and Culex pipiens mosquitoes in the context of native Wolbachia infections</atitle><jtitle>PLoS neglected tropical diseases</jtitle><addtitle>PLoS Negl Trop Dis</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>15</volume><issue>11</issue><spage>e0009984</spage><epage>e0009984</epage><pages>e0009984-e0009984</pages><issn>1935-2735</issn><issn>1935-2727</issn><eissn>1935-2735</eissn><abstract>Microbial control of mosquitoes via the use of symbiotic or pathogenic microbes, such as Wolbachia and entomopathogenic fungi, are promising alternatives to synthetic insecticides to tackle the rapid increase in insecticide resistance and vector-borne disease outbreaks. This study evaluated the susceptibility and host responses of two important mosquito vectors, Ae. albopictus and Cx. pipiens, that naturally carry Wolbachia, to infections by entomopathogenic fungi. Our study indicated that while Wolbachia presence did not provide a protective advantage against entomopathogenic fungal infection, it nevertheless influenced the bacterial / fungal load and the expression of select anti-microbial effectors and phenoloxidase cascade genes in mosquitoes. Furthermore, although host responses from Ae. albopictus and Cx. pipiens were mostly similar, we observed contrasting phenotypes with regards to susceptibility and immune responses to fungal entomopathogenic infection in these two mosquitoes. This study provides new insights into the intricate multipartite interaction between the mosquito host, its native symbiont and pathogenic microbes that might be employed to control mosquito populations.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34843477</pmid><doi>10.1371/journal.pntd.0009984</doi><orcidid>https://orcid.org/0000-0001-9607-1097</orcidid><orcidid>https://orcid.org/0000-0002-6178-4553</orcidid><orcidid>https://orcid.org/0000-0003-0847-1715</orcidid><orcidid>https://orcid.org/0000-0002-9770-2345</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1935-2735
ispartof PLoS neglected tropical diseases, 2021-11, Vol.15 (11), p.e0009984-e0009984
issn 1935-2735
1935-2727
1935-2735
language eng
recordid cdi_plos_journals_2610942333
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Public Library of Science (PLoS); PubMed Central
subjects Aedes
Aedes - drug effects
Aedes - genetics
Aedes - immunology
Aedes - microbiology
Aedes albopictus
Animals
Antiinfectives and antibacterials
Aquatic insects
Bacteria
Bioassays
Biological assays
Biological control
Biology and Life Sciences
Culex - drug effects
Culex - genetics
Culex - immunology
Culex - microbiology
Culicidae
Disease outbreaks
Disease resistance
Eggs
Entomopathogenic fungi
Fungal infections
Fungi
Gene Expression
Genes
Immune response
Immune system
Immunity - genetics
Infections
Infectious diseases
Insect pests
Insecticide Resistance
Insecticides
Insects
Insects as carriers of disease
Medicine and Health Sciences
Microbiota
Microorganisms
Monophenol Monooxygenase - genetics
Monophenol Monooxygenase - metabolism
Mosquito Vectors - immunology
Mosquito Vectors - microbiology
Mosquitoes
Pathogens
Pest outbreaks
Pesticide resistance
Phenoloxidase
Phenotypes
Physiological aspects
Public health
Sucrose
Survival
Symbionts
Symbiosis
Tropical diseases
Vector Borne Diseases
Vectors
Wolbachia
Wolbachia - genetics
title Impacts of fungal entomopathogens on survival and immune responses of Aedes albopictus and Culex pipiens mosquitoes in the context of native Wolbachia infections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impacts%20of%20fungal%20entomopathogens%20on%20survival%20and%20immune%20responses%20of%20Aedes%20albopictus%20and%20Culex%20pipiens%20mosquitoes%20in%20the%20context%20of%20native%20Wolbachia%20infections&rft.jtitle=PLoS%20neglected%20tropical%20diseases&rft.au=Ramirez,%20Jose%20L&rft.date=2021-11-01&rft.volume=15&rft.issue=11&rft.spage=e0009984&rft.epage=e0009984&rft.pages=e0009984-e0009984&rft.issn=1935-2735&rft.eissn=1935-2735&rft_id=info:doi/10.1371/journal.pntd.0009984&rft_dat=%3Cgale_plos_%3EA685872732%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610942333&rft_id=info:pmid/34843477&rft_galeid=A685872732&rfr_iscdi=true