Prediction of post transarterial chemoembolization MR images of hepatocellular carcinoma using spatio-temporal graph convolutional networks
Magnetic resonance imaging (MRI) plays a critical role in the planning and monitoring of hepatocellular carcinomas (HCC) treated with locoregional therapies, in order to assess disease progression or recurrence. Dynamic contrast-enhanced (DCE)-MRI sequences offer temporal data on tumor enhancement c...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-12, Vol.16 (12), p.e0259692 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | e0259692 |
container_title | PloS one |
container_volume | 16 |
creator | Svecic, Andrei Mansour, Rihab Tang, An Kadoury, Samuel |
description | Magnetic resonance imaging (MRI) plays a critical role in the planning and monitoring of hepatocellular carcinomas (HCC) treated with locoregional therapies, in order to assess disease progression or recurrence. Dynamic contrast-enhanced (DCE)-MRI sequences offer temporal data on tumor enhancement characteristics which has strong prognostic value. Yet, predicting follow-up DCE-MR images from which tumor enhancement and viability can be measured, before treatment of HCC actually begins, remains an unsolved problem given the complexity of spatial and temporal information. We propose an approach to predict future DCE-MRI examinations following transarterial chemoembolization (TACE) by learning the spatio-temporal features related to HCC response from pre-TACE images. A novel Spatial-Temporal Discriminant Graph Neural Network (STDGNN) based on graph convolutional networks is presented. First, embeddings of viable, equivocal and non-viable HCCs are separated within a joint low-dimensional latent space, which is created using a discriminant neural network representing tumor-specific features. Spatial tumoral features from independent MRI volumes are then extracted with a structural branch, while dynamic features are extracted from the multi-phase sequence with a separate temporal branch. The model extracts spatio-temporal features by a joint minimization of the network branches. At testing, a pre-TACE diagnostic DCE-MRI is embedded on the discriminant spatio-temporal latent space, which is then translated to the follow-up domain space, thus allowing to predict the post-TACE DCE-MRI describing HCC treatment response. A dataset of 366 HCC's from liver cancer patients was used to train and test the model using DCE-MRI examinations with associated pathological outcomes, with the spatio-temporal framework yielding 93.5% classification accuracy in response identification, and generating follow-up images yielding insignificant differences in perfusion parameters compared to ground-truth post-TACE examinations. |
doi_str_mv | 10.1371/journal.pone.0259692 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2607597210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A685742438</galeid><doaj_id>oai_doaj_org_article_2a216f6ca61a4db1a4a0839132297d4e</doaj_id><sourcerecordid>A685742438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-dac78ccd196ca10db5b168e38e2e4ef838391ed00a74b7af8d4dfbe59e9938f23</originalsourceid><addsrcrecordid>eNqNk9uK1EAQhoMo7rr6BqIBQfRixj7k0LkRlsXDwMrKerhtKp1K0mOSjt3JengFX9rOTHaZyF5IIAmVr_6q-jsVBI8pWVOe0ldbM9oOmnVvOlwTFmdJxu4ExzTjbJUwwu8evB8FD5zbEhJzkST3gyMeiTTKeHQc_PlosdBq0KYLTRn2xg3hYKFzYAe0GppQ1dgabHPT6N-w4z5chrqFCt2UUWMPg1HYNGMDNlRgle5MC-HodFeFrp9yVgO2vbFerbLQ16Ey3ZVpxknNxzocfhj7zT0M7pXQOHw0P0-CL2_ffD57vzq_eLc5Oz1fqYSxYVWASoVSBc0SBZQUeZzTRCAXyDDCUnDBM4oFIZBGeQqlKKKizDHOMMu4KBk_CZ7udfvGODn76CRLSBpnKaPEE5s9URjYyt76ce0vaUDLXcDYSnp_tGpQMmA0KX0nCYWoyP0NyNQAZyxLiwi91uu52pi3WCjsvL_NQnT5pdO1rMyVFElMKRNe4MUsYM33Ed0gW-0mw6FDM-76Fr4cSSOPPvsHvX26marAD6C70vi6ahKVp4mI04hFfCq7voXyV4Gt9geIpfbxRcLLRYJnBvw5VDA6JzefLv-fvfi6ZJ8fsDVCM9Ru_nvcEoz2oLLGOYvljcmUyGlnrt2Q087IeWd82pPDA7pJul4S_he0MRX_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607597210</pqid></control><display><type>article</type><title>Prediction of post transarterial chemoembolization MR images of hepatocellular carcinoma using spatio-temporal graph convolutional networks</title><source>MEDLINE</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Svecic, Andrei ; Mansour, Rihab ; Tang, An ; Kadoury, Samuel</creator><contributor>Alpini, Gianfranco D.</contributor><creatorcontrib>Svecic, Andrei ; Mansour, Rihab ; Tang, An ; Kadoury, Samuel ; Alpini, Gianfranco D.</creatorcontrib><description>Magnetic resonance imaging (MRI) plays a critical role in the planning and monitoring of hepatocellular carcinomas (HCC) treated with locoregional therapies, in order to assess disease progression or recurrence. Dynamic contrast-enhanced (DCE)-MRI sequences offer temporal data on tumor enhancement characteristics which has strong prognostic value. Yet, predicting follow-up DCE-MR images from which tumor enhancement and viability can be measured, before treatment of HCC actually begins, remains an unsolved problem given the complexity of spatial and temporal information. We propose an approach to predict future DCE-MRI examinations following transarterial chemoembolization (TACE) by learning the spatio-temporal features related to HCC response from pre-TACE images. A novel Spatial-Temporal Discriminant Graph Neural Network (STDGNN) based on graph convolutional networks is presented. First, embeddings of viable, equivocal and non-viable HCCs are separated within a joint low-dimensional latent space, which is created using a discriminant neural network representing tumor-specific features. Spatial tumoral features from independent MRI volumes are then extracted with a structural branch, while dynamic features are extracted from the multi-phase sequence with a separate temporal branch. The model extracts spatio-temporal features by a joint minimization of the network branches. At testing, a pre-TACE diagnostic DCE-MRI is embedded on the discriminant spatio-temporal latent space, which is then translated to the follow-up domain space, thus allowing to predict the post-TACE DCE-MRI describing HCC treatment response. A dataset of 366 HCC's from liver cancer patients was used to train and test the model using DCE-MRI examinations with associated pathological outcomes, with the spatio-temporal framework yielding 93.5% classification accuracy in response identification, and generating follow-up images yielding insignificant differences in perfusion parameters compared to ground-truth post-TACE examinations.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0259692</identifier><identifier>PMID: 34874934</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aged ; Analysis ; Artificial neural networks ; Biology and Life Sciences ; Cancer therapies ; Carcinoma, Hepatocellular - therapy ; Care and treatment ; Chemoembolization ; Chemoembolization, Therapeutic - methods ; Chemotherapy ; Classification ; Computer and Information Sciences ; Computer engineering ; Deep learning ; Diagnosis ; Evaluation ; Feature extraction ; Female ; Graph neural networks ; Hepatocellular carcinoma ; Hepatoma ; Humans ; Image classification ; Image enhancement ; Liver cancer ; Liver Neoplasms - therapy ; Magnetic resonance ; Magnetic Resonance Imaging ; Male ; Medical imaging ; Medical imaging equipment ; Medical prognosis ; Medicine and Health Sciences ; Metastasis ; Middle Aged ; Model testing ; Morphology ; Neural networks ; Parameter identification ; Patients ; Perfusion ; Physical Sciences ; Radiographic Image Interpretation, Computer-Assisted - methods ; Research and Analysis Methods ; Sequences ; Spatio-Temporal Analysis ; Temporal discrimination learning ; Temporal variations ; Treatment Outcome ; Tumors</subject><ispartof>PloS one, 2021-12, Vol.16 (12), p.e0259692</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Svecic et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Svecic et al 2021 Svecic et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-dac78ccd196ca10db5b168e38e2e4ef838391ed00a74b7af8d4dfbe59e9938f23</citedby><cites>FETCH-LOGICAL-c622t-dac78ccd196ca10db5b168e38e2e4ef838391ed00a74b7af8d4dfbe59e9938f23</cites><orcidid>0000-0002-3048-4291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8651128/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8651128/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34874934$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Alpini, Gianfranco D.</contributor><creatorcontrib>Svecic, Andrei</creatorcontrib><creatorcontrib>Mansour, Rihab</creatorcontrib><creatorcontrib>Tang, An</creatorcontrib><creatorcontrib>Kadoury, Samuel</creatorcontrib><title>Prediction of post transarterial chemoembolization MR images of hepatocellular carcinoma using spatio-temporal graph convolutional networks</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Magnetic resonance imaging (MRI) plays a critical role in the planning and monitoring of hepatocellular carcinomas (HCC) treated with locoregional therapies, in order to assess disease progression or recurrence. Dynamic contrast-enhanced (DCE)-MRI sequences offer temporal data on tumor enhancement characteristics which has strong prognostic value. Yet, predicting follow-up DCE-MR images from which tumor enhancement and viability can be measured, before treatment of HCC actually begins, remains an unsolved problem given the complexity of spatial and temporal information. We propose an approach to predict future DCE-MRI examinations following transarterial chemoembolization (TACE) by learning the spatio-temporal features related to HCC response from pre-TACE images. A novel Spatial-Temporal Discriminant Graph Neural Network (STDGNN) based on graph convolutional networks is presented. First, embeddings of viable, equivocal and non-viable HCCs are separated within a joint low-dimensional latent space, which is created using a discriminant neural network representing tumor-specific features. Spatial tumoral features from independent MRI volumes are then extracted with a structural branch, while dynamic features are extracted from the multi-phase sequence with a separate temporal branch. The model extracts spatio-temporal features by a joint minimization of the network branches. At testing, a pre-TACE diagnostic DCE-MRI is embedded on the discriminant spatio-temporal latent space, which is then translated to the follow-up domain space, thus allowing to predict the post-TACE DCE-MRI describing HCC treatment response. A dataset of 366 HCC's from liver cancer patients was used to train and test the model using DCE-MRI examinations with associated pathological outcomes, with the spatio-temporal framework yielding 93.5% classification accuracy in response identification, and generating follow-up images yielding insignificant differences in perfusion parameters compared to ground-truth post-TACE examinations.</description><subject>Aged</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Biology and Life Sciences</subject><subject>Cancer therapies</subject><subject>Carcinoma, Hepatocellular - therapy</subject><subject>Care and treatment</subject><subject>Chemoembolization</subject><subject>Chemoembolization, Therapeutic - methods</subject><subject>Chemotherapy</subject><subject>Classification</subject><subject>Computer and Information Sciences</subject><subject>Computer engineering</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Evaluation</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Graph neural networks</subject><subject>Hepatocellular carcinoma</subject><subject>Hepatoma</subject><subject>Humans</subject><subject>Image classification</subject><subject>Image enhancement</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - therapy</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Medical imaging equipment</subject><subject>Medical prognosis</subject><subject>Medicine and Health Sciences</subject><subject>Metastasis</subject><subject>Middle Aged</subject><subject>Model testing</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Parameter identification</subject><subject>Patients</subject><subject>Perfusion</subject><subject>Physical Sciences</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Research and Analysis Methods</subject><subject>Sequences</subject><subject>Spatio-Temporal Analysis</subject><subject>Temporal discrimination learning</subject><subject>Temporal variations</subject><subject>Treatment Outcome</subject><subject>Tumors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9uK1EAQhoMo7rr6BqIBQfRixj7k0LkRlsXDwMrKerhtKp1K0mOSjt3JengFX9rOTHaZyF5IIAmVr_6q-jsVBI8pWVOe0ldbM9oOmnVvOlwTFmdJxu4ExzTjbJUwwu8evB8FD5zbEhJzkST3gyMeiTTKeHQc_PlosdBq0KYLTRn2xg3hYKFzYAe0GppQ1dgabHPT6N-w4z5chrqFCt2UUWMPg1HYNGMDNlRgle5MC-HodFeFrp9yVgO2vbFerbLQ16Ey3ZVpxknNxzocfhj7zT0M7pXQOHw0P0-CL2_ffD57vzq_eLc5Oz1fqYSxYVWASoVSBc0SBZQUeZzTRCAXyDDCUnDBM4oFIZBGeQqlKKKizDHOMMu4KBk_CZ7udfvGODn76CRLSBpnKaPEE5s9URjYyt76ce0vaUDLXcDYSnp_tGpQMmA0KX0nCYWoyP0NyNQAZyxLiwi91uu52pi3WCjsvL_NQnT5pdO1rMyVFElMKRNe4MUsYM33Ed0gW-0mw6FDM-76Fr4cSSOPPvsHvX26marAD6C70vi6ahKVp4mI04hFfCq7voXyV4Gt9geIpfbxRcLLRYJnBvw5VDA6JzefLv-fvfi6ZJ8fsDVCM9Ru_nvcEoz2oLLGOYvljcmUyGlnrt2Q087IeWd82pPDA7pJul4S_he0MRX_</recordid><startdate>20211207</startdate><enddate>20211207</enddate><creator>Svecic, Andrei</creator><creator>Mansour, Rihab</creator><creator>Tang, An</creator><creator>Kadoury, Samuel</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3048-4291</orcidid></search><sort><creationdate>20211207</creationdate><title>Prediction of post transarterial chemoembolization MR images of hepatocellular carcinoma using spatio-temporal graph convolutional networks</title><author>Svecic, Andrei ; Mansour, Rihab ; Tang, An ; Kadoury, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-dac78ccd196ca10db5b168e38e2e4ef838391ed00a74b7af8d4dfbe59e9938f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aged</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Biology and Life Sciences</topic><topic>Cancer therapies</topic><topic>Carcinoma, Hepatocellular - therapy</topic><topic>Care and treatment</topic><topic>Chemoembolization</topic><topic>Chemoembolization, Therapeutic - methods</topic><topic>Chemotherapy</topic><topic>Classification</topic><topic>Computer and Information Sciences</topic><topic>Computer engineering</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Evaluation</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Graph neural networks</topic><topic>Hepatocellular carcinoma</topic><topic>Hepatoma</topic><topic>Humans</topic><topic>Image classification</topic><topic>Image enhancement</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - therapy</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Medical imaging equipment</topic><topic>Medical prognosis</topic><topic>Medicine and Health Sciences</topic><topic>Metastasis</topic><topic>Middle Aged</topic><topic>Model testing</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Parameter identification</topic><topic>Patients</topic><topic>Perfusion</topic><topic>Physical Sciences</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Research and Analysis Methods</topic><topic>Sequences</topic><topic>Spatio-Temporal Analysis</topic><topic>Temporal discrimination learning</topic><topic>Temporal variations</topic><topic>Treatment Outcome</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svecic, Andrei</creatorcontrib><creatorcontrib>Mansour, Rihab</creatorcontrib><creatorcontrib>Tang, An</creatorcontrib><creatorcontrib>Kadoury, Samuel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svecic, Andrei</au><au>Mansour, Rihab</au><au>Tang, An</au><au>Kadoury, Samuel</au><au>Alpini, Gianfranco D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of post transarterial chemoembolization MR images of hepatocellular carcinoma using spatio-temporal graph convolutional networks</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-12-07</date><risdate>2021</risdate><volume>16</volume><issue>12</issue><spage>e0259692</spage><pages>e0259692-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Magnetic resonance imaging (MRI) plays a critical role in the planning and monitoring of hepatocellular carcinomas (HCC) treated with locoregional therapies, in order to assess disease progression or recurrence. Dynamic contrast-enhanced (DCE)-MRI sequences offer temporal data on tumor enhancement characteristics which has strong prognostic value. Yet, predicting follow-up DCE-MR images from which tumor enhancement and viability can be measured, before treatment of HCC actually begins, remains an unsolved problem given the complexity of spatial and temporal information. We propose an approach to predict future DCE-MRI examinations following transarterial chemoembolization (TACE) by learning the spatio-temporal features related to HCC response from pre-TACE images. A novel Spatial-Temporal Discriminant Graph Neural Network (STDGNN) based on graph convolutional networks is presented. First, embeddings of viable, equivocal and non-viable HCCs are separated within a joint low-dimensional latent space, which is created using a discriminant neural network representing tumor-specific features. Spatial tumoral features from independent MRI volumes are then extracted with a structural branch, while dynamic features are extracted from the multi-phase sequence with a separate temporal branch. The model extracts spatio-temporal features by a joint minimization of the network branches. At testing, a pre-TACE diagnostic DCE-MRI is embedded on the discriminant spatio-temporal latent space, which is then translated to the follow-up domain space, thus allowing to predict the post-TACE DCE-MRI describing HCC treatment response. A dataset of 366 HCC's from liver cancer patients was used to train and test the model using DCE-MRI examinations with associated pathological outcomes, with the spatio-temporal framework yielding 93.5% classification accuracy in response identification, and generating follow-up images yielding insignificant differences in perfusion parameters compared to ground-truth post-TACE examinations.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34874934</pmid><doi>10.1371/journal.pone.0259692</doi><tpages>e0259692</tpages><orcidid>https://orcid.org/0000-0002-3048-4291</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-12, Vol.16 (12), p.e0259692 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2607597210 |
source | MEDLINE; Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aged Analysis Artificial neural networks Biology and Life Sciences Cancer therapies Carcinoma, Hepatocellular - therapy Care and treatment Chemoembolization Chemoembolization, Therapeutic - methods Chemotherapy Classification Computer and Information Sciences Computer engineering Deep learning Diagnosis Evaluation Feature extraction Female Graph neural networks Hepatocellular carcinoma Hepatoma Humans Image classification Image enhancement Liver cancer Liver Neoplasms - therapy Magnetic resonance Magnetic Resonance Imaging Male Medical imaging Medical imaging equipment Medical prognosis Medicine and Health Sciences Metastasis Middle Aged Model testing Morphology Neural networks Parameter identification Patients Perfusion Physical Sciences Radiographic Image Interpretation, Computer-Assisted - methods Research and Analysis Methods Sequences Spatio-Temporal Analysis Temporal discrimination learning Temporal variations Treatment Outcome Tumors |
title | Prediction of post transarterial chemoembolization MR images of hepatocellular carcinoma using spatio-temporal graph convolutional networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A54%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20post%20transarterial%20chemoembolization%20MR%20images%20of%20hepatocellular%20carcinoma%20using%20spatio-temporal%20graph%20convolutional%20networks&rft.jtitle=PloS%20one&rft.au=Svecic,%20Andrei&rft.date=2021-12-07&rft.volume=16&rft.issue=12&rft.spage=e0259692&rft.pages=e0259692-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0259692&rft_dat=%3Cgale_plos_%3EA685742438%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607597210&rft_id=info:pmid/34874934&rft_galeid=A685742438&rft_doaj_id=oai_doaj_org_article_2a216f6ca61a4db1a4a0839132297d4e&rfr_iscdi=true |