Serial measurement of cytokines strongly predict COVID-19 outcome

Purpose Cytokines are major mediators of COVID-19 pathogenesis and several of them are already being regarded as predictive markers for the clinical course and outcome of COVID-19 cases. A major pitfall of many COVID-19 cytokine studies is the lack of a benchmark sampling timing. Since cytokines and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-12, Vol.16 (12), p.e0260623-e0260623
Hauptverfasser: Ozger, Hasan Selcuk, Karakus, Resul, Kuscu, Elif Nazli, Bagriacik, Umit Emin, Oruklu, Nihan, Yaman, Melek, Turkoglu, Melda, Erbas, Gonca, Atak, Aysegul Yucel, Senol, Esin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0260623
container_issue 12
container_start_page e0260623
container_title PloS one
container_volume 16
creator Ozger, Hasan Selcuk
Karakus, Resul
Kuscu, Elif Nazli
Bagriacik, Umit Emin
Oruklu, Nihan
Yaman, Melek
Turkoglu, Melda
Erbas, Gonca
Atak, Aysegul Yucel
Senol, Esin
description Purpose Cytokines are major mediators of COVID-19 pathogenesis and several of them are already being regarded as predictive markers for the clinical course and outcome of COVID-19 cases. A major pitfall of many COVID-19 cytokine studies is the lack of a benchmark sampling timing. Since cytokines and their relative change during an infectious disease course is quite dynamic, we evaluated the predictive value of serially measured cytokines for COVID-19 cases. Methods In this single-center, prospective study, a broad spectrum of cytokines were determined by multiplex ELISA assay in samples collected at admission and at the third day of hospitalization. Appropriateness of cytokine levels in predicting mortality were assessed by receiver-operating characteristic (ROC) analyses for both sampling times in paralel to conventional biomarkers. Results At both sampling points, higher levels of IL-6, IL-7, IL-10, IL-15, IL-27 IP-10, MCP-1, and GCSF were found to be more predictive for mortality (p
doi_str_mv 10.1371/journal.pone.0260623
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2605598851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684621315</galeid><doaj_id>oai_doaj_org_article_bb3ae35fbb6d4d17b41297cf5ca27795</doaj_id><sourcerecordid>A684621315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-8b3c36486ae7203f5fc589e1536921cafdf783d82768af29a7464a66a75e8bf23</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7of-A8GCIOvFjE3z0fRGGMavgYUBV_c2pOnJTMa0GZNUnH9vZqfKVvZCcpFw8pz3nPdwsuwFKuYIV-jtzg2-l3a-dz3Mi5IVrMSPsnNU43LGygI_vvc-yy5C2BUFxZyxp9kZJpxSjsl5trgBb6TNO5Bh8NBBH3Onc3WI7rvpIeQhetdv7CHfe2iNivlyfbt6P0N17oaoXAfPsida2gDPx_sy-_bxw9fl59n1-tNqubieKcbqOOMNVpgRziRUqSNNtaK8BkQxq0ukpG51xXHLy4pxqctaVoQRyZisKPBGl_gye3nS3VsXxOg-iGSc0ppzihKxOhGtkzux96aT_iCcNOIu4PxGSB-NsiCaBkvAVDcNa0mLqoagsq6UpkqWVVXTpPVurDY0HbQqzcVLOxGd_vRmKzbup-AM10VRJIGrUcC7HwOEKDoTFFgre3DDXd_JOCHk2Perf9CH3Y3URiYDptcu1VVHUbFgnLASYXTse_4AlU4LnVFpVbRJ8UnCm0lCYiL8ihs5hCBWN1_-n13fTtnX99gtSBu3wdkhGteHKUhOoPIuBA_675BRIY6b_mca4rjpYtx0_Bs2eu0v</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605598851</pqid></control><display><type>article</type><title>Serial measurement of cytokines strongly predict COVID-19 outcome</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ozger, Hasan Selcuk ; Karakus, Resul ; Kuscu, Elif Nazli ; Bagriacik, Umit Emin ; Oruklu, Nihan ; Yaman, Melek ; Turkoglu, Melda ; Erbas, Gonca ; Atak, Aysegul Yucel ; Senol, Esin</creator><contributor>Ito, Etsuro</contributor><creatorcontrib>Ozger, Hasan Selcuk ; Karakus, Resul ; Kuscu, Elif Nazli ; Bagriacik, Umit Emin ; Oruklu, Nihan ; Yaman, Melek ; Turkoglu, Melda ; Erbas, Gonca ; Atak, Aysegul Yucel ; Senol, Esin ; Ito, Etsuro</creatorcontrib><description>Purpose Cytokines are major mediators of COVID-19 pathogenesis and several of them are already being regarded as predictive markers for the clinical course and outcome of COVID-19 cases. A major pitfall of many COVID-19 cytokine studies is the lack of a benchmark sampling timing. Since cytokines and their relative change during an infectious disease course is quite dynamic, we evaluated the predictive value of serially measured cytokines for COVID-19 cases. Methods In this single-center, prospective study, a broad spectrum of cytokines were determined by multiplex ELISA assay in samples collected at admission and at the third day of hospitalization. Appropriateness of cytokine levels in predicting mortality were assessed by receiver-operating characteristic (ROC) analyses for both sampling times in paralel to conventional biomarkers. Results At both sampling points, higher levels of IL-6, IL-7, IL-10, IL-15, IL-27 IP-10, MCP-1, and GCSF were found to be more predictive for mortality (p&lt;0.05). Some of these cytokines, such as IL-6, IL-10, IL-7 and GCSF, had higher sensitivity and specificity in predicting mortality. AUC values of IL-6, IL-10, IL-7 and GCSF were 0.85 (0.65 to 0.92), 0.88 (0.73 to 0.96), 0.80 (0.63 to 0.91) and 0.86 (0.70 to 0.95), respectively at hospital admission. Compared to hospital admission, on the 3rd day of hospitalization serum levels of IL-6 and, IL-10 decreased significantly in the survivor group, unlike the non-survivor group (IL-6, p = 0.015, and IL-10, p = 0.016). Conclusion Our study results suggest that single-sample-based cytokine analyzes can be misleading and that cytokine levels measured serially at different sampling times provide a more precise and accurate estimate for the outcome of COVID-19 patients.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0260623</identifier><identifier>PMID: 34855834</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Biology and Life Sciences ; Biomarkers ; Chemokines ; Coronaviruses ; COVID-19 ; Cytokines ; Enzyme-linked immunosorbent assay ; Health aspects ; Hospitalization ; Immunology ; Infections ; Infectious diseases ; Interleukin 10 ; Interleukin 15 ; Interleukin 27 ; Interleukin 6 ; Interleukin 7 ; IP-10 protein ; Measurement ; Medicine ; Medicine and Health Sciences ; Monocyte chemoattractant protein 1 ; Mortality ; Normal distribution ; Pathogenesis ; Pneumonia ; Proteins ; Public health ; Respiratory diseases ; Sampling ; Serum levels ; Severe acute respiratory syndrome coronavirus 2 ; Tumor necrosis factor-TNF</subject><ispartof>PloS one, 2021-12, Vol.16 (12), p.e0260623-e0260623</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Ozger et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Ozger et al 2021 Ozger et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-8b3c36486ae7203f5fc589e1536921cafdf783d82768af29a7464a66a75e8bf23</citedby><cites>FETCH-LOGICAL-c669t-8b3c36486ae7203f5fc589e1536921cafdf783d82768af29a7464a66a75e8bf23</cites><orcidid>0000-0003-2654-6119 ; 0000-0003-3894-0092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639000/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639000/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids></links><search><contributor>Ito, Etsuro</contributor><creatorcontrib>Ozger, Hasan Selcuk</creatorcontrib><creatorcontrib>Karakus, Resul</creatorcontrib><creatorcontrib>Kuscu, Elif Nazli</creatorcontrib><creatorcontrib>Bagriacik, Umit Emin</creatorcontrib><creatorcontrib>Oruklu, Nihan</creatorcontrib><creatorcontrib>Yaman, Melek</creatorcontrib><creatorcontrib>Turkoglu, Melda</creatorcontrib><creatorcontrib>Erbas, Gonca</creatorcontrib><creatorcontrib>Atak, Aysegul Yucel</creatorcontrib><creatorcontrib>Senol, Esin</creatorcontrib><title>Serial measurement of cytokines strongly predict COVID-19 outcome</title><title>PloS one</title><description>Purpose Cytokines are major mediators of COVID-19 pathogenesis and several of them are already being regarded as predictive markers for the clinical course and outcome of COVID-19 cases. A major pitfall of many COVID-19 cytokine studies is the lack of a benchmark sampling timing. Since cytokines and their relative change during an infectious disease course is quite dynamic, we evaluated the predictive value of serially measured cytokines for COVID-19 cases. Methods In this single-center, prospective study, a broad spectrum of cytokines were determined by multiplex ELISA assay in samples collected at admission and at the third day of hospitalization. Appropriateness of cytokine levels in predicting mortality were assessed by receiver-operating characteristic (ROC) analyses for both sampling times in paralel to conventional biomarkers. Results At both sampling points, higher levels of IL-6, IL-7, IL-10, IL-15, IL-27 IP-10, MCP-1, and GCSF were found to be more predictive for mortality (p&lt;0.05). Some of these cytokines, such as IL-6, IL-10, IL-7 and GCSF, had higher sensitivity and specificity in predicting mortality. AUC values of IL-6, IL-10, IL-7 and GCSF were 0.85 (0.65 to 0.92), 0.88 (0.73 to 0.96), 0.80 (0.63 to 0.91) and 0.86 (0.70 to 0.95), respectively at hospital admission. Compared to hospital admission, on the 3rd day of hospitalization serum levels of IL-6 and, IL-10 decreased significantly in the survivor group, unlike the non-survivor group (IL-6, p = 0.015, and IL-10, p = 0.016). Conclusion Our study results suggest that single-sample-based cytokine analyzes can be misleading and that cytokine levels measured serially at different sampling times provide a more precise and accurate estimate for the outcome of COVID-19 patients.</description><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Chemokines</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Cytokines</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Health aspects</subject><subject>Hospitalization</subject><subject>Immunology</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Interleukin 10</subject><subject>Interleukin 15</subject><subject>Interleukin 27</subject><subject>Interleukin 6</subject><subject>Interleukin 7</subject><subject>IP-10 protein</subject><subject>Measurement</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Mortality</subject><subject>Normal distribution</subject><subject>Pathogenesis</subject><subject>Pneumonia</subject><subject>Proteins</subject><subject>Public health</subject><subject>Respiratory diseases</subject><subject>Sampling</subject><subject>Serum levels</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Tumor necrosis factor-TNF</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7of-A8GCIOvFjE3z0fRGGMavgYUBV_c2pOnJTMa0GZNUnH9vZqfKVvZCcpFw8pz3nPdwsuwFKuYIV-jtzg2-l3a-dz3Mi5IVrMSPsnNU43LGygI_vvc-yy5C2BUFxZyxp9kZJpxSjsl5trgBb6TNO5Bh8NBBH3Onc3WI7rvpIeQhetdv7CHfe2iNivlyfbt6P0N17oaoXAfPsida2gDPx_sy-_bxw9fl59n1-tNqubieKcbqOOMNVpgRziRUqSNNtaK8BkQxq0ukpG51xXHLy4pxqctaVoQRyZisKPBGl_gye3nS3VsXxOg-iGSc0ppzihKxOhGtkzux96aT_iCcNOIu4PxGSB-NsiCaBkvAVDcNa0mLqoagsq6UpkqWVVXTpPVurDY0HbQqzcVLOxGd_vRmKzbup-AM10VRJIGrUcC7HwOEKDoTFFgre3DDXd_JOCHk2Perf9CH3Y3URiYDptcu1VVHUbFgnLASYXTse_4AlU4LnVFpVbRJ8UnCm0lCYiL8ihs5hCBWN1_-n13fTtnX99gtSBu3wdkhGteHKUhOoPIuBA_675BRIY6b_mca4rjpYtx0_Bs2eu0v</recordid><startdate>20211202</startdate><enddate>20211202</enddate><creator>Ozger, Hasan Selcuk</creator><creator>Karakus, Resul</creator><creator>Kuscu, Elif Nazli</creator><creator>Bagriacik, Umit Emin</creator><creator>Oruklu, Nihan</creator><creator>Yaman, Melek</creator><creator>Turkoglu, Melda</creator><creator>Erbas, Gonca</creator><creator>Atak, Aysegul Yucel</creator><creator>Senol, Esin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2654-6119</orcidid><orcidid>https://orcid.org/0000-0003-3894-0092</orcidid></search><sort><creationdate>20211202</creationdate><title>Serial measurement of cytokines strongly predict COVID-19 outcome</title><author>Ozger, Hasan Selcuk ; Karakus, Resul ; Kuscu, Elif Nazli ; Bagriacik, Umit Emin ; Oruklu, Nihan ; Yaman, Melek ; Turkoglu, Melda ; Erbas, Gonca ; Atak, Aysegul Yucel ; Senol, Esin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-8b3c36486ae7203f5fc589e1536921cafdf783d82768af29a7464a66a75e8bf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Chemokines</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Cytokines</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Health aspects</topic><topic>Hospitalization</topic><topic>Immunology</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Interleukin 10</topic><topic>Interleukin 15</topic><topic>Interleukin 27</topic><topic>Interleukin 6</topic><topic>Interleukin 7</topic><topic>IP-10 protein</topic><topic>Measurement</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Mortality</topic><topic>Normal distribution</topic><topic>Pathogenesis</topic><topic>Pneumonia</topic><topic>Proteins</topic><topic>Public health</topic><topic>Respiratory diseases</topic><topic>Sampling</topic><topic>Serum levels</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Tumor necrosis factor-TNF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozger, Hasan Selcuk</creatorcontrib><creatorcontrib>Karakus, Resul</creatorcontrib><creatorcontrib>Kuscu, Elif Nazli</creatorcontrib><creatorcontrib>Bagriacik, Umit Emin</creatorcontrib><creatorcontrib>Oruklu, Nihan</creatorcontrib><creatorcontrib>Yaman, Melek</creatorcontrib><creatorcontrib>Turkoglu, Melda</creatorcontrib><creatorcontrib>Erbas, Gonca</creatorcontrib><creatorcontrib>Atak, Aysegul Yucel</creatorcontrib><creatorcontrib>Senol, Esin</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozger, Hasan Selcuk</au><au>Karakus, Resul</au><au>Kuscu, Elif Nazli</au><au>Bagriacik, Umit Emin</au><au>Oruklu, Nihan</au><au>Yaman, Melek</au><au>Turkoglu, Melda</au><au>Erbas, Gonca</au><au>Atak, Aysegul Yucel</au><au>Senol, Esin</au><au>Ito, Etsuro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Serial measurement of cytokines strongly predict COVID-19 outcome</atitle><jtitle>PloS one</jtitle><date>2021-12-02</date><risdate>2021</risdate><volume>16</volume><issue>12</issue><spage>e0260623</spage><epage>e0260623</epage><pages>e0260623-e0260623</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Purpose Cytokines are major mediators of COVID-19 pathogenesis and several of them are already being regarded as predictive markers for the clinical course and outcome of COVID-19 cases. A major pitfall of many COVID-19 cytokine studies is the lack of a benchmark sampling timing. Since cytokines and their relative change during an infectious disease course is quite dynamic, we evaluated the predictive value of serially measured cytokines for COVID-19 cases. Methods In this single-center, prospective study, a broad spectrum of cytokines were determined by multiplex ELISA assay in samples collected at admission and at the third day of hospitalization. Appropriateness of cytokine levels in predicting mortality were assessed by receiver-operating characteristic (ROC) analyses for both sampling times in paralel to conventional biomarkers. Results At both sampling points, higher levels of IL-6, IL-7, IL-10, IL-15, IL-27 IP-10, MCP-1, and GCSF were found to be more predictive for mortality (p&lt;0.05). Some of these cytokines, such as IL-6, IL-10, IL-7 and GCSF, had higher sensitivity and specificity in predicting mortality. AUC values of IL-6, IL-10, IL-7 and GCSF were 0.85 (0.65 to 0.92), 0.88 (0.73 to 0.96), 0.80 (0.63 to 0.91) and 0.86 (0.70 to 0.95), respectively at hospital admission. Compared to hospital admission, on the 3rd day of hospitalization serum levels of IL-6 and, IL-10 decreased significantly in the survivor group, unlike the non-survivor group (IL-6, p = 0.015, and IL-10, p = 0.016). Conclusion Our study results suggest that single-sample-based cytokine analyzes can be misleading and that cytokine levels measured serially at different sampling times provide a more precise and accurate estimate for the outcome of COVID-19 patients.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34855834</pmid><doi>10.1371/journal.pone.0260623</doi><tpages>e0260623</tpages><orcidid>https://orcid.org/0000-0003-2654-6119</orcidid><orcidid>https://orcid.org/0000-0003-3894-0092</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-12, Vol.16 (12), p.e0260623-e0260623
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2605598851
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Biology and Life Sciences
Biomarkers
Chemokines
Coronaviruses
COVID-19
Cytokines
Enzyme-linked immunosorbent assay
Health aspects
Hospitalization
Immunology
Infections
Infectious diseases
Interleukin 10
Interleukin 15
Interleukin 27
Interleukin 6
Interleukin 7
IP-10 protein
Measurement
Medicine
Medicine and Health Sciences
Monocyte chemoattractant protein 1
Mortality
Normal distribution
Pathogenesis
Pneumonia
Proteins
Public health
Respiratory diseases
Sampling
Serum levels
Severe acute respiratory syndrome coronavirus 2
Tumor necrosis factor-TNF
title Serial measurement of cytokines strongly predict COVID-19 outcome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Serial%20measurement%20of%20cytokines%20strongly%20predict%20COVID-19%20outcome&rft.jtitle=PloS%20one&rft.au=Ozger,%20Hasan%20Selcuk&rft.date=2021-12-02&rft.volume=16&rft.issue=12&rft.spage=e0260623&rft.epage=e0260623&rft.pages=e0260623-e0260623&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0260623&rft_dat=%3Cgale_plos_%3EA684621315%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605598851&rft_id=info:pmid/34855834&rft_galeid=A684621315&rft_doaj_id=oai_doaj_org_article_bb3ae35fbb6d4d17b41297cf5ca27795&rfr_iscdi=true