Fire behaviors along timber linings affixed to tunnel walls in mines
Timber linings are applied as primary supports in the tunnel fault and fracture zones of mines. These linings are essential to prevent broken rock from falling during the occurrence of exogenous fires. In this study, experiments and numerical simulations were carried out using a fire dynamics simula...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-12, Vol.16 (12), p.e0260655-e0260655 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0260655 |
---|---|
container_issue | 12 |
container_start_page | e0260655 |
container_title | PloS one |
container_volume | 16 |
creator | Gao, Ke Liu, Zimeng Tao, Changfa Tang, Zhiqiang Aiyiti, Yisimayili Shi, Lianzeng |
description | Timber linings are applied as primary supports in the tunnel fault and fracture zones of mines. These linings are essential to prevent broken rock from falling during the occurrence of exogenous fires. In this study, experiments and numerical simulations were carried out using a fire dynamics simulator to investigate the flame-spread rate, flame characteristics, smoke movement, and spread process of timber-lining fires under different wind speeds of 0, 0.25, 0.5, and 0.75 m/s. It was found that cross-section flame spreading follows the three-stage sidewall-ceiling-sidewall pattern. Moreover, the average flame-spread rate increases along the vertical flame-spreading direction and decreases when the flame reaches the timber-lining corners. Moreover, the flame lengths underneath the timber-lining ceiling in the x-direction are longer than those in the y-direction. As the wind speed increases, the normalized flame lengths R(f) in the two directions decrease, and the maximum temperature underneath the ceiling decreases. In addition, the maximum temperature in the three tunnel sections of interest is first recorded in the tunnel cross-section in the initial fire stage. Higher wind speeds correspond to farther distances of the maximum-temperature points of the three timber-lining sections from the fire source. |
doi_str_mv | 10.1371/journal.pone.0260655 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2605598117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684621140</galeid><doaj_id>oai_doaj_org_article_c185dc4fe1a94d1c824b07a675c81f51</doaj_id><sourcerecordid>A684621140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-8a1fcb3d755b010ecbc208990fa307247fd180cea8b197b0ef8ece0d044ca1bf3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqXwDxBEQkJw2MVObMe5IFWFwkqVKvF1tRxnnPXKsbd2Usq_x9tNqw3qAflga_zMO57xm2UvMVrissIfNn4MTtrl1jtYooIhRumj7BjXZbFgBSofH5yPsmcxbhCiJWfsaXZUEk4pL9hx9uncBMgbWMtr40PMpfWuywfTNxBya5xxXQpqbW6gzQefD6NzYPPf0tqYG5f3xkF8nj3R0kZ4Me0n2c_zzz_Ovi4uLr-szk4vFooRPCy4xFo1ZVtR2iCMQDWqQLyukZYlqgpS6RZzpEDyBtdVg0BzUIBaRIiSuNHlSfZ6r7u1PoppAFGk3imtOcZVIlZ7ovVyI7bB9DL8EV4acRvwoRMyDEZZEApz2iqiAcuatFjxgjSokqyiimNNcdL6OFUbmx5aBW4I0s5E5zfOrEXnrwVnZY1RkQTeTQLBX40QB9GbqMBa6cCPt-9mdUFIjRL65h_04e4mqpOpAeO0T3XVTlScMk5YgTHZaS0foNJqoTcquUWbFJ8lvJ8lJGaAm6GTY4xi9f3b_7OXv-bs2wN2DdIO6-jtOBjv4hwke1AFH2MAfT9kjMTO7HfTEDuzi8nsKe3V4QfdJ925u_wLQDP5Ew</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605598117</pqid></control><display><type>article</type><title>Fire behaviors along timber linings affixed to tunnel walls in mines</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gao, Ke ; Liu, Zimeng ; Tao, Changfa ; Tang, Zhiqiang ; Aiyiti, Yisimayili ; Shi, Lianzeng</creator><contributor>Tian, Fang-Bao</contributor><creatorcontrib>Gao, Ke ; Liu, Zimeng ; Tao, Changfa ; Tang, Zhiqiang ; Aiyiti, Yisimayili ; Shi, Lianzeng ; Tian, Fang-Bao</creatorcontrib><description>Timber linings are applied as primary supports in the tunnel fault and fracture zones of mines. These linings are essential to prevent broken rock from falling during the occurrence of exogenous fires. In this study, experiments and numerical simulations were carried out using a fire dynamics simulator to investigate the flame-spread rate, flame characteristics, smoke movement, and spread process of timber-lining fires under different wind speeds of 0, 0.25, 0.5, and 0.75 m/s. It was found that cross-section flame spreading follows the three-stage sidewall-ceiling-sidewall pattern. Moreover, the average flame-spread rate increases along the vertical flame-spreading direction and decreases when the flame reaches the timber-lining corners. Moreover, the flame lengths underneath the timber-lining ceiling in the x-direction are longer than those in the y-direction. As the wind speed increases, the normalized flame lengths R(f) in the two directions decrease, and the maximum temperature underneath the ceiling decreases. In addition, the maximum temperature in the three tunnel sections of interest is first recorded in the tunnel cross-section in the initial fire stage. Higher wind speeds correspond to farther distances of the maximum-temperature points of the three timber-lining sections from the fire source.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0260655</identifier><identifier>PMID: 34855826</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Cameras ; Ceilings ; Computer Simulation ; Cross-sections ; Disasters ; Earth Sciences ; Ecology and Environmental Sciences ; Education ; Engineering ; Engineering and Technology ; Engineering research ; Experiments ; Fire prevention ; Fires ; Laboratories ; Materials ; Maximum temperatures ; Mine safety ; Mine shafts ; Mines ; Mining ; Models, Theoretical ; Numerical simulations ; Physical Sciences ; Prevention ; Properties ; Research and Analysis Methods ; Safety and security measures ; Smoke ; Smoke - analysis ; Temperature ; Thermocouples ; Timber ; Traffic control ; Tunnel lining ; Tunnel linings ; Tunnels ; Wind ; Wind speed</subject><ispartof>PloS one, 2021-12, Vol.16 (12), p.e0260655-e0260655</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Gao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Gao et al 2021 Gao et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c641t-8a1fcb3d755b010ecbc208990fa307247fd180cea8b197b0ef8ece0d044ca1bf3</cites><orcidid>0000-0002-7211-6403 ; 0000-0002-5761-4113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639102/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639102/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34855826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Tian, Fang-Bao</contributor><creatorcontrib>Gao, Ke</creatorcontrib><creatorcontrib>Liu, Zimeng</creatorcontrib><creatorcontrib>Tao, Changfa</creatorcontrib><creatorcontrib>Tang, Zhiqiang</creatorcontrib><creatorcontrib>Aiyiti, Yisimayili</creatorcontrib><creatorcontrib>Shi, Lianzeng</creatorcontrib><title>Fire behaviors along timber linings affixed to tunnel walls in mines</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Timber linings are applied as primary supports in the tunnel fault and fracture zones of mines. These linings are essential to prevent broken rock from falling during the occurrence of exogenous fires. In this study, experiments and numerical simulations were carried out using a fire dynamics simulator to investigate the flame-spread rate, flame characteristics, smoke movement, and spread process of timber-lining fires under different wind speeds of 0, 0.25, 0.5, and 0.75 m/s. It was found that cross-section flame spreading follows the three-stage sidewall-ceiling-sidewall pattern. Moreover, the average flame-spread rate increases along the vertical flame-spreading direction and decreases when the flame reaches the timber-lining corners. Moreover, the flame lengths underneath the timber-lining ceiling in the x-direction are longer than those in the y-direction. As the wind speed increases, the normalized flame lengths R(f) in the two directions decrease, and the maximum temperature underneath the ceiling decreases. In addition, the maximum temperature in the three tunnel sections of interest is first recorded in the tunnel cross-section in the initial fire stage. Higher wind speeds correspond to farther distances of the maximum-temperature points of the three timber-lining sections from the fire source.</description><subject>Biology and Life Sciences</subject><subject>Cameras</subject><subject>Ceilings</subject><subject>Computer Simulation</subject><subject>Cross-sections</subject><subject>Disasters</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Education</subject><subject>Engineering</subject><subject>Engineering and Technology</subject><subject>Engineering research</subject><subject>Experiments</subject><subject>Fire prevention</subject><subject>Fires</subject><subject>Laboratories</subject><subject>Materials</subject><subject>Maximum temperatures</subject><subject>Mine safety</subject><subject>Mine shafts</subject><subject>Mines</subject><subject>Mining</subject><subject>Models, Theoretical</subject><subject>Numerical simulations</subject><subject>Physical Sciences</subject><subject>Prevention</subject><subject>Properties</subject><subject>Research and Analysis Methods</subject><subject>Safety and security measures</subject><subject>Smoke</subject><subject>Smoke - analysis</subject><subject>Temperature</subject><subject>Thermocouples</subject><subject>Timber</subject><subject>Traffic control</subject><subject>Tunnel lining</subject><subject>Tunnel linings</subject><subject>Tunnels</subject><subject>Wind</subject><subject>Wind speed</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiMEoqXwDxBEQkJw2MVObMe5IFWFwkqVKvF1tRxnnPXKsbd2Usq_x9tNqw3qAflga_zMO57xm2UvMVrissIfNn4MTtrl1jtYooIhRumj7BjXZbFgBSofH5yPsmcxbhCiJWfsaXZUEk4pL9hx9uncBMgbWMtr40PMpfWuywfTNxBya5xxXQpqbW6gzQefD6NzYPPf0tqYG5f3xkF8nj3R0kZ4Me0n2c_zzz_Ovi4uLr-szk4vFooRPCy4xFo1ZVtR2iCMQDWqQLyukZYlqgpS6RZzpEDyBtdVg0BzUIBaRIiSuNHlSfZ6r7u1PoppAFGk3imtOcZVIlZ7ovVyI7bB9DL8EV4acRvwoRMyDEZZEApz2iqiAcuatFjxgjSokqyiimNNcdL6OFUbmx5aBW4I0s5E5zfOrEXnrwVnZY1RkQTeTQLBX40QB9GbqMBa6cCPt-9mdUFIjRL65h_04e4mqpOpAeO0T3XVTlScMk5YgTHZaS0foNJqoTcquUWbFJ8lvJ8lJGaAm6GTY4xi9f3b_7OXv-bs2wN2DdIO6-jtOBjv4hwke1AFH2MAfT9kjMTO7HfTEDuzi8nsKe3V4QfdJ925u_wLQDP5Ew</recordid><startdate>20211202</startdate><enddate>20211202</enddate><creator>Gao, Ke</creator><creator>Liu, Zimeng</creator><creator>Tao, Changfa</creator><creator>Tang, Zhiqiang</creator><creator>Aiyiti, Yisimayili</creator><creator>Shi, Lianzeng</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7211-6403</orcidid><orcidid>https://orcid.org/0000-0002-5761-4113</orcidid></search><sort><creationdate>20211202</creationdate><title>Fire behaviors along timber linings affixed to tunnel walls in mines</title><author>Gao, Ke ; Liu, Zimeng ; Tao, Changfa ; Tang, Zhiqiang ; Aiyiti, Yisimayili ; Shi, Lianzeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-8a1fcb3d755b010ecbc208990fa307247fd180cea8b197b0ef8ece0d044ca1bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biology and Life Sciences</topic><topic>Cameras</topic><topic>Ceilings</topic><topic>Computer Simulation</topic><topic>Cross-sections</topic><topic>Disasters</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Education</topic><topic>Engineering</topic><topic>Engineering and Technology</topic><topic>Engineering research</topic><topic>Experiments</topic><topic>Fire prevention</topic><topic>Fires</topic><topic>Laboratories</topic><topic>Materials</topic><topic>Maximum temperatures</topic><topic>Mine safety</topic><topic>Mine shafts</topic><topic>Mines</topic><topic>Mining</topic><topic>Models, Theoretical</topic><topic>Numerical simulations</topic><topic>Physical Sciences</topic><topic>Prevention</topic><topic>Properties</topic><topic>Research and Analysis Methods</topic><topic>Safety and security measures</topic><topic>Smoke</topic><topic>Smoke - analysis</topic><topic>Temperature</topic><topic>Thermocouples</topic><topic>Timber</topic><topic>Traffic control</topic><topic>Tunnel lining</topic><topic>Tunnel linings</topic><topic>Tunnels</topic><topic>Wind</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Ke</creatorcontrib><creatorcontrib>Liu, Zimeng</creatorcontrib><creatorcontrib>Tao, Changfa</creatorcontrib><creatorcontrib>Tang, Zhiqiang</creatorcontrib><creatorcontrib>Aiyiti, Yisimayili</creatorcontrib><creatorcontrib>Shi, Lianzeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Ke</au><au>Liu, Zimeng</au><au>Tao, Changfa</au><au>Tang, Zhiqiang</au><au>Aiyiti, Yisimayili</au><au>Shi, Lianzeng</au><au>Tian, Fang-Bao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fire behaviors along timber linings affixed to tunnel walls in mines</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-12-02</date><risdate>2021</risdate><volume>16</volume><issue>12</issue><spage>e0260655</spage><epage>e0260655</epage><pages>e0260655-e0260655</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Timber linings are applied as primary supports in the tunnel fault and fracture zones of mines. These linings are essential to prevent broken rock from falling during the occurrence of exogenous fires. In this study, experiments and numerical simulations were carried out using a fire dynamics simulator to investigate the flame-spread rate, flame characteristics, smoke movement, and spread process of timber-lining fires under different wind speeds of 0, 0.25, 0.5, and 0.75 m/s. It was found that cross-section flame spreading follows the three-stage sidewall-ceiling-sidewall pattern. Moreover, the average flame-spread rate increases along the vertical flame-spreading direction and decreases when the flame reaches the timber-lining corners. Moreover, the flame lengths underneath the timber-lining ceiling in the x-direction are longer than those in the y-direction. As the wind speed increases, the normalized flame lengths R(f) in the two directions decrease, and the maximum temperature underneath the ceiling decreases. In addition, the maximum temperature in the three tunnel sections of interest is first recorded in the tunnel cross-section in the initial fire stage. Higher wind speeds correspond to farther distances of the maximum-temperature points of the three timber-lining sections from the fire source.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34855826</pmid><doi>10.1371/journal.pone.0260655</doi><tpages>e0260655</tpages><orcidid>https://orcid.org/0000-0002-7211-6403</orcidid><orcidid>https://orcid.org/0000-0002-5761-4113</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-12, Vol.16 (12), p.e0260655-e0260655 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2605598117 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Biology and Life Sciences Cameras Ceilings Computer Simulation Cross-sections Disasters Earth Sciences Ecology and Environmental Sciences Education Engineering Engineering and Technology Engineering research Experiments Fire prevention Fires Laboratories Materials Maximum temperatures Mine safety Mine shafts Mines Mining Models, Theoretical Numerical simulations Physical Sciences Prevention Properties Research and Analysis Methods Safety and security measures Smoke Smoke - analysis Temperature Thermocouples Timber Traffic control Tunnel lining Tunnel linings Tunnels Wind Wind speed |
title | Fire behaviors along timber linings affixed to tunnel walls in mines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fire%20behaviors%20along%20timber%20linings%20affixed%20to%20tunnel%20walls%20in%20mines&rft.jtitle=PloS%20one&rft.au=Gao,%20Ke&rft.date=2021-12-02&rft.volume=16&rft.issue=12&rft.spage=e0260655&rft.epage=e0260655&rft.pages=e0260655-e0260655&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0260655&rft_dat=%3Cgale_plos_%3EA684621140%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605598117&rft_id=info:pmid/34855826&rft_galeid=A684621140&rft_doaj_id=oai_doaj_org_article_c185dc4fe1a94d1c824b07a675c81f51&rfr_iscdi=true |