A comparison of three different methods of eliciting rapid activity-dependent synaptic plasticity at the Drosophila NMJ

The Drosophila NMJ is a system of choice for investigating the mechanisms underlying the structural and functional modifications evoked during activity-dependent synaptic plasticity. Because fly genetics allows considerable versatility, many strategies can be employed to elicit this activity. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-11, Vol.16 (11), p.e0260553-e0260553
Hauptverfasser: Maldonado-Díaz, Carolina, Vazquez, Mariam, Marie, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0260553
container_issue 11
container_start_page e0260553
container_title PloS one
container_volume 16
creator Maldonado-Díaz, Carolina
Vazquez, Mariam
Marie, Bruno
description The Drosophila NMJ is a system of choice for investigating the mechanisms underlying the structural and functional modifications evoked during activity-dependent synaptic plasticity. Because fly genetics allows considerable versatility, many strategies can be employed to elicit this activity. Here, we compare three different stimulation methods for eliciting activity-dependent changes in structure and function at the Drosophila NMJ. We find that the method using patterned stimulations driven by a K+-rich solution creates robust structural modifications but reduces muscle viability, as assessed by resting potential and membrane resistance. We argue that, using this method, electrophysiological studies that consider the frequency of events, rather than their amplitude, are the only reliable studies. We contrast these results with the expression of CsChrimson channels and red-light stimulation at the NMJ, as well as with the expression of TRPA channels and temperature stimulation. With both these methods we observed reliable modifications of synaptic structures and consistent changes in electrophysiological properties. Indeed, we observed a rapid appearance of immature boutons that lack postsynaptic differentiation, and a potentiation of spontaneous neurotransmission frequency. Surprisingly, a patterned application of temperature changes alone is sufficient to provoke both structural and functional plasticity. In this context, temperature-dependent TRPA channel activation induces additional structural plasticity but no further increase in the frequency of spontaneous neurotransmission, suggesting an uncoupling of these mechanisms.
doi_str_mv 10.1371/journal.pone.0260553
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2604821844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684291750</galeid><doaj_id>oai_doaj_org_article_bc0beda1c3a34ffa938c24abcb8e71cb</doaj_id><sourcerecordid>A684291750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-ed02b01930a0c8df290a4881f4c7789b27c1c3b4afba6512a50e4797f9157bc33</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEoqXwBggiISG42MWnJM5NpVU5LSpU4nRrTRx711USB9sp7NvjdNNqg3qBfGHL_uYfz29PkjzFaIlpgd9c2sF10Cx726klIjnKMnovOcYlJYucIHr_YH2UPPL-EqGM8jx_mBxRxlmBy-I4-b1KpW17cMbbLrU6DVunVFobrZVTXUhbFba29uORaow0wXSb1EFv6hRkMFcm7Ba16lVXj7TfddAHI9O-AR9GfJdCiKIqfeust_3WNJB--fzpcfJAQ-PVk2k-SX68f_f97OPi_OLD-mx1vpB5ScJC1YhUKNaBAElea1IiYJxjzWRR8LIihcSSVgx0BXmGCWRIsaIsdImzopKUniTP97p9Y72YPPMi2sU4wZyxSKz3RG3hUvTOtOB2woIR1xvWbQS4WEqjRCVRpWqIGYEyraGkXBIGlay4KrCsotbplG2oWlXLaImDZiY6P-nMVmzsleA5xTnlUeDVJODsr0H5IFrjpWoa6JQdru-dEcLLPI_oi3_Qu6ubqA3EAkynbcwrR1GxyjkjJS4yFKnlHVQctWqNjB9Mm7g_C3g9C4hMUH_CBgbvxfrb1_9nL37O2ZcH7FZBE7beNkMwtvNzkO1BGb-Vd0rfmoyRGPvjxg0x9oeY-iOGPTt8oNugm4agfwHzpAzk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604821844</pqid></control><display><type>article</type><title>A comparison of three different methods of eliciting rapid activity-dependent synaptic plasticity at the Drosophila NMJ</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Maldonado-Díaz, Carolina ; Vazquez, Mariam ; Marie, Bruno</creator><contributor>Kim, Hongkyun</contributor><creatorcontrib>Maldonado-Díaz, Carolina ; Vazquez, Mariam ; Marie, Bruno ; Kim, Hongkyun</creatorcontrib><description>The Drosophila NMJ is a system of choice for investigating the mechanisms underlying the structural and functional modifications evoked during activity-dependent synaptic plasticity. Because fly genetics allows considerable versatility, many strategies can be employed to elicit this activity. Here, we compare three different stimulation methods for eliciting activity-dependent changes in structure and function at the Drosophila NMJ. We find that the method using patterned stimulations driven by a K+-rich solution creates robust structural modifications but reduces muscle viability, as assessed by resting potential and membrane resistance. We argue that, using this method, electrophysiological studies that consider the frequency of events, rather than their amplitude, are the only reliable studies. We contrast these results with the expression of CsChrimson channels and red-light stimulation at the NMJ, as well as with the expression of TRPA channels and temperature stimulation. With both these methods we observed reliable modifications of synaptic structures and consistent changes in electrophysiological properties. Indeed, we observed a rapid appearance of immature boutons that lack postsynaptic differentiation, and a potentiation of spontaneous neurotransmission frequency. Surprisingly, a patterned application of temperature changes alone is sufficient to provoke both structural and functional plasticity. In this context, temperature-dependent TRPA channel activation induces additional structural plasticity but no further increase in the frequency of spontaneous neurotransmission, suggesting an uncoupling of these mechanisms.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0260553</identifier><identifier>PMID: 34847197</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; Biology and Life Sciences ; Channels ; Drosophila ; Drosophila melanogaster ; Drosophila Proteins - metabolism ; Experiments ; Food ; Fruit flies ; Functional plasticity ; Genetics ; Insects ; Medicine and Health Sciences ; Membrane potential ; Membrane resistance ; Methods ; Morphology ; Muscles ; Neurobiology ; Neuromuscular Junction - physiology ; Neuromuscular junctions ; Neuronal Plasticity - physiology ; Neuroplasticity ; Neurosciences ; Neurotransmission ; Physiology ; Potentiation ; Presynapse ; Protocol ; Research and Analysis Methods ; Robustness (mathematics) ; Stimulation ; Structure-function relationships ; Synaptic plasticity ; Synaptic Transmission - physiology ; Temperature changes ; Temperature dependence ; Transient Receptor Potential Channels - metabolism</subject><ispartof>PloS one, 2021-11, Vol.16 (11), p.e0260553-e0260553</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Maldonado-Díaz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Maldonado-Díaz et al 2021 Maldonado-Díaz et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-ed02b01930a0c8df290a4881f4c7789b27c1c3b4afba6512a50e4797f9157bc33</citedby><cites>FETCH-LOGICAL-c692t-ed02b01930a0c8df290a4881f4c7789b27c1c3b4afba6512a50e4797f9157bc33</cites><orcidid>0000-0002-4185-7102 ; 0000-0002-6550-3851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8631638/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8631638/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34847197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kim, Hongkyun</contributor><creatorcontrib>Maldonado-Díaz, Carolina</creatorcontrib><creatorcontrib>Vazquez, Mariam</creatorcontrib><creatorcontrib>Marie, Bruno</creatorcontrib><title>A comparison of three different methods of eliciting rapid activity-dependent synaptic plasticity at the Drosophila NMJ</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The Drosophila NMJ is a system of choice for investigating the mechanisms underlying the structural and functional modifications evoked during activity-dependent synaptic plasticity. Because fly genetics allows considerable versatility, many strategies can be employed to elicit this activity. Here, we compare three different stimulation methods for eliciting activity-dependent changes in structure and function at the Drosophila NMJ. We find that the method using patterned stimulations driven by a K+-rich solution creates robust structural modifications but reduces muscle viability, as assessed by resting potential and membrane resistance. We argue that, using this method, electrophysiological studies that consider the frequency of events, rather than their amplitude, are the only reliable studies. We contrast these results with the expression of CsChrimson channels and red-light stimulation at the NMJ, as well as with the expression of TRPA channels and temperature stimulation. With both these methods we observed reliable modifications of synaptic structures and consistent changes in electrophysiological properties. Indeed, we observed a rapid appearance of immature boutons that lack postsynaptic differentiation, and a potentiation of spontaneous neurotransmission frequency. Surprisingly, a patterned application of temperature changes alone is sufficient to provoke both structural and functional plasticity. In this context, temperature-dependent TRPA channel activation induces additional structural plasticity but no further increase in the frequency of spontaneous neurotransmission, suggesting an uncoupling of these mechanisms.</description><subject>Analysis</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Channels</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - metabolism</subject><subject>Experiments</subject><subject>Food</subject><subject>Fruit flies</subject><subject>Functional plasticity</subject><subject>Genetics</subject><subject>Insects</subject><subject>Medicine and Health Sciences</subject><subject>Membrane potential</subject><subject>Membrane resistance</subject><subject>Methods</subject><subject>Morphology</subject><subject>Muscles</subject><subject>Neurobiology</subject><subject>Neuromuscular Junction - physiology</subject><subject>Neuromuscular junctions</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neuroplasticity</subject><subject>Neurosciences</subject><subject>Neurotransmission</subject><subject>Physiology</subject><subject>Potentiation</subject><subject>Presynapse</subject><subject>Protocol</subject><subject>Research and Analysis Methods</subject><subject>Robustness (mathematics)</subject><subject>Stimulation</subject><subject>Structure-function relationships</subject><subject>Synaptic plasticity</subject><subject>Synaptic Transmission - physiology</subject><subject>Temperature changes</subject><subject>Temperature dependence</subject><subject>Transient Receptor Potential Channels - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEoqXwBggiISG42MWnJM5NpVU5LSpU4nRrTRx711USB9sp7NvjdNNqg3qBfGHL_uYfz29PkjzFaIlpgd9c2sF10Cx726klIjnKMnovOcYlJYucIHr_YH2UPPL-EqGM8jx_mBxRxlmBy-I4-b1KpW17cMbbLrU6DVunVFobrZVTXUhbFba29uORaow0wXSb1EFv6hRkMFcm7Ba16lVXj7TfddAHI9O-AR9GfJdCiKIqfeust_3WNJB--fzpcfJAQ-PVk2k-SX68f_f97OPi_OLD-mx1vpB5ScJC1YhUKNaBAElea1IiYJxjzWRR8LIihcSSVgx0BXmGCWRIsaIsdImzopKUniTP97p9Y72YPPMi2sU4wZyxSKz3RG3hUvTOtOB2woIR1xvWbQS4WEqjRCVRpWqIGYEyraGkXBIGlay4KrCsotbplG2oWlXLaImDZiY6P-nMVmzsleA5xTnlUeDVJODsr0H5IFrjpWoa6JQdru-dEcLLPI_oi3_Qu6ubqA3EAkynbcwrR1GxyjkjJS4yFKnlHVQctWqNjB9Mm7g_C3g9C4hMUH_CBgbvxfrb1_9nL37O2ZcH7FZBE7beNkMwtvNzkO1BGb-Vd0rfmoyRGPvjxg0x9oeY-iOGPTt8oNugm4agfwHzpAzk</recordid><startdate>20211130</startdate><enddate>20211130</enddate><creator>Maldonado-Díaz, Carolina</creator><creator>Vazquez, Mariam</creator><creator>Marie, Bruno</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4185-7102</orcidid><orcidid>https://orcid.org/0000-0002-6550-3851</orcidid></search><sort><creationdate>20211130</creationdate><title>A comparison of three different methods of eliciting rapid activity-dependent synaptic plasticity at the Drosophila NMJ</title><author>Maldonado-Díaz, Carolina ; Vazquez, Mariam ; Marie, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-ed02b01930a0c8df290a4881f4c7789b27c1c3b4afba6512a50e4797f9157bc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Channels</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - metabolism</topic><topic>Experiments</topic><topic>Food</topic><topic>Fruit flies</topic><topic>Functional plasticity</topic><topic>Genetics</topic><topic>Insects</topic><topic>Medicine and Health Sciences</topic><topic>Membrane potential</topic><topic>Membrane resistance</topic><topic>Methods</topic><topic>Morphology</topic><topic>Muscles</topic><topic>Neurobiology</topic><topic>Neuromuscular Junction - physiology</topic><topic>Neuromuscular junctions</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neuroplasticity</topic><topic>Neurosciences</topic><topic>Neurotransmission</topic><topic>Physiology</topic><topic>Potentiation</topic><topic>Presynapse</topic><topic>Protocol</topic><topic>Research and Analysis Methods</topic><topic>Robustness (mathematics)</topic><topic>Stimulation</topic><topic>Structure-function relationships</topic><topic>Synaptic plasticity</topic><topic>Synaptic Transmission - physiology</topic><topic>Temperature changes</topic><topic>Temperature dependence</topic><topic>Transient Receptor Potential Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maldonado-Díaz, Carolina</creatorcontrib><creatorcontrib>Vazquez, Mariam</creatorcontrib><creatorcontrib>Marie, Bruno</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maldonado-Díaz, Carolina</au><au>Vazquez, Mariam</au><au>Marie, Bruno</au><au>Kim, Hongkyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of three different methods of eliciting rapid activity-dependent synaptic plasticity at the Drosophila NMJ</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-11-30</date><risdate>2021</risdate><volume>16</volume><issue>11</issue><spage>e0260553</spage><epage>e0260553</epage><pages>e0260553-e0260553</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The Drosophila NMJ is a system of choice for investigating the mechanisms underlying the structural and functional modifications evoked during activity-dependent synaptic plasticity. Because fly genetics allows considerable versatility, many strategies can be employed to elicit this activity. Here, we compare three different stimulation methods for eliciting activity-dependent changes in structure and function at the Drosophila NMJ. We find that the method using patterned stimulations driven by a K+-rich solution creates robust structural modifications but reduces muscle viability, as assessed by resting potential and membrane resistance. We argue that, using this method, electrophysiological studies that consider the frequency of events, rather than their amplitude, are the only reliable studies. We contrast these results with the expression of CsChrimson channels and red-light stimulation at the NMJ, as well as with the expression of TRPA channels and temperature stimulation. With both these methods we observed reliable modifications of synaptic structures and consistent changes in electrophysiological properties. Indeed, we observed a rapid appearance of immature boutons that lack postsynaptic differentiation, and a potentiation of spontaneous neurotransmission frequency. Surprisingly, a patterned application of temperature changes alone is sufficient to provoke both structural and functional plasticity. In this context, temperature-dependent TRPA channel activation induces additional structural plasticity but no further increase in the frequency of spontaneous neurotransmission, suggesting an uncoupling of these mechanisms.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34847197</pmid><doi>10.1371/journal.pone.0260553</doi><tpages>e0260553</tpages><orcidid>https://orcid.org/0000-0002-4185-7102</orcidid><orcidid>https://orcid.org/0000-0002-6550-3851</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-11, Vol.16 (11), p.e0260553-e0260553
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2604821844
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Animals
Biology and Life Sciences
Channels
Drosophila
Drosophila melanogaster
Drosophila Proteins - metabolism
Experiments
Food
Fruit flies
Functional plasticity
Genetics
Insects
Medicine and Health Sciences
Membrane potential
Membrane resistance
Methods
Morphology
Muscles
Neurobiology
Neuromuscular Junction - physiology
Neuromuscular junctions
Neuronal Plasticity - physiology
Neuroplasticity
Neurosciences
Neurotransmission
Physiology
Potentiation
Presynapse
Protocol
Research and Analysis Methods
Robustness (mathematics)
Stimulation
Structure-function relationships
Synaptic plasticity
Synaptic Transmission - physiology
Temperature changes
Temperature dependence
Transient Receptor Potential Channels - metabolism
title A comparison of three different methods of eliciting rapid activity-dependent synaptic plasticity at the Drosophila NMJ
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A43%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20three%20different%20methods%20of%20eliciting%20rapid%20activity-dependent%20synaptic%20plasticity%20at%20the%20Drosophila%20NMJ&rft.jtitle=PloS%20one&rft.au=Maldonado-D%C3%ADaz,%20Carolina&rft.date=2021-11-30&rft.volume=16&rft.issue=11&rft.spage=e0260553&rft.epage=e0260553&rft.pages=e0260553-e0260553&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0260553&rft_dat=%3Cgale_plos_%3EA684291750%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604821844&rft_id=info:pmid/34847197&rft_galeid=A684291750&rft_doaj_id=oai_doaj_org_article_bc0beda1c3a34ffa938c24abcb8e71cb&rfr_iscdi=true