Object detection for automatic cancer cell counting in zebrafish xenografts
Cell counting is a frequent task in medical research studies. However, it is often performed manually; thus, it is time-consuming and prone to human error. Even so, cell counting automation can be challenging to achieve, especially when dealing with crowded scenes and overlapping cells, assuming dif...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-11, Vol.16 (11), p.e0260609-e0260609 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0260609 |
---|---|
container_issue | 11 |
container_start_page | e0260609 |
container_title | PloS one |
container_volume | 16 |
creator | Albuquerque, Carina Vanneschi, Leonardo Henriques, Roberto Castelli, Mauro Póvoa, Vanda Fior, Rita Papanikolaou, Nickolas |
description | Cell counting is a frequent task in medical research studies. However, it is often performed manually; thus, it is time-consuming and prone to human error. Even so, cell counting automation can be challenging to achieve, especially when dealing with crowded scenes and overlapping cells, assuming different shapes and sizes. In this paper, we introduce a deep learning-based cell detection and quantification methodology to automate the cell counting process in the zebrafish xenograft cancer model, an innovative technique for studying tumor biology and for personalizing medicine. First, we implemented a fine-tuned architecture based on the Faster R-CNN using the Inception ResNet V2 feature extractor. Second, we performed several adjustments to optimize the process, paying attention to constraints such as the presence of overlapped cells, the high number of objects to detect, the heterogeneity of the cells' size and shape, and the small size of the data set. This method resulted in a median error of approximately 1% of the total number of cell units. These results demonstrate the potential of our novel approach for quantifying cells in poorly labeled images. Compared to traditional Faster R-CNN, our method improved the average precision from 71% to 85% on the studied data set. |
doi_str_mv | 10.1371/journal.pone.0260609 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2604483342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684187143</galeid><doaj_id>oai_doaj_org_article_2ebd520b6d494af48cd3b123485c1228</doaj_id><sourcerecordid>A684187143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-ca095cba49e418dfe64c525b21ff95033022fb27c7d90561fa3e3d730cfc19463</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjPlq2t4Iy-LH4MKAX7chTU86GTrJmKSyu7_e1OkuU9kLyUVC8pw3OW_eLHuO0RLTEr_busFb2S_3zsISEY44qh9kp7imZMEJog-P1ifZkxC2CBW04vxxdkJZxShH9DT7sm62oGLeQkyTcTbXzudyiG4no1G5klaBzxX0fa7cYKOxXW5sfgONl9qETX4F1nVpHcPT7JGWfYBn03yW_fj44fvF58Xl-tPq4vxyocqiigslUV2oRrIaGK5aDZypghQNwVrXBaIUEaIbUqqyrVHBsZYUaFtSpLTCNeP0LHt50N33LojJhyCSBYxVlDKSiNWBaJ3cir03O-mvhZNG_N1wvhPSp_Z6EASatiCo4S2rmdSsUi1tMEkOFQoTUiWt99NtQ7ODVoGNXvYz0fmJNRvRud-i4qQmuEgCbyYB734NEKLYmTAaKi244fDuijJa1gl99Q96f3cT1cnUgLHapXvVKCrOeZU8LTGjiVreQ6XRws6oFBpt0v6s4O2sIDERrmInhxDE6tvX_2fXP-fs6yN2A7KPm-D6YUxbmIPsACrvQvCg70zGSIyZv3VDjJkXU-ZT2YvjD7orug05_QNEqvs3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604483342</pqid></control><display><type>article</type><title>Object detection for automatic cancer cell counting in zebrafish xenografts</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Albuquerque, Carina ; Vanneschi, Leonardo ; Henriques, Roberto ; Castelli, Mauro ; Póvoa, Vanda ; Fior, Rita ; Papanikolaou, Nickolas</creator><contributor>Hum, Yan Chai</contributor><creatorcontrib>Albuquerque, Carina ; Vanneschi, Leonardo ; Henriques, Roberto ; Castelli, Mauro ; Póvoa, Vanda ; Fior, Rita ; Papanikolaou, Nickolas ; Hum, Yan Chai</creatorcontrib><description>Cell counting is a frequent task in medical research studies. However, it is often performed manually; thus, it is time-consuming and prone to human error. Even so, cell counting automation can be challenging to achieve, especially when dealing with crowded scenes and overlapping cells, assuming different shapes and sizes. In this paper, we introduce a deep learning-based cell detection and quantification methodology to automate the cell counting process in the zebrafish xenograft cancer model, an innovative technique for studying tumor biology and for personalizing medicine. First, we implemented a fine-tuned architecture based on the Faster R-CNN using the Inception ResNet V2 feature extractor. Second, we performed several adjustments to optimize the process, paying attention to constraints such as the presence of overlapped cells, the high number of objects to detect, the heterogeneity of the cells' size and shape, and the small size of the data set. This method resulted in a median error of approximately 1% of the total number of cell units. These results demonstrate the potential of our novel approach for quantifying cells in poorly labeled images. Compared to traditional Faster R-CNN, our method improved the average precision from 71% to 85% on the studied data set.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0260609</identifier><identifier>PMID: 34843603</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Animals ; Automation ; Biology and Life Sciences ; Cancer ; Cancer cells ; Cancer therapies ; Care and treatment ; Cell Count - methods ; Cell size ; Danio rerio ; Datasets ; Deep Learning ; Feature extraction ; Heterogeneity ; Heterografts ; Human error ; Humans ; Image Processing, Computer-Assisted - methods ; Information management ; Labeling ; Machine learning ; Measurement ; Medical imaging ; Medical research ; Medicine and Health Sciences ; Methods ; Morphology ; Neoplasm Transplantation ; Neoplasms - diagnosis ; Neoplasms - pathology ; Neoplasms, Experimental - diagnosis ; Neoplasms, Experimental - pathology ; Neural networks ; Object recognition ; Oncology, Experimental ; Physical Sciences ; Research and Analysis Methods ; Skewness ; Tumors ; Xenografts ; Xenotransplantation ; Zebrafish</subject><ispartof>PloS one, 2021-11, Vol.16 (11), p.e0260609-e0260609</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Albuquerque et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Albuquerque et al 2021 Albuquerque et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-ca095cba49e418dfe64c525b21ff95033022fb27c7d90561fa3e3d730cfc19463</citedby><cites>FETCH-LOGICAL-c758t-ca095cba49e418dfe64c525b21ff95033022fb27c7d90561fa3e3d730cfc19463</cites><orcidid>0000-0002-8793-1451 ; 0000-0002-1888-9018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629215/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629215/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34843603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hum, Yan Chai</contributor><creatorcontrib>Albuquerque, Carina</creatorcontrib><creatorcontrib>Vanneschi, Leonardo</creatorcontrib><creatorcontrib>Henriques, Roberto</creatorcontrib><creatorcontrib>Castelli, Mauro</creatorcontrib><creatorcontrib>Póvoa, Vanda</creatorcontrib><creatorcontrib>Fior, Rita</creatorcontrib><creatorcontrib>Papanikolaou, Nickolas</creatorcontrib><title>Object detection for automatic cancer cell counting in zebrafish xenografts</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Cell counting is a frequent task in medical research studies. However, it is often performed manually; thus, it is time-consuming and prone to human error. Even so, cell counting automation can be challenging to achieve, especially when dealing with crowded scenes and overlapping cells, assuming different shapes and sizes. In this paper, we introduce a deep learning-based cell detection and quantification methodology to automate the cell counting process in the zebrafish xenograft cancer model, an innovative technique for studying tumor biology and for personalizing medicine. First, we implemented a fine-tuned architecture based on the Faster R-CNN using the Inception ResNet V2 feature extractor. Second, we performed several adjustments to optimize the process, paying attention to constraints such as the presence of overlapped cells, the high number of objects to detect, the heterogeneity of the cells' size and shape, and the small size of the data set. This method resulted in a median error of approximately 1% of the total number of cell units. These results demonstrate the potential of our novel approach for quantifying cells in poorly labeled images. Compared to traditional Faster R-CNN, our method improved the average precision from 71% to 85% on the studied data set.</description><subject>Accuracy</subject><subject>Animals</subject><subject>Automation</subject><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>Cancer cells</subject><subject>Cancer therapies</subject><subject>Care and treatment</subject><subject>Cell Count - methods</subject><subject>Cell size</subject><subject>Danio rerio</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Feature extraction</subject><subject>Heterogeneity</subject><subject>Heterografts</subject><subject>Human error</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Information management</subject><subject>Labeling</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Morphology</subject><subject>Neoplasm Transplantation</subject><subject>Neoplasms - diagnosis</subject><subject>Neoplasms - pathology</subject><subject>Neoplasms, Experimental - diagnosis</subject><subject>Neoplasms, Experimental - pathology</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Oncology, Experimental</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Skewness</subject><subject>Tumors</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><subject>Zebrafish</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjPlq2t4Iy-LH4MKAX7chTU86GTrJmKSyu7_e1OkuU9kLyUVC8pw3OW_eLHuO0RLTEr_busFb2S_3zsISEY44qh9kp7imZMEJog-P1ifZkxC2CBW04vxxdkJZxShH9DT7sm62oGLeQkyTcTbXzudyiG4no1G5klaBzxX0fa7cYKOxXW5sfgONl9qETX4F1nVpHcPT7JGWfYBn03yW_fj44fvF58Xl-tPq4vxyocqiigslUV2oRrIaGK5aDZypghQNwVrXBaIUEaIbUqqyrVHBsZYUaFtSpLTCNeP0LHt50N33LojJhyCSBYxVlDKSiNWBaJ3cir03O-mvhZNG_N1wvhPSp_Z6EASatiCo4S2rmdSsUi1tMEkOFQoTUiWt99NtQ7ODVoGNXvYz0fmJNRvRud-i4qQmuEgCbyYB734NEKLYmTAaKi244fDuijJa1gl99Q96f3cT1cnUgLHapXvVKCrOeZU8LTGjiVreQ6XRws6oFBpt0v6s4O2sIDERrmInhxDE6tvX_2fXP-fs6yN2A7KPm-D6YUxbmIPsACrvQvCg70zGSIyZv3VDjJkXU-ZT2YvjD7orug05_QNEqvs3</recordid><startdate>20211129</startdate><enddate>20211129</enddate><creator>Albuquerque, Carina</creator><creator>Vanneschi, Leonardo</creator><creator>Henriques, Roberto</creator><creator>Castelli, Mauro</creator><creator>Póvoa, Vanda</creator><creator>Fior, Rita</creator><creator>Papanikolaou, Nickolas</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8793-1451</orcidid><orcidid>https://orcid.org/0000-0002-1888-9018</orcidid></search><sort><creationdate>20211129</creationdate><title>Object detection for automatic cancer cell counting in zebrafish xenografts</title><author>Albuquerque, Carina ; Vanneschi, Leonardo ; Henriques, Roberto ; Castelli, Mauro ; Póvoa, Vanda ; Fior, Rita ; Papanikolaou, Nickolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-ca095cba49e418dfe64c525b21ff95033022fb27c7d90561fa3e3d730cfc19463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Animals</topic><topic>Automation</topic><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>Cancer cells</topic><topic>Cancer therapies</topic><topic>Care and treatment</topic><topic>Cell Count - methods</topic><topic>Cell size</topic><topic>Danio rerio</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Feature extraction</topic><topic>Heterogeneity</topic><topic>Heterografts</topic><topic>Human error</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Information management</topic><topic>Labeling</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Morphology</topic><topic>Neoplasm Transplantation</topic><topic>Neoplasms - diagnosis</topic><topic>Neoplasms - pathology</topic><topic>Neoplasms, Experimental - diagnosis</topic><topic>Neoplasms, Experimental - pathology</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Oncology, Experimental</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Skewness</topic><topic>Tumors</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albuquerque, Carina</creatorcontrib><creatorcontrib>Vanneschi, Leonardo</creatorcontrib><creatorcontrib>Henriques, Roberto</creatorcontrib><creatorcontrib>Castelli, Mauro</creatorcontrib><creatorcontrib>Póvoa, Vanda</creatorcontrib><creatorcontrib>Fior, Rita</creatorcontrib><creatorcontrib>Papanikolaou, Nickolas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albuquerque, Carina</au><au>Vanneschi, Leonardo</au><au>Henriques, Roberto</au><au>Castelli, Mauro</au><au>Póvoa, Vanda</au><au>Fior, Rita</au><au>Papanikolaou, Nickolas</au><au>Hum, Yan Chai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Object detection for automatic cancer cell counting in zebrafish xenografts</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-11-29</date><risdate>2021</risdate><volume>16</volume><issue>11</issue><spage>e0260609</spage><epage>e0260609</epage><pages>e0260609-e0260609</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Cell counting is a frequent task in medical research studies. However, it is often performed manually; thus, it is time-consuming and prone to human error. Even so, cell counting automation can be challenging to achieve, especially when dealing with crowded scenes and overlapping cells, assuming different shapes and sizes. In this paper, we introduce a deep learning-based cell detection and quantification methodology to automate the cell counting process in the zebrafish xenograft cancer model, an innovative technique for studying tumor biology and for personalizing medicine. First, we implemented a fine-tuned architecture based on the Faster R-CNN using the Inception ResNet V2 feature extractor. Second, we performed several adjustments to optimize the process, paying attention to constraints such as the presence of overlapped cells, the high number of objects to detect, the heterogeneity of the cells' size and shape, and the small size of the data set. This method resulted in a median error of approximately 1% of the total number of cell units. These results demonstrate the potential of our novel approach for quantifying cells in poorly labeled images. Compared to traditional Faster R-CNN, our method improved the average precision from 71% to 85% on the studied data set.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34843603</pmid><doi>10.1371/journal.pone.0260609</doi><tpages>e0260609</tpages><orcidid>https://orcid.org/0000-0002-8793-1451</orcidid><orcidid>https://orcid.org/0000-0002-1888-9018</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-11, Vol.16 (11), p.e0260609-e0260609 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2604483342 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Accuracy Animals Automation Biology and Life Sciences Cancer Cancer cells Cancer therapies Care and treatment Cell Count - methods Cell size Danio rerio Datasets Deep Learning Feature extraction Heterogeneity Heterografts Human error Humans Image Processing, Computer-Assisted - methods Information management Labeling Machine learning Measurement Medical imaging Medical research Medicine and Health Sciences Methods Morphology Neoplasm Transplantation Neoplasms - diagnosis Neoplasms - pathology Neoplasms, Experimental - diagnosis Neoplasms, Experimental - pathology Neural networks Object recognition Oncology, Experimental Physical Sciences Research and Analysis Methods Skewness Tumors Xenografts Xenotransplantation Zebrafish |
title | Object detection for automatic cancer cell counting in zebrafish xenografts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A44%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Object%20detection%20for%20automatic%20cancer%20cell%20counting%20in%20zebrafish%20xenografts&rft.jtitle=PloS%20one&rft.au=Albuquerque,%20Carina&rft.date=2021-11-29&rft.volume=16&rft.issue=11&rft.spage=e0260609&rft.epage=e0260609&rft.pages=e0260609-e0260609&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0260609&rft_dat=%3Cgale_plos_%3EA684187143%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604483342&rft_id=info:pmid/34843603&rft_galeid=A684187143&rft_doaj_id=oai_doaj_org_article_2ebd520b6d494af48cd3b123485c1228&rfr_iscdi=true |