Combining dense and sparse labeling in optical DNA mapping
Optical DNA mapping (ODM) is based on fluorescent labeling, stretching and imaging of single DNA molecules to obtain sequence-specific fluorescence profiles, DNA barcodes. These barcodes can be mapped to theoretical counterparts obtained from DNA reference sequences, which in turn allow for DNA iden...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-11, Vol.16 (11), p.e0260489-e0260489 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0260489 |
---|---|
container_issue | 11 |
container_start_page | e0260489 |
container_title | PloS one |
container_volume | 16 |
creator | Torstensson, Erik Goyal, Gaurav Johnning, Anna Westerlund, Fredrik Ambjörnsson, Tobias |
description | Optical DNA mapping (ODM) is based on fluorescent labeling, stretching and imaging of single DNA molecules to obtain sequence-specific fluorescence profiles, DNA barcodes. These barcodes can be mapped to theoretical counterparts obtained from DNA reference sequences, which in turn allow for DNA identification in complex samples and for detecting structural changes in individual DNA molecules. There are several types of DNA labeling schemes for ODM and for each labeling type one or several types of match scoring methods are used. By combining the information from multiple labeling schemes one can potentially improve mapping confidence; however, combining match scores from different labeling assays has not been implemented yet. In this study, we introduce two theoretical methods for dealing with analysis of DNA molecules with multiple label types. In our first method, we convert the alignment scores, given as output from the different assays, into p-values using carefully crafted null models. We then combine the p-values for different label types using standard methods to obtain a combined match score and an associated combined p-value. In the second method, we use a block bootstrap approach to check for the uniqueness of a match to a database for all barcodes matching with a combined p-value below a predefined threshold. For obtaining experimental dual-labeled DNA barcodes, we introduce a novel assay where we cut plasmid DNA molecules from bacteria with restriction enzymes and the cut sites serve as sequence-specific markers, which together with barcodes obtained using the established competitive binding labeling method, form a dual-labeled barcode. All experimental data in this study originates from this assay, but we point out that our theoretical framework can be used to combine data from all kinds of available optical DNA mapping assays. We test our multiple labeling frameworks on barcodes from two different plasmids and synthetically generated barcodes (combined competitive-binding- and nick-labeling). It is demonstrated that by simultaneously using the information from all label types, we can substantially increase the significance when we match experimental barcodes to a database consisting of theoretical barcodes for all sequenced plasmids. |
doi_str_mv | 10.1371/journal.pone.0260489 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2604482729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684187227</galeid><doaj_id>oai_doaj_org_article_08e16ceacd684486b892e6d5f831676b</doaj_id><sourcerecordid>A684187227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c824t-94043d8fb39405cfab8263658bb361214507f9572aef1a90589166cae528f65b3</originalsourceid><addsrcrecordid>eNqNk1tr1EAUx4Motq5-A9EFQfRh17llMvFBKPW2UCxY9XU4mZzJpkwyaSbx8u2ddLelkRYkDDmc-Z3_zJxLkjylZE15Rt-c-7Fvwa073-KaMEmEyu8lhzTnbCUZ4fdv2AfJoxDOCUm5kvJhcsCFEjzNxGHy9tg3Rd3WbbUssQ24hLZchg76aDoo0E07dbv03VAbcMv3X46WDXRddD9OHlhwAZ_s_4vk-8cP344_r05OP22Oj05WRjExrHJBBC-VLXi0UmOhUExymaqi4JIyKlKS2TzNGKClkJNU5VRKA5gyZWVa8EXyfKfbOR_0_tlBTy8WimUsj8RmR5QeznXX1w30f7SHWl86fF9p6OP9HWqikEqDYEqpYrgsVM5QlqlVnMpMTqed7bTCL-zGYqbWY0DozVabLbgG-6ADakWFZZISbSwjWlCUGhiWWjBpgRrBBZRR9eROVTd2cRVxTXKkRCk5lJqXREU5a3ROTKZzY1Bxk6UgSJRb3SlXRbnoqi7VOOU5SyP_bp_CsWiwNNgOPbhZ2Hynrbe68j-1kiynsVcWyau9QO8vRgyDbupg0Dlo0Y-7YijOmZru9uIf9PaS7akKYlXq1vp4rplE9VGsDFUZY1mk1rdQ8SuxqU1sfFtH_yzg9SwgMgP-HioYQ9Cbs6__z57-mLMvb7BbBDdsg3fjUPs2zEGxA03vQ-jRXic5dsg0t1fZ0NPc6v3cxrBnNwt0HXQ1qPwv19U61A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604482729</pqid></control><display><type>article</type><title>Combining dense and sparse labeling in optical DNA mapping</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SWEPUB Freely available online</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Torstensson, Erik ; Goyal, Gaurav ; Johnning, Anna ; Westerlund, Fredrik ; Ambjörnsson, Tobias</creator><creatorcontrib>Torstensson, Erik ; Goyal, Gaurav ; Johnning, Anna ; Westerlund, Fredrik ; Ambjörnsson, Tobias</creatorcontrib><description>Optical DNA mapping (ODM) is based on fluorescent labeling, stretching and imaging of single DNA molecules to obtain sequence-specific fluorescence profiles, DNA barcodes. These barcodes can be mapped to theoretical counterparts obtained from DNA reference sequences, which in turn allow for DNA identification in complex samples and for detecting structural changes in individual DNA molecules. There are several types of DNA labeling schemes for ODM and for each labeling type one or several types of match scoring methods are used. By combining the information from multiple labeling schemes one can potentially improve mapping confidence; however, combining match scores from different labeling assays has not been implemented yet. In this study, we introduce two theoretical methods for dealing with analysis of DNA molecules with multiple label types. In our first method, we convert the alignment scores, given as output from the different assays, into p-values using carefully crafted null models. We then combine the p-values for different label types using standard methods to obtain a combined match score and an associated combined p-value. In the second method, we use a block bootstrap approach to check for the uniqueness of a match to a database for all barcodes matching with a combined p-value below a predefined threshold. For obtaining experimental dual-labeled DNA barcodes, we introduce a novel assay where we cut plasmid DNA molecules from bacteria with restriction enzymes and the cut sites serve as sequence-specific markers, which together with barcodes obtained using the established competitive binding labeling method, form a dual-labeled barcode. All experimental data in this study originates from this assay, but we point out that our theoretical framework can be used to combine data from all kinds of available optical DNA mapping assays. We test our multiple labeling frameworks on barcodes from two different plasmids and synthetically generated barcodes (combined competitive-binding- and nick-labeling). It is demonstrated that by simultaneously using the information from all label types, we can substantially increase the significance when we match experimental barcodes to a database consisting of theoretical barcodes for all sequenced plasmids.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0260489</identifier><identifier>PMID: 34843574</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Annan fysik ; Antibiotics ; Assaying ; Bacteria ; Bar codes ; Binding ; Bioengineering ; Biofysiks ; Biologi ; Biological Sciences ; Biology and life sciences ; Biophysics ; Competition ; Computer and information sciences ; Councils ; Data collection ; Databases, Nucleic Acid ; Deoxyribonucleic acid ; DNA ; DNA - analysis ; DNA Barcoding, Taxonomic - methods ; DNA testing ; Drug resistance ; Enzymes ; Fluorescence ; Fluorescent Dyes - analysis ; Fysik ; Gene sequencing ; Genomes ; Labeling ; Labelling ; Mapping ; Matematik ; Mathematical sciences ; Methods ; Natural Sciences ; Naturvetenskap ; Nucleotide sequence ; Optical Imaging - methods ; Other Physics Topics ; Physical Sciences ; Plasmids ; Plasmids - analysis ; Research and analysis methods ; Science & Technology - Other Topics ; Theoretical physics</subject><ispartof>PloS one, 2021-11, Vol.16 (11), p.e0260489-e0260489</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Torstensson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Torstensson et al 2021 Torstensson et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c824t-94043d8fb39405cfab8263658bb361214507f9572aef1a90589166cae528f65b3</cites><orcidid>0000-0002-6439-8842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629184/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629184/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34843574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/313925$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/0de663ad-3d08-41fc-90c7-9cce83c75a40$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://research.chalmers.se/publication/527478$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Torstensson, Erik</creatorcontrib><creatorcontrib>Goyal, Gaurav</creatorcontrib><creatorcontrib>Johnning, Anna</creatorcontrib><creatorcontrib>Westerlund, Fredrik</creatorcontrib><creatorcontrib>Ambjörnsson, Tobias</creatorcontrib><title>Combining dense and sparse labeling in optical DNA mapping</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Optical DNA mapping (ODM) is based on fluorescent labeling, stretching and imaging of single DNA molecules to obtain sequence-specific fluorescence profiles, DNA barcodes. These barcodes can be mapped to theoretical counterparts obtained from DNA reference sequences, which in turn allow for DNA identification in complex samples and for detecting structural changes in individual DNA molecules. There are several types of DNA labeling schemes for ODM and for each labeling type one or several types of match scoring methods are used. By combining the information from multiple labeling schemes one can potentially improve mapping confidence; however, combining match scores from different labeling assays has not been implemented yet. In this study, we introduce two theoretical methods for dealing with analysis of DNA molecules with multiple label types. In our first method, we convert the alignment scores, given as output from the different assays, into p-values using carefully crafted null models. We then combine the p-values for different label types using standard methods to obtain a combined match score and an associated combined p-value. In the second method, we use a block bootstrap approach to check for the uniqueness of a match to a database for all barcodes matching with a combined p-value below a predefined threshold. For obtaining experimental dual-labeled DNA barcodes, we introduce a novel assay where we cut plasmid DNA molecules from bacteria with restriction enzymes and the cut sites serve as sequence-specific markers, which together with barcodes obtained using the established competitive binding labeling method, form a dual-labeled barcode. All experimental data in this study originates from this assay, but we point out that our theoretical framework can be used to combine data from all kinds of available optical DNA mapping assays. We test our multiple labeling frameworks on barcodes from two different plasmids and synthetically generated barcodes (combined competitive-binding- and nick-labeling). It is demonstrated that by simultaneously using the information from all label types, we can substantially increase the significance when we match experimental barcodes to a database consisting of theoretical barcodes for all sequenced plasmids.</description><subject>Analysis</subject><subject>Annan fysik</subject><subject>Antibiotics</subject><subject>Assaying</subject><subject>Bacteria</subject><subject>Bar codes</subject><subject>Binding</subject><subject>Bioengineering</subject><subject>Biofysiks</subject><subject>Biologi</subject><subject>Biological Sciences</subject><subject>Biology and life sciences</subject><subject>Biophysics</subject><subject>Competition</subject><subject>Computer and information sciences</subject><subject>Councils</subject><subject>Data collection</subject><subject>Databases, Nucleic Acid</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - analysis</subject><subject>DNA Barcoding, Taxonomic - methods</subject><subject>DNA testing</subject><subject>Drug resistance</subject><subject>Enzymes</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - analysis</subject><subject>Fysik</subject><subject>Gene sequencing</subject><subject>Genomes</subject><subject>Labeling</subject><subject>Labelling</subject><subject>Mapping</subject><subject>Matematik</subject><subject>Mathematical sciences</subject><subject>Methods</subject><subject>Natural Sciences</subject><subject>Naturvetenskap</subject><subject>Nucleotide sequence</subject><subject>Optical Imaging - methods</subject><subject>Other Physics Topics</subject><subject>Physical Sciences</subject><subject>Plasmids</subject><subject>Plasmids - analysis</subject><subject>Research and analysis methods</subject><subject>Science & Technology - Other Topics</subject><subject>Theoretical physics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1tr1EAUx4Motq5-A9EFQfRh17llMvFBKPW2UCxY9XU4mZzJpkwyaSbx8u2ddLelkRYkDDmc-Z3_zJxLkjylZE15Rt-c-7Fvwa073-KaMEmEyu8lhzTnbCUZ4fdv2AfJoxDOCUm5kvJhcsCFEjzNxGHy9tg3Rd3WbbUssQ24hLZchg76aDoo0E07dbv03VAbcMv3X46WDXRddD9OHlhwAZ_s_4vk-8cP344_r05OP22Oj05WRjExrHJBBC-VLXi0UmOhUExymaqi4JIyKlKS2TzNGKClkJNU5VRKA5gyZWVa8EXyfKfbOR_0_tlBTy8WimUsj8RmR5QeznXX1w30f7SHWl86fF9p6OP9HWqikEqDYEqpYrgsVM5QlqlVnMpMTqed7bTCL-zGYqbWY0DozVabLbgG-6ADakWFZZISbSwjWlCUGhiWWjBpgRrBBZRR9eROVTd2cRVxTXKkRCk5lJqXREU5a3ROTKZzY1Bxk6UgSJRb3SlXRbnoqi7VOOU5SyP_bp_CsWiwNNgOPbhZ2Hynrbe68j-1kiynsVcWyau9QO8vRgyDbupg0Dlo0Y-7YijOmZru9uIf9PaS7akKYlXq1vp4rplE9VGsDFUZY1mk1rdQ8SuxqU1sfFtH_yzg9SwgMgP-HioYQ9Cbs6__z57-mLMvb7BbBDdsg3fjUPs2zEGxA03vQ-jRXic5dsg0t1fZ0NPc6v3cxrBnNwt0HXQ1qPwv19U61A</recordid><startdate>20211129</startdate><enddate>20211129</enddate><creator>Torstensson, Erik</creator><creator>Goyal, Gaurav</creator><creator>Johnning, Anna</creator><creator>Westerlund, Fredrik</creator><creator>Ambjörnsson, Tobias</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1U</scope><scope>AGCHP</scope><scope>D8T</scope><scope>D95</scope><scope>ZZAVC</scope><scope>ABBSD</scope><scope>F1S</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6439-8842</orcidid></search><sort><creationdate>20211129</creationdate><title>Combining dense and sparse labeling in optical DNA mapping</title><author>Torstensson, Erik ; Goyal, Gaurav ; Johnning, Anna ; Westerlund, Fredrik ; Ambjörnsson, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c824t-94043d8fb39405cfab8263658bb361214507f9572aef1a90589166cae528f65b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Annan fysik</topic><topic>Antibiotics</topic><topic>Assaying</topic><topic>Bacteria</topic><topic>Bar codes</topic><topic>Binding</topic><topic>Bioengineering</topic><topic>Biofysiks</topic><topic>Biologi</topic><topic>Biological Sciences</topic><topic>Biology and life sciences</topic><topic>Biophysics</topic><topic>Competition</topic><topic>Computer and information sciences</topic><topic>Councils</topic><topic>Data collection</topic><topic>Databases, Nucleic Acid</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - analysis</topic><topic>DNA Barcoding, Taxonomic - methods</topic><topic>DNA testing</topic><topic>Drug resistance</topic><topic>Enzymes</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - analysis</topic><topic>Fysik</topic><topic>Gene sequencing</topic><topic>Genomes</topic><topic>Labeling</topic><topic>Labelling</topic><topic>Mapping</topic><topic>Matematik</topic><topic>Mathematical sciences</topic><topic>Methods</topic><topic>Natural Sciences</topic><topic>Naturvetenskap</topic><topic>Nucleotide sequence</topic><topic>Optical Imaging - methods</topic><topic>Other Physics Topics</topic><topic>Physical Sciences</topic><topic>Plasmids</topic><topic>Plasmids - analysis</topic><topic>Research and analysis methods</topic><topic>Science & Technology - Other Topics</topic><topic>Theoretical physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torstensson, Erik</creatorcontrib><creatorcontrib>Goyal, Gaurav</creatorcontrib><creatorcontrib>Johnning, Anna</creatorcontrib><creatorcontrib>Westerlund, Fredrik</creatorcontrib><creatorcontrib>Ambjörnsson, Tobias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Göteborgs universitet</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Lunds universitet</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Chalmers tekniska högskola full text</collection><collection>SWEPUB Chalmers tekniska högskola</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torstensson, Erik</au><au>Goyal, Gaurav</au><au>Johnning, Anna</au><au>Westerlund, Fredrik</au><au>Ambjörnsson, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining dense and sparse labeling in optical DNA mapping</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-11-29</date><risdate>2021</risdate><volume>16</volume><issue>11</issue><spage>e0260489</spage><epage>e0260489</epage><pages>e0260489-e0260489</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Optical DNA mapping (ODM) is based on fluorescent labeling, stretching and imaging of single DNA molecules to obtain sequence-specific fluorescence profiles, DNA barcodes. These barcodes can be mapped to theoretical counterparts obtained from DNA reference sequences, which in turn allow for DNA identification in complex samples and for detecting structural changes in individual DNA molecules. There are several types of DNA labeling schemes for ODM and for each labeling type one or several types of match scoring methods are used. By combining the information from multiple labeling schemes one can potentially improve mapping confidence; however, combining match scores from different labeling assays has not been implemented yet. In this study, we introduce two theoretical methods for dealing with analysis of DNA molecules with multiple label types. In our first method, we convert the alignment scores, given as output from the different assays, into p-values using carefully crafted null models. We then combine the p-values for different label types using standard methods to obtain a combined match score and an associated combined p-value. In the second method, we use a block bootstrap approach to check for the uniqueness of a match to a database for all barcodes matching with a combined p-value below a predefined threshold. For obtaining experimental dual-labeled DNA barcodes, we introduce a novel assay where we cut plasmid DNA molecules from bacteria with restriction enzymes and the cut sites serve as sequence-specific markers, which together with barcodes obtained using the established competitive binding labeling method, form a dual-labeled barcode. All experimental data in this study originates from this assay, but we point out that our theoretical framework can be used to combine data from all kinds of available optical DNA mapping assays. We test our multiple labeling frameworks on barcodes from two different plasmids and synthetically generated barcodes (combined competitive-binding- and nick-labeling). It is demonstrated that by simultaneously using the information from all label types, we can substantially increase the significance when we match experimental barcodes to a database consisting of theoretical barcodes for all sequenced plasmids.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34843574</pmid><doi>10.1371/journal.pone.0260489</doi><tpages>e0260489</tpages><orcidid>https://orcid.org/0000-0002-6439-8842</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-11, Vol.16 (11), p.e0260489-e0260489 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2604482729 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SWEPUB Freely available online; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Analysis Annan fysik Antibiotics Assaying Bacteria Bar codes Binding Bioengineering Biofysiks Biologi Biological Sciences Biology and life sciences Biophysics Competition Computer and information sciences Councils Data collection Databases, Nucleic Acid Deoxyribonucleic acid DNA DNA - analysis DNA Barcoding, Taxonomic - methods DNA testing Drug resistance Enzymes Fluorescence Fluorescent Dyes - analysis Fysik Gene sequencing Genomes Labeling Labelling Mapping Matematik Mathematical sciences Methods Natural Sciences Naturvetenskap Nucleotide sequence Optical Imaging - methods Other Physics Topics Physical Sciences Plasmids Plasmids - analysis Research and analysis methods Science & Technology - Other Topics Theoretical physics |
title | Combining dense and sparse labeling in optical DNA mapping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20dense%20and%20sparse%20labeling%20in%20optical%20DNA%20mapping&rft.jtitle=PloS%20one&rft.au=Torstensson,%20Erik&rft.date=2021-11-29&rft.volume=16&rft.issue=11&rft.spage=e0260489&rft.epage=e0260489&rft.pages=e0260489-e0260489&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0260489&rft_dat=%3Cgale_plos_%3EA684187227%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604482729&rft_id=info:pmid/34843574&rft_galeid=A684187227&rft_doaj_id=oai_doaj_org_article_08e16ceacd684486b892e6d5f831676b&rfr_iscdi=true |