Heuristics for the sustainable harvest of wildlife in stochastic social-ecological systems
Sustainable wildlife harvest is challenging due to the complexity of uncertain social-ecological systems, and diverse stakeholder perspectives of sustainability. In these systems, semi-complex stochastic simulation models can provide heuristics that bridge the gap between highly simplified theoretic...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-11, Vol.16 (11), p.e0260159 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | e0260159 |
container_title | PloS one |
container_volume | 16 |
creator | Law, Elizabeth A Linnell, John D C van Moorter, Bram Nilsen, Erlend B |
description | Sustainable wildlife harvest is challenging due to the complexity of uncertain social-ecological systems, and diverse stakeholder perspectives of sustainability. In these systems, semi-complex stochastic simulation models can provide heuristics that bridge the gap between highly simplified theoretical models and highly context-specific case-studies. Such heuristics allow for more nuanced recommendations in low-knowledge contexts, and an improved understanding of model sensitivity and transferability to novel contexts. We develop semi-complex Management Strategy Evaluation (MSE) models capturing dynamics and variability in ecological processes, monitoring, decision-making, and harvest implementation, under a diverse range of contexts. Results reveal the fundamental challenges of achieving sustainability in wildlife harvest. Environmental contexts were important in determining optimal harvest parameters, but overall, evaluation contexts more strongly influenced perceived outcomes, optimal harvest parameters and optimal harvest strategies. Importantly, simple composite metrics popular in the theoretical literature (e.g. focusing on maximizing yield and population persistence only) often diverged from more holistic composite metrics that include a wider range of population and harvest objectives, and better reflect the trade-offs in real world applied contexts. While adaptive harvest strategies were most frequently preferred, particularly for more complex environmental contexts (e.g. high uncertainty or variability), our simulations map out cases where these heuristics may not hold. Despite not always being the optimal solution, overall adaptive harvest strategies resulted in the least value forgone, and are likely to give the best outcomes under future climatic variability and uncertainty. This demonstrates the potential value of heuristics for guiding applied management. |
doi_str_mv | 10.1371/journal.pone.0260159 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2599573859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A683178922</galeid><doaj_id>oai_doaj_org_article_a905e9770e9f418d822328876f6cd2f1</doaj_id><sourcerecordid>A683178922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-4b8170de0bb2321e8aa4282c56ebd86096a17e7af5560ccb5635a209d76491723</originalsourceid><addsrcrecordid>eNqNkl2L1DAYhYso7rr6D0QLguDFjPlovm6EZVF3YGHBrwtvQpom0wyZZkzS1f33ZpzuMgUF6UVL-pyT9z2cqnoOwRJiBt9uwhgH5Ze7MJglQBRAIh5Up1BgtKAI4IdH3yfVk5Q2ABDMKX1cneCGCcYJOq2-X5oxupSdTrUNsc69qdOYsnKDar2pexVvTMp1sPVP5zvvrKndUKccdK_2sjoF7ZRfGB18WDutfJ1uUzbb9LR6ZJVP5tn0Pqu-fnj_5eJycXX9cXVxfrXQtIF50bQcMtAZ0LYII2i4Ug3iSBNq2o5TIKiCzDBlCaFA65ZQTBQComO0EZAhfFa9PPjufEhyiiVJRIQgDHMiCrE6EF1QG7mLbqvirQzKyT8HIa6limUXb6QSgBjBGDDCNpB3HJWhOGfUUt0hC4vXu-m2sd2aTpshR-VnpvM_g-vlOtzIskqD4X6YV5NBDD_Gku0_Rp6otSpTucGGYqa3Lml5TjmGjAu0X335F6o8ndk6XYphXTmfCd7MBIXJ5ldeqzElufr86f_Z629z9vUR2xvlc5-CH7MLQ5qDzQHUMaQUjb1PDgK57_VdGnLfazn1usheHKd-L7orMv4NGw7zCg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599573859</pqid></control><display><type>article</type><title>Heuristics for the sustainable harvest of wildlife in stochastic social-ecological systems</title><source>PubMed Central Free</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Law, Elizabeth A ; Linnell, John D C ; van Moorter, Bram ; Nilsen, Erlend B</creator><contributor>Holt, Carrie A.</contributor><creatorcontrib>Law, Elizabeth A ; Linnell, John D C ; van Moorter, Bram ; Nilsen, Erlend B ; Holt, Carrie A.</creatorcontrib><description>Sustainable wildlife harvest is challenging due to the complexity of uncertain social-ecological systems, and diverse stakeholder perspectives of sustainability. In these systems, semi-complex stochastic simulation models can provide heuristics that bridge the gap between highly simplified theoretical models and highly context-specific case-studies. Such heuristics allow for more nuanced recommendations in low-knowledge contexts, and an improved understanding of model sensitivity and transferability to novel contexts. We develop semi-complex Management Strategy Evaluation (MSE) models capturing dynamics and variability in ecological processes, monitoring, decision-making, and harvest implementation, under a diverse range of contexts. Results reveal the fundamental challenges of achieving sustainability in wildlife harvest. Environmental contexts were important in determining optimal harvest parameters, but overall, evaluation contexts more strongly influenced perceived outcomes, optimal harvest parameters and optimal harvest strategies. Importantly, simple composite metrics popular in the theoretical literature (e.g. focusing on maximizing yield and population persistence only) often diverged from more holistic composite metrics that include a wider range of population and harvest objectives, and better reflect the trade-offs in real world applied contexts. While adaptive harvest strategies were most frequently preferred, particularly for more complex environmental contexts (e.g. high uncertainty or variability), our simulations map out cases where these heuristics may not hold. Despite not always being the optimal solution, overall adaptive harvest strategies resulted in the least value forgone, and are likely to give the best outcomes under future climatic variability and uncertainty. This demonstrates the potential value of heuristics for guiding applied management.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0260159</identifier><identifier>PMID: 34797852</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Animals, Wild - growth & development ; Animals, Wild - physiology ; Benchmarking - methods ; Biology and Life Sciences ; Case studies ; Climate variability ; Complexity ; Computer Simulation ; Decision making ; Ecological monitoring ; Ecology ; Ecology and Environmental Sciences ; Ecosystem ; Ecosystems ; Environmental aspects ; Fisheries management ; Funding ; Heuristic ; Heuristics - physiology ; Management decisions ; Mathematical models ; Modelling ; Models, Biological ; Optimization ; Parameters ; Population ; Population Dynamics ; Problem solving ; Protection and preservation ; Research and Analysis Methods ; Simulation ; Social Sciences ; Social-ecological systems ; Stakeholders ; Stochasticity ; Supervision ; Sustainability ; Sustainable development ; Sustainable harvest ; Uncertainty ; Wildlife ; Wildlife conservation ; Wildlife management</subject><ispartof>PloS one, 2021-11, Vol.16 (11), p.e0260159</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Law et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Law et al 2021 Law et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c641t-4b8170de0bb2321e8aa4282c56ebd86096a17e7af5560ccb5635a209d76491723</cites><orcidid>0000-0002-5119-8331 ; 0000-0003-4456-1259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604319/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604319/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34797852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Holt, Carrie A.</contributor><creatorcontrib>Law, Elizabeth A</creatorcontrib><creatorcontrib>Linnell, John D C</creatorcontrib><creatorcontrib>van Moorter, Bram</creatorcontrib><creatorcontrib>Nilsen, Erlend B</creatorcontrib><title>Heuristics for the sustainable harvest of wildlife in stochastic social-ecological systems</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Sustainable wildlife harvest is challenging due to the complexity of uncertain social-ecological systems, and diverse stakeholder perspectives of sustainability. In these systems, semi-complex stochastic simulation models can provide heuristics that bridge the gap between highly simplified theoretical models and highly context-specific case-studies. Such heuristics allow for more nuanced recommendations in low-knowledge contexts, and an improved understanding of model sensitivity and transferability to novel contexts. We develop semi-complex Management Strategy Evaluation (MSE) models capturing dynamics and variability in ecological processes, monitoring, decision-making, and harvest implementation, under a diverse range of contexts. Results reveal the fundamental challenges of achieving sustainability in wildlife harvest. Environmental contexts were important in determining optimal harvest parameters, but overall, evaluation contexts more strongly influenced perceived outcomes, optimal harvest parameters and optimal harvest strategies. Importantly, simple composite metrics popular in the theoretical literature (e.g. focusing on maximizing yield and population persistence only) often diverged from more holistic composite metrics that include a wider range of population and harvest objectives, and better reflect the trade-offs in real world applied contexts. While adaptive harvest strategies were most frequently preferred, particularly for more complex environmental contexts (e.g. high uncertainty or variability), our simulations map out cases where these heuristics may not hold. Despite not always being the optimal solution, overall adaptive harvest strategies resulted in the least value forgone, and are likely to give the best outcomes under future climatic variability and uncertainty. This demonstrates the potential value of heuristics for guiding applied management.</description><subject>Animals</subject><subject>Animals, Wild - growth & development</subject><subject>Animals, Wild - physiology</subject><subject>Benchmarking - methods</subject><subject>Biology and Life Sciences</subject><subject>Case studies</subject><subject>Climate variability</subject><subject>Complexity</subject><subject>Computer Simulation</subject><subject>Decision making</subject><subject>Ecological monitoring</subject><subject>Ecology</subject><subject>Ecology and Environmental Sciences</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Environmental aspects</subject><subject>Fisheries management</subject><subject>Funding</subject><subject>Heuristic</subject><subject>Heuristics - physiology</subject><subject>Management decisions</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Models, Biological</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Population</subject><subject>Population Dynamics</subject><subject>Problem solving</subject><subject>Protection and preservation</subject><subject>Research and Analysis Methods</subject><subject>Simulation</subject><subject>Social Sciences</subject><subject>Social-ecological systems</subject><subject>Stakeholders</subject><subject>Stochasticity</subject><subject>Supervision</subject><subject>Sustainability</subject><subject>Sustainable development</subject><subject>Sustainable harvest</subject><subject>Uncertainty</subject><subject>Wildlife</subject><subject>Wildlife conservation</subject><subject>Wildlife management</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAYhYso7rr6D0QLguDFjPlovm6EZVF3YGHBrwtvQpom0wyZZkzS1f33ZpzuMgUF6UVL-pyT9z2cqnoOwRJiBt9uwhgH5Ze7MJglQBRAIh5Up1BgtKAI4IdH3yfVk5Q2ABDMKX1cneCGCcYJOq2-X5oxupSdTrUNsc69qdOYsnKDar2pexVvTMp1sPVP5zvvrKndUKccdK_2sjoF7ZRfGB18WDutfJ1uUzbb9LR6ZJVP5tn0Pqu-fnj_5eJycXX9cXVxfrXQtIF50bQcMtAZ0LYII2i4Ug3iSBNq2o5TIKiCzDBlCaFA65ZQTBQComO0EZAhfFa9PPjufEhyiiVJRIQgDHMiCrE6EF1QG7mLbqvirQzKyT8HIa6limUXb6QSgBjBGDDCNpB3HJWhOGfUUt0hC4vXu-m2sd2aTpshR-VnpvM_g-vlOtzIskqD4X6YV5NBDD_Gku0_Rp6otSpTucGGYqa3Lml5TjmGjAu0X335F6o8ndk6XYphXTmfCd7MBIXJ5ldeqzElufr86f_Z629z9vUR2xvlc5-CH7MLQ5qDzQHUMaQUjb1PDgK57_VdGnLfazn1usheHKd-L7orMv4NGw7zCg</recordid><startdate>20211119</startdate><enddate>20211119</enddate><creator>Law, Elizabeth A</creator><creator>Linnell, John D C</creator><creator>van Moorter, Bram</creator><creator>Nilsen, Erlend B</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5119-8331</orcidid><orcidid>https://orcid.org/0000-0003-4456-1259</orcidid></search><sort><creationdate>20211119</creationdate><title>Heuristics for the sustainable harvest of wildlife in stochastic social-ecological systems</title><author>Law, Elizabeth A ; Linnell, John D C ; van Moorter, Bram ; Nilsen, Erlend B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-4b8170de0bb2321e8aa4282c56ebd86096a17e7af5560ccb5635a209d76491723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Animals, Wild - growth & development</topic><topic>Animals, Wild - physiology</topic><topic>Benchmarking - methods</topic><topic>Biology and Life Sciences</topic><topic>Case studies</topic><topic>Climate variability</topic><topic>Complexity</topic><topic>Computer Simulation</topic><topic>Decision making</topic><topic>Ecological monitoring</topic><topic>Ecology</topic><topic>Ecology and Environmental Sciences</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Environmental aspects</topic><topic>Fisheries management</topic><topic>Funding</topic><topic>Heuristic</topic><topic>Heuristics - physiology</topic><topic>Management decisions</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Models, Biological</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Population</topic><topic>Population Dynamics</topic><topic>Problem solving</topic><topic>Protection and preservation</topic><topic>Research and Analysis Methods</topic><topic>Simulation</topic><topic>Social Sciences</topic><topic>Social-ecological systems</topic><topic>Stakeholders</topic><topic>Stochasticity</topic><topic>Supervision</topic><topic>Sustainability</topic><topic>Sustainable development</topic><topic>Sustainable harvest</topic><topic>Uncertainty</topic><topic>Wildlife</topic><topic>Wildlife conservation</topic><topic>Wildlife management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Law, Elizabeth A</creatorcontrib><creatorcontrib>Linnell, John D C</creatorcontrib><creatorcontrib>van Moorter, Bram</creatorcontrib><creatorcontrib>Nilsen, Erlend B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Law, Elizabeth A</au><au>Linnell, John D C</au><au>van Moorter, Bram</au><au>Nilsen, Erlend B</au><au>Holt, Carrie A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heuristics for the sustainable harvest of wildlife in stochastic social-ecological systems</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-11-19</date><risdate>2021</risdate><volume>16</volume><issue>11</issue><spage>e0260159</spage><pages>e0260159-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Sustainable wildlife harvest is challenging due to the complexity of uncertain social-ecological systems, and diverse stakeholder perspectives of sustainability. In these systems, semi-complex stochastic simulation models can provide heuristics that bridge the gap between highly simplified theoretical models and highly context-specific case-studies. Such heuristics allow for more nuanced recommendations in low-knowledge contexts, and an improved understanding of model sensitivity and transferability to novel contexts. We develop semi-complex Management Strategy Evaluation (MSE) models capturing dynamics and variability in ecological processes, monitoring, decision-making, and harvest implementation, under a diverse range of contexts. Results reveal the fundamental challenges of achieving sustainability in wildlife harvest. Environmental contexts were important in determining optimal harvest parameters, but overall, evaluation contexts more strongly influenced perceived outcomes, optimal harvest parameters and optimal harvest strategies. Importantly, simple composite metrics popular in the theoretical literature (e.g. focusing on maximizing yield and population persistence only) often diverged from more holistic composite metrics that include a wider range of population and harvest objectives, and better reflect the trade-offs in real world applied contexts. While adaptive harvest strategies were most frequently preferred, particularly for more complex environmental contexts (e.g. high uncertainty or variability), our simulations map out cases where these heuristics may not hold. Despite not always being the optimal solution, overall adaptive harvest strategies resulted in the least value forgone, and are likely to give the best outcomes under future climatic variability and uncertainty. This demonstrates the potential value of heuristics for guiding applied management.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34797852</pmid><doi>10.1371/journal.pone.0260159</doi><tpages>e0260159</tpages><orcidid>https://orcid.org/0000-0002-5119-8331</orcidid><orcidid>https://orcid.org/0000-0003-4456-1259</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-11, Vol.16 (11), p.e0260159 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2599573859 |
source | PubMed Central Free; MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Animals Animals, Wild - growth & development Animals, Wild - physiology Benchmarking - methods Biology and Life Sciences Case studies Climate variability Complexity Computer Simulation Decision making Ecological monitoring Ecology Ecology and Environmental Sciences Ecosystem Ecosystems Environmental aspects Fisheries management Funding Heuristic Heuristics - physiology Management decisions Mathematical models Modelling Models, Biological Optimization Parameters Population Population Dynamics Problem solving Protection and preservation Research and Analysis Methods Simulation Social Sciences Social-ecological systems Stakeholders Stochasticity Supervision Sustainability Sustainable development Sustainable harvest Uncertainty Wildlife Wildlife conservation Wildlife management |
title | Heuristics for the sustainable harvest of wildlife in stochastic social-ecological systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heuristics%20for%20the%20sustainable%20harvest%20of%20wildlife%20in%20stochastic%20social-ecological%20systems&rft.jtitle=PloS%20one&rft.au=Law,%20Elizabeth%20A&rft.date=2021-11-19&rft.volume=16&rft.issue=11&rft.spage=e0260159&rft.pages=e0260159-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0260159&rft_dat=%3Cgale_plos_%3EA683178922%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599573859&rft_id=info:pmid/34797852&rft_galeid=A683178922&rft_doaj_id=oai_doaj_org_article_a905e9770e9f418d822328876f6cd2f1&rfr_iscdi=true |