Heuristics for the sustainable harvest of wildlife in stochastic social-ecological systems

Sustainable wildlife harvest is challenging due to the complexity of uncertain social-ecological systems, and diverse stakeholder perspectives of sustainability. In these systems, semi-complex stochastic simulation models can provide heuristics that bridge the gap between highly simplified theoretic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-11, Vol.16 (11), p.e0260159
Hauptverfasser: Law, Elizabeth A, Linnell, John D C, van Moorter, Bram, Nilsen, Erlend B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page e0260159
container_title PloS one
container_volume 16
creator Law, Elizabeth A
Linnell, John D C
van Moorter, Bram
Nilsen, Erlend B
description Sustainable wildlife harvest is challenging due to the complexity of uncertain social-ecological systems, and diverse stakeholder perspectives of sustainability. In these systems, semi-complex stochastic simulation models can provide heuristics that bridge the gap between highly simplified theoretical models and highly context-specific case-studies. Such heuristics allow for more nuanced recommendations in low-knowledge contexts, and an improved understanding of model sensitivity and transferability to novel contexts. We develop semi-complex Management Strategy Evaluation (MSE) models capturing dynamics and variability in ecological processes, monitoring, decision-making, and harvest implementation, under a diverse range of contexts. Results reveal the fundamental challenges of achieving sustainability in wildlife harvest. Environmental contexts were important in determining optimal harvest parameters, but overall, evaluation contexts more strongly influenced perceived outcomes, optimal harvest parameters and optimal harvest strategies. Importantly, simple composite metrics popular in the theoretical literature (e.g. focusing on maximizing yield and population persistence only) often diverged from more holistic composite metrics that include a wider range of population and harvest objectives, and better reflect the trade-offs in real world applied contexts. While adaptive harvest strategies were most frequently preferred, particularly for more complex environmental contexts (e.g. high uncertainty or variability), our simulations map out cases where these heuristics may not hold. Despite not always being the optimal solution, overall adaptive harvest strategies resulted in the least value forgone, and are likely to give the best outcomes under future climatic variability and uncertainty. This demonstrates the potential value of heuristics for guiding applied management.
doi_str_mv 10.1371/journal.pone.0260159
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2599573859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A683178922</galeid><doaj_id>oai_doaj_org_article_a905e9770e9f418d822328876f6cd2f1</doaj_id><sourcerecordid>A683178922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-4b8170de0bb2321e8aa4282c56ebd86096a17e7af5560ccb5635a209d76491723</originalsourceid><addsrcrecordid>eNqNkl2L1DAYhYso7rr6D0QLguDFjPlovm6EZVF3YGHBrwtvQpom0wyZZkzS1f33ZpzuMgUF6UVL-pyT9z2cqnoOwRJiBt9uwhgH5Ze7MJglQBRAIh5Up1BgtKAI4IdH3yfVk5Q2ABDMKX1cneCGCcYJOq2-X5oxupSdTrUNsc69qdOYsnKDar2pexVvTMp1sPVP5zvvrKndUKccdK_2sjoF7ZRfGB18WDutfJ1uUzbb9LR6ZJVP5tn0Pqu-fnj_5eJycXX9cXVxfrXQtIF50bQcMtAZ0LYII2i4Ug3iSBNq2o5TIKiCzDBlCaFA65ZQTBQComO0EZAhfFa9PPjufEhyiiVJRIQgDHMiCrE6EF1QG7mLbqvirQzKyT8HIa6limUXb6QSgBjBGDDCNpB3HJWhOGfUUt0hC4vXu-m2sd2aTpshR-VnpvM_g-vlOtzIskqD4X6YV5NBDD_Gku0_Rp6otSpTucGGYqa3Lml5TjmGjAu0X335F6o8ndk6XYphXTmfCd7MBIXJ5ldeqzElufr86f_Z629z9vUR2xvlc5-CH7MLQ5qDzQHUMaQUjb1PDgK57_VdGnLfazn1usheHKd-L7orMv4NGw7zCg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599573859</pqid></control><display><type>article</type><title>Heuristics for the sustainable harvest of wildlife in stochastic social-ecological systems</title><source>PubMed Central Free</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Law, Elizabeth A ; Linnell, John D C ; van Moorter, Bram ; Nilsen, Erlend B</creator><contributor>Holt, Carrie A.</contributor><creatorcontrib>Law, Elizabeth A ; Linnell, John D C ; van Moorter, Bram ; Nilsen, Erlend B ; Holt, Carrie A.</creatorcontrib><description>Sustainable wildlife harvest is challenging due to the complexity of uncertain social-ecological systems, and diverse stakeholder perspectives of sustainability. In these systems, semi-complex stochastic simulation models can provide heuristics that bridge the gap between highly simplified theoretical models and highly context-specific case-studies. Such heuristics allow for more nuanced recommendations in low-knowledge contexts, and an improved understanding of model sensitivity and transferability to novel contexts. We develop semi-complex Management Strategy Evaluation (MSE) models capturing dynamics and variability in ecological processes, monitoring, decision-making, and harvest implementation, under a diverse range of contexts. Results reveal the fundamental challenges of achieving sustainability in wildlife harvest. Environmental contexts were important in determining optimal harvest parameters, but overall, evaluation contexts more strongly influenced perceived outcomes, optimal harvest parameters and optimal harvest strategies. Importantly, simple composite metrics popular in the theoretical literature (e.g. focusing on maximizing yield and population persistence only) often diverged from more holistic composite metrics that include a wider range of population and harvest objectives, and better reflect the trade-offs in real world applied contexts. While adaptive harvest strategies were most frequently preferred, particularly for more complex environmental contexts (e.g. high uncertainty or variability), our simulations map out cases where these heuristics may not hold. Despite not always being the optimal solution, overall adaptive harvest strategies resulted in the least value forgone, and are likely to give the best outcomes under future climatic variability and uncertainty. This demonstrates the potential value of heuristics for guiding applied management.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0260159</identifier><identifier>PMID: 34797852</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Animals, Wild - growth &amp; development ; Animals, Wild - physiology ; Benchmarking - methods ; Biology and Life Sciences ; Case studies ; Climate variability ; Complexity ; Computer Simulation ; Decision making ; Ecological monitoring ; Ecology ; Ecology and Environmental Sciences ; Ecosystem ; Ecosystems ; Environmental aspects ; Fisheries management ; Funding ; Heuristic ; Heuristics - physiology ; Management decisions ; Mathematical models ; Modelling ; Models, Biological ; Optimization ; Parameters ; Population ; Population Dynamics ; Problem solving ; Protection and preservation ; Research and Analysis Methods ; Simulation ; Social Sciences ; Social-ecological systems ; Stakeholders ; Stochasticity ; Supervision ; Sustainability ; Sustainable development ; Sustainable harvest ; Uncertainty ; Wildlife ; Wildlife conservation ; Wildlife management</subject><ispartof>PloS one, 2021-11, Vol.16 (11), p.e0260159</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Law et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Law et al 2021 Law et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c641t-4b8170de0bb2321e8aa4282c56ebd86096a17e7af5560ccb5635a209d76491723</cites><orcidid>0000-0002-5119-8331 ; 0000-0003-4456-1259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604319/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604319/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34797852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Holt, Carrie A.</contributor><creatorcontrib>Law, Elizabeth A</creatorcontrib><creatorcontrib>Linnell, John D C</creatorcontrib><creatorcontrib>van Moorter, Bram</creatorcontrib><creatorcontrib>Nilsen, Erlend B</creatorcontrib><title>Heuristics for the sustainable harvest of wildlife in stochastic social-ecological systems</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Sustainable wildlife harvest is challenging due to the complexity of uncertain social-ecological systems, and diverse stakeholder perspectives of sustainability. In these systems, semi-complex stochastic simulation models can provide heuristics that bridge the gap between highly simplified theoretical models and highly context-specific case-studies. Such heuristics allow for more nuanced recommendations in low-knowledge contexts, and an improved understanding of model sensitivity and transferability to novel contexts. We develop semi-complex Management Strategy Evaluation (MSE) models capturing dynamics and variability in ecological processes, monitoring, decision-making, and harvest implementation, under a diverse range of contexts. Results reveal the fundamental challenges of achieving sustainability in wildlife harvest. Environmental contexts were important in determining optimal harvest parameters, but overall, evaluation contexts more strongly influenced perceived outcomes, optimal harvest parameters and optimal harvest strategies. Importantly, simple composite metrics popular in the theoretical literature (e.g. focusing on maximizing yield and population persistence only) often diverged from more holistic composite metrics that include a wider range of population and harvest objectives, and better reflect the trade-offs in real world applied contexts. While adaptive harvest strategies were most frequently preferred, particularly for more complex environmental contexts (e.g. high uncertainty or variability), our simulations map out cases where these heuristics may not hold. Despite not always being the optimal solution, overall adaptive harvest strategies resulted in the least value forgone, and are likely to give the best outcomes under future climatic variability and uncertainty. This demonstrates the potential value of heuristics for guiding applied management.</description><subject>Animals</subject><subject>Animals, Wild - growth &amp; development</subject><subject>Animals, Wild - physiology</subject><subject>Benchmarking - methods</subject><subject>Biology and Life Sciences</subject><subject>Case studies</subject><subject>Climate variability</subject><subject>Complexity</subject><subject>Computer Simulation</subject><subject>Decision making</subject><subject>Ecological monitoring</subject><subject>Ecology</subject><subject>Ecology and Environmental Sciences</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Environmental aspects</subject><subject>Fisheries management</subject><subject>Funding</subject><subject>Heuristic</subject><subject>Heuristics - physiology</subject><subject>Management decisions</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Models, Biological</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Population</subject><subject>Population Dynamics</subject><subject>Problem solving</subject><subject>Protection and preservation</subject><subject>Research and Analysis Methods</subject><subject>Simulation</subject><subject>Social Sciences</subject><subject>Social-ecological systems</subject><subject>Stakeholders</subject><subject>Stochasticity</subject><subject>Supervision</subject><subject>Sustainability</subject><subject>Sustainable development</subject><subject>Sustainable harvest</subject><subject>Uncertainty</subject><subject>Wildlife</subject><subject>Wildlife conservation</subject><subject>Wildlife management</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAYhYso7rr6D0QLguDFjPlovm6EZVF3YGHBrwtvQpom0wyZZkzS1f33ZpzuMgUF6UVL-pyT9z2cqnoOwRJiBt9uwhgH5Ze7MJglQBRAIh5Up1BgtKAI4IdH3yfVk5Q2ABDMKX1cneCGCcYJOq2-X5oxupSdTrUNsc69qdOYsnKDar2pexVvTMp1sPVP5zvvrKndUKccdK_2sjoF7ZRfGB18WDutfJ1uUzbb9LR6ZJVP5tn0Pqu-fnj_5eJycXX9cXVxfrXQtIF50bQcMtAZ0LYII2i4Ug3iSBNq2o5TIKiCzDBlCaFA65ZQTBQComO0EZAhfFa9PPjufEhyiiVJRIQgDHMiCrE6EF1QG7mLbqvirQzKyT8HIa6limUXb6QSgBjBGDDCNpB3HJWhOGfUUt0hC4vXu-m2sd2aTpshR-VnpvM_g-vlOtzIskqD4X6YV5NBDD_Gku0_Rp6otSpTucGGYqa3Lml5TjmGjAu0X335F6o8ndk6XYphXTmfCd7MBIXJ5ldeqzElufr86f_Z629z9vUR2xvlc5-CH7MLQ5qDzQHUMaQUjb1PDgK57_VdGnLfazn1usheHKd-L7orMv4NGw7zCg</recordid><startdate>20211119</startdate><enddate>20211119</enddate><creator>Law, Elizabeth A</creator><creator>Linnell, John D C</creator><creator>van Moorter, Bram</creator><creator>Nilsen, Erlend B</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5119-8331</orcidid><orcidid>https://orcid.org/0000-0003-4456-1259</orcidid></search><sort><creationdate>20211119</creationdate><title>Heuristics for the sustainable harvest of wildlife in stochastic social-ecological systems</title><author>Law, Elizabeth A ; Linnell, John D C ; van Moorter, Bram ; Nilsen, Erlend B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-4b8170de0bb2321e8aa4282c56ebd86096a17e7af5560ccb5635a209d76491723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Animals, Wild - growth &amp; development</topic><topic>Animals, Wild - physiology</topic><topic>Benchmarking - methods</topic><topic>Biology and Life Sciences</topic><topic>Case studies</topic><topic>Climate variability</topic><topic>Complexity</topic><topic>Computer Simulation</topic><topic>Decision making</topic><topic>Ecological monitoring</topic><topic>Ecology</topic><topic>Ecology and Environmental Sciences</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Environmental aspects</topic><topic>Fisheries management</topic><topic>Funding</topic><topic>Heuristic</topic><topic>Heuristics - physiology</topic><topic>Management decisions</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Models, Biological</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Population</topic><topic>Population Dynamics</topic><topic>Problem solving</topic><topic>Protection and preservation</topic><topic>Research and Analysis Methods</topic><topic>Simulation</topic><topic>Social Sciences</topic><topic>Social-ecological systems</topic><topic>Stakeholders</topic><topic>Stochasticity</topic><topic>Supervision</topic><topic>Sustainability</topic><topic>Sustainable development</topic><topic>Sustainable harvest</topic><topic>Uncertainty</topic><topic>Wildlife</topic><topic>Wildlife conservation</topic><topic>Wildlife management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Law, Elizabeth A</creatorcontrib><creatorcontrib>Linnell, John D C</creatorcontrib><creatorcontrib>van Moorter, Bram</creatorcontrib><creatorcontrib>Nilsen, Erlend B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Law, Elizabeth A</au><au>Linnell, John D C</au><au>van Moorter, Bram</au><au>Nilsen, Erlend B</au><au>Holt, Carrie A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heuristics for the sustainable harvest of wildlife in stochastic social-ecological systems</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-11-19</date><risdate>2021</risdate><volume>16</volume><issue>11</issue><spage>e0260159</spage><pages>e0260159-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Sustainable wildlife harvest is challenging due to the complexity of uncertain social-ecological systems, and diverse stakeholder perspectives of sustainability. In these systems, semi-complex stochastic simulation models can provide heuristics that bridge the gap between highly simplified theoretical models and highly context-specific case-studies. Such heuristics allow for more nuanced recommendations in low-knowledge contexts, and an improved understanding of model sensitivity and transferability to novel contexts. We develop semi-complex Management Strategy Evaluation (MSE) models capturing dynamics and variability in ecological processes, monitoring, decision-making, and harvest implementation, under a diverse range of contexts. Results reveal the fundamental challenges of achieving sustainability in wildlife harvest. Environmental contexts were important in determining optimal harvest parameters, but overall, evaluation contexts more strongly influenced perceived outcomes, optimal harvest parameters and optimal harvest strategies. Importantly, simple composite metrics popular in the theoretical literature (e.g. focusing on maximizing yield and population persistence only) often diverged from more holistic composite metrics that include a wider range of population and harvest objectives, and better reflect the trade-offs in real world applied contexts. While adaptive harvest strategies were most frequently preferred, particularly for more complex environmental contexts (e.g. high uncertainty or variability), our simulations map out cases where these heuristics may not hold. Despite not always being the optimal solution, overall adaptive harvest strategies resulted in the least value forgone, and are likely to give the best outcomes under future climatic variability and uncertainty. This demonstrates the potential value of heuristics for guiding applied management.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34797852</pmid><doi>10.1371/journal.pone.0260159</doi><tpages>e0260159</tpages><orcidid>https://orcid.org/0000-0002-5119-8331</orcidid><orcidid>https://orcid.org/0000-0003-4456-1259</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-11, Vol.16 (11), p.e0260159
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2599573859
source PubMed Central Free; MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Animals
Animals, Wild - growth & development
Animals, Wild - physiology
Benchmarking - methods
Biology and Life Sciences
Case studies
Climate variability
Complexity
Computer Simulation
Decision making
Ecological monitoring
Ecology
Ecology and Environmental Sciences
Ecosystem
Ecosystems
Environmental aspects
Fisheries management
Funding
Heuristic
Heuristics - physiology
Management decisions
Mathematical models
Modelling
Models, Biological
Optimization
Parameters
Population
Population Dynamics
Problem solving
Protection and preservation
Research and Analysis Methods
Simulation
Social Sciences
Social-ecological systems
Stakeholders
Stochasticity
Supervision
Sustainability
Sustainable development
Sustainable harvest
Uncertainty
Wildlife
Wildlife conservation
Wildlife management
title Heuristics for the sustainable harvest of wildlife in stochastic social-ecological systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heuristics%20for%20the%20sustainable%20harvest%20of%20wildlife%20in%20stochastic%20social-ecological%20systems&rft.jtitle=PloS%20one&rft.au=Law,%20Elizabeth%20A&rft.date=2021-11-19&rft.volume=16&rft.issue=11&rft.spage=e0260159&rft.pages=e0260159-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0260159&rft_dat=%3Cgale_plos_%3EA683178922%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599573859&rft_id=info:pmid/34797852&rft_galeid=A683178922&rft_doaj_id=oai_doaj_org_article_a905e9770e9f418d822328876f6cd2f1&rfr_iscdi=true