Modelling COVID-19 transmission in a hemodialysis centre using simulation generated contacts matrices

The COVID-19 pandemic has been particularly threatening to patients with end-stage kidney disease (ESKD) on intermittent hemodialysis and their care providers. Hemodialysis patients who receive life-sustaining medical therapy in healthcare settings, face unique challenges as they need to be at a dia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-11, Vol.16 (11), p.e0259970-e0259970
Hauptverfasser: Tofighi, Mohammadali, Asgary, Ali, Merchant, Asad A, Shafiee, Mohammad Ali, Najafabadi, Mahdi M, Nadri, Nazanin, Aarabi, Mehdi, Heffernan, Jane, Wu, Jianhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0259970
container_issue 11
container_start_page e0259970
container_title PloS one
container_volume 16
creator Tofighi, Mohammadali
Asgary, Ali
Merchant, Asad A
Shafiee, Mohammad Ali
Najafabadi, Mahdi M
Nadri, Nazanin
Aarabi, Mehdi
Heffernan, Jane
Wu, Jianhong
description The COVID-19 pandemic has been particularly threatening to patients with end-stage kidney disease (ESKD) on intermittent hemodialysis and their care providers. Hemodialysis patients who receive life-sustaining medical therapy in healthcare settings, face unique challenges as they need to be at a dialysis unit three or more times a week, where they are confined to specific settings and tended to by dialysis nurses and staff with physical interaction and in close proximity. Despite the importance and critical situation of the dialysis units, modelling studies of the SARS-CoV-2 spread in these settings are very limited. In this paper, we have used a combination of discrete event and agent-based simulation models, to study the operations of a typical large dialysis unit and generate contact matrices to examine outbreak scenarios. We present the details of the contact matrix generation process and demonstrate how the simulation calculates a micro-scale contact matrix comprising the number and duration of contacts at a micro-scale time step. We have used the contacts matrix in an agent-based model to predict disease transmission under different scenarios. The results show that micro-simulation can be used to estimate contact matrices, which can be used effectively for disease modelling in dialysis and similar settings.
doi_str_mv 10.1371/journal.pone.0259970
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2599573475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A683178944</galeid><doaj_id>oai_doaj_org_article_4f9ffec2cff446abad724e4b53ad9450</doaj_id><sourcerecordid>A683178944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-81010f0fd49e31332dbb0e0844d7c22966868695104d1b3acb4c407f64cca5de3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEmTps2NsIxfAysDfuxtSJPTmSxtMiapuP_edKe7TGUvJBcJ6XPe0_OenCx7jtESkwq_u3KDt7Jb7p2FJSpKziv0IDvFnBQLViDy8Oh8kj0J4QqhktSMPc5OCK14VbPiNIOvTkPXGbvNV5vL9YcF5nn00obehGCczY3NZb6D3mkju-tgQq7ARg_5EMagYPqhk3Ekt2DBywg6V85GqWLIexm9URCeZo9a2QV4Nu1n2c9PH3-sviwuNp_Xq_OLhWK8iIsaI4xa1GrKgWBCCt00CFBNqa5UUXDG6rR4iRHVuCFSNVRRVLWMKiVLDeQse3nQ3XcuiMmhIEZzyioVXSZifSC0k1di700v_bVw0oibC-e3QvpoVAeCtrxtQRWqbSllspG6KijQpiRSc1qipPV-yjY0PegbX2Q3E51_sWYntu63qBmiBFdJ4M0k4N2vAUIUyXWV2iEtuCH9N0OoqFnFSEJf_YPeX91EbWUqwNjWpbxqFBXnrE4pa05popb3UGlp6E3qHbQm3c8C3s4Cxv7Cn7iVQwhi_f3b_7Obyzn7-ojdgeziLrhuGJ9TmIP0ACrvQvDQ3pmMkRin4dYNMU6DmKYhhb04btBd0O3zJ38Bnj0FoA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599573475</pqid></control><display><type>article</type><title>Modelling COVID-19 transmission in a hemodialysis centre using simulation generated contacts matrices</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tofighi, Mohammadali ; Asgary, Ali ; Merchant, Asad A ; Shafiee, Mohammad Ali ; Najafabadi, Mahdi M ; Nadri, Nazanin ; Aarabi, Mehdi ; Heffernan, Jane ; Wu, Jianhong</creator><contributor>Provenzano, Michele</contributor><creatorcontrib>Tofighi, Mohammadali ; Asgary, Ali ; Merchant, Asad A ; Shafiee, Mohammad Ali ; Najafabadi, Mahdi M ; Nadri, Nazanin ; Aarabi, Mehdi ; Heffernan, Jane ; Wu, Jianhong ; Provenzano, Michele</creatorcontrib><description>The COVID-19 pandemic has been particularly threatening to patients with end-stage kidney disease (ESKD) on intermittent hemodialysis and their care providers. Hemodialysis patients who receive life-sustaining medical therapy in healthcare settings, face unique challenges as they need to be at a dialysis unit three or more times a week, where they are confined to specific settings and tended to by dialysis nurses and staff with physical interaction and in close proximity. Despite the importance and critical situation of the dialysis units, modelling studies of the SARS-CoV-2 spread in these settings are very limited. In this paper, we have used a combination of discrete event and agent-based simulation models, to study the operations of a typical large dialysis unit and generate contact matrices to examine outbreak scenarios. We present the details of the contact matrix generation process and demonstrate how the simulation calculates a micro-scale contact matrix comprising the number and duration of contacts at a micro-scale time step. We have used the contacts matrix in an agent-based model to predict disease transmission under different scenarios. The results show that micro-simulation can be used to estimate contact matrices, which can be used effectively for disease modelling in dialysis and similar settings.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0259970</identifier><identifier>PMID: 34797862</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agent-based models ; Canada ; Computer and Information Sciences ; Computer Simulation ; Contact Tracing - statistics &amp; numerical data ; Control ; Coronaviruses ; COVID-19 ; COVID-19 - transmission ; Dialysis ; Disasters ; Disease control ; Disease transmission ; Disease Transmission, Infectious - statistics &amp; numerical data ; End-stage renal disease ; Epidemics ; Evaluation ; Health care networks ; Health facilities ; Health risks ; Hemodialysis ; Hemodialysis Units, Hospital - statistics &amp; numerical data ; Hospitals ; Humans ; Infections ; Kidney diseases ; Long term health care ; Medicine and Health Sciences ; Modelling ; Models, Statistical ; Mortality ; Pandemics ; Patients ; People and Places ; Physical Sciences ; Prospective payment systems ; Public health ; Research and Analysis Methods ; Severe acute respiratory syndrome coronavirus 2 ; Simulation ; Software ; Supervision ; Viral diseases</subject><ispartof>PloS one, 2021-11, Vol.16 (11), p.e0259970-e0259970</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Tofighi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Tofighi et al 2021 Tofighi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-81010f0fd49e31332dbb0e0844d7c22966868695104d1b3acb4c407f64cca5de3</citedby><cites>FETCH-LOGICAL-c692t-81010f0fd49e31332dbb0e0844d7c22966868695104d1b3acb4c407f64cca5de3</cites><orcidid>0000-0001-9574-7614 ; 0000-0001-6095-8120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604317/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604317/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34797862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Provenzano, Michele</contributor><creatorcontrib>Tofighi, Mohammadali</creatorcontrib><creatorcontrib>Asgary, Ali</creatorcontrib><creatorcontrib>Merchant, Asad A</creatorcontrib><creatorcontrib>Shafiee, Mohammad Ali</creatorcontrib><creatorcontrib>Najafabadi, Mahdi M</creatorcontrib><creatorcontrib>Nadri, Nazanin</creatorcontrib><creatorcontrib>Aarabi, Mehdi</creatorcontrib><creatorcontrib>Heffernan, Jane</creatorcontrib><creatorcontrib>Wu, Jianhong</creatorcontrib><title>Modelling COVID-19 transmission in a hemodialysis centre using simulation generated contacts matrices</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The COVID-19 pandemic has been particularly threatening to patients with end-stage kidney disease (ESKD) on intermittent hemodialysis and their care providers. Hemodialysis patients who receive life-sustaining medical therapy in healthcare settings, face unique challenges as they need to be at a dialysis unit three or more times a week, where they are confined to specific settings and tended to by dialysis nurses and staff with physical interaction and in close proximity. Despite the importance and critical situation of the dialysis units, modelling studies of the SARS-CoV-2 spread in these settings are very limited. In this paper, we have used a combination of discrete event and agent-based simulation models, to study the operations of a typical large dialysis unit and generate contact matrices to examine outbreak scenarios. We present the details of the contact matrix generation process and demonstrate how the simulation calculates a micro-scale contact matrix comprising the number and duration of contacts at a micro-scale time step. We have used the contacts matrix in an agent-based model to predict disease transmission under different scenarios. The results show that micro-simulation can be used to estimate contact matrices, which can be used effectively for disease modelling in dialysis and similar settings.</description><subject>Agent-based models</subject><subject>Canada</subject><subject>Computer and Information Sciences</subject><subject>Computer Simulation</subject><subject>Contact Tracing - statistics &amp; numerical data</subject><subject>Control</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - transmission</subject><subject>Dialysis</subject><subject>Disasters</subject><subject>Disease control</subject><subject>Disease transmission</subject><subject>Disease Transmission, Infectious - statistics &amp; numerical data</subject><subject>End-stage renal disease</subject><subject>Epidemics</subject><subject>Evaluation</subject><subject>Health care networks</subject><subject>Health facilities</subject><subject>Health risks</subject><subject>Hemodialysis</subject><subject>Hemodialysis Units, Hospital - statistics &amp; numerical data</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Infections</subject><subject>Kidney diseases</subject><subject>Long term health care</subject><subject>Medicine and Health Sciences</subject><subject>Modelling</subject><subject>Models, Statistical</subject><subject>Mortality</subject><subject>Pandemics</subject><subject>Patients</subject><subject>People and Places</subject><subject>Physical Sciences</subject><subject>Prospective payment systems</subject><subject>Public health</subject><subject>Research and Analysis Methods</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Simulation</subject><subject>Software</subject><subject>Supervision</subject><subject>Viral diseases</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEmTps2NsIxfAysDfuxtSJPTmSxtMiapuP_edKe7TGUvJBcJ6XPe0_OenCx7jtESkwq_u3KDt7Jb7p2FJSpKziv0IDvFnBQLViDy8Oh8kj0J4QqhktSMPc5OCK14VbPiNIOvTkPXGbvNV5vL9YcF5nn00obehGCczY3NZb6D3mkju-tgQq7ARg_5EMagYPqhk3Ekt2DBywg6V85GqWLIexm9URCeZo9a2QV4Nu1n2c9PH3-sviwuNp_Xq_OLhWK8iIsaI4xa1GrKgWBCCt00CFBNqa5UUXDG6rR4iRHVuCFSNVRRVLWMKiVLDeQse3nQ3XcuiMmhIEZzyioVXSZifSC0k1di700v_bVw0oibC-e3QvpoVAeCtrxtQRWqbSllspG6KijQpiRSc1qipPV-yjY0PegbX2Q3E51_sWYntu63qBmiBFdJ4M0k4N2vAUIUyXWV2iEtuCH9N0OoqFnFSEJf_YPeX91EbWUqwNjWpbxqFBXnrE4pa05popb3UGlp6E3qHbQm3c8C3s4Cxv7Cn7iVQwhi_f3b_7Obyzn7-ojdgeziLrhuGJ9TmIP0ACrvQvDQ3pmMkRin4dYNMU6DmKYhhb04btBd0O3zJ38Bnj0FoA</recordid><startdate>20211119</startdate><enddate>20211119</enddate><creator>Tofighi, Mohammadali</creator><creator>Asgary, Ali</creator><creator>Merchant, Asad A</creator><creator>Shafiee, Mohammad Ali</creator><creator>Najafabadi, Mahdi M</creator><creator>Nadri, Nazanin</creator><creator>Aarabi, Mehdi</creator><creator>Heffernan, Jane</creator><creator>Wu, Jianhong</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9574-7614</orcidid><orcidid>https://orcid.org/0000-0001-6095-8120</orcidid></search><sort><creationdate>20211119</creationdate><title>Modelling COVID-19 transmission in a hemodialysis centre using simulation generated contacts matrices</title><author>Tofighi, Mohammadali ; Asgary, Ali ; Merchant, Asad A ; Shafiee, Mohammad Ali ; Najafabadi, Mahdi M ; Nadri, Nazanin ; Aarabi, Mehdi ; Heffernan, Jane ; Wu, Jianhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-81010f0fd49e31332dbb0e0844d7c22966868695104d1b3acb4c407f64cca5de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agent-based models</topic><topic>Canada</topic><topic>Computer and Information Sciences</topic><topic>Computer Simulation</topic><topic>Contact Tracing - statistics &amp; numerical data</topic><topic>Control</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - transmission</topic><topic>Dialysis</topic><topic>Disasters</topic><topic>Disease control</topic><topic>Disease transmission</topic><topic>Disease Transmission, Infectious - statistics &amp; numerical data</topic><topic>End-stage renal disease</topic><topic>Epidemics</topic><topic>Evaluation</topic><topic>Health care networks</topic><topic>Health facilities</topic><topic>Health risks</topic><topic>Hemodialysis</topic><topic>Hemodialysis Units, Hospital - statistics &amp; numerical data</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Infections</topic><topic>Kidney diseases</topic><topic>Long term health care</topic><topic>Medicine and Health Sciences</topic><topic>Modelling</topic><topic>Models, Statistical</topic><topic>Mortality</topic><topic>Pandemics</topic><topic>Patients</topic><topic>People and Places</topic><topic>Physical Sciences</topic><topic>Prospective payment systems</topic><topic>Public health</topic><topic>Research and Analysis Methods</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Simulation</topic><topic>Software</topic><topic>Supervision</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tofighi, Mohammadali</creatorcontrib><creatorcontrib>Asgary, Ali</creatorcontrib><creatorcontrib>Merchant, Asad A</creatorcontrib><creatorcontrib>Shafiee, Mohammad Ali</creatorcontrib><creatorcontrib>Najafabadi, Mahdi M</creatorcontrib><creatorcontrib>Nadri, Nazanin</creatorcontrib><creatorcontrib>Aarabi, Mehdi</creatorcontrib><creatorcontrib>Heffernan, Jane</creatorcontrib><creatorcontrib>Wu, Jianhong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tofighi, Mohammadali</au><au>Asgary, Ali</au><au>Merchant, Asad A</au><au>Shafiee, Mohammad Ali</au><au>Najafabadi, Mahdi M</au><au>Nadri, Nazanin</au><au>Aarabi, Mehdi</au><au>Heffernan, Jane</au><au>Wu, Jianhong</au><au>Provenzano, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling COVID-19 transmission in a hemodialysis centre using simulation generated contacts matrices</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-11-19</date><risdate>2021</risdate><volume>16</volume><issue>11</issue><spage>e0259970</spage><epage>e0259970</epage><pages>e0259970-e0259970</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The COVID-19 pandemic has been particularly threatening to patients with end-stage kidney disease (ESKD) on intermittent hemodialysis and their care providers. Hemodialysis patients who receive life-sustaining medical therapy in healthcare settings, face unique challenges as they need to be at a dialysis unit three or more times a week, where they are confined to specific settings and tended to by dialysis nurses and staff with physical interaction and in close proximity. Despite the importance and critical situation of the dialysis units, modelling studies of the SARS-CoV-2 spread in these settings are very limited. In this paper, we have used a combination of discrete event and agent-based simulation models, to study the operations of a typical large dialysis unit and generate contact matrices to examine outbreak scenarios. We present the details of the contact matrix generation process and demonstrate how the simulation calculates a micro-scale contact matrix comprising the number and duration of contacts at a micro-scale time step. We have used the contacts matrix in an agent-based model to predict disease transmission under different scenarios. The results show that micro-simulation can be used to estimate contact matrices, which can be used effectively for disease modelling in dialysis and similar settings.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34797862</pmid><doi>10.1371/journal.pone.0259970</doi><tpages>e0259970</tpages><orcidid>https://orcid.org/0000-0001-9574-7614</orcidid><orcidid>https://orcid.org/0000-0001-6095-8120</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-11, Vol.16 (11), p.e0259970-e0259970
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2599573475
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Agent-based models
Canada
Computer and Information Sciences
Computer Simulation
Contact Tracing - statistics & numerical data
Control
Coronaviruses
COVID-19
COVID-19 - transmission
Dialysis
Disasters
Disease control
Disease transmission
Disease Transmission, Infectious - statistics & numerical data
End-stage renal disease
Epidemics
Evaluation
Health care networks
Health facilities
Health risks
Hemodialysis
Hemodialysis Units, Hospital - statistics & numerical data
Hospitals
Humans
Infections
Kidney diseases
Long term health care
Medicine and Health Sciences
Modelling
Models, Statistical
Mortality
Pandemics
Patients
People and Places
Physical Sciences
Prospective payment systems
Public health
Research and Analysis Methods
Severe acute respiratory syndrome coronavirus 2
Simulation
Software
Supervision
Viral diseases
title Modelling COVID-19 transmission in a hemodialysis centre using simulation generated contacts matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20COVID-19%20transmission%20in%20a%20hemodialysis%20centre%20using%20simulation%20generated%20contacts%20matrices&rft.jtitle=PloS%20one&rft.au=Tofighi,%20Mohammadali&rft.date=2021-11-19&rft.volume=16&rft.issue=11&rft.spage=e0259970&rft.epage=e0259970&rft.pages=e0259970-e0259970&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0259970&rft_dat=%3Cgale_plos_%3EA683178944%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599573475&rft_id=info:pmid/34797862&rft_galeid=A683178944&rft_doaj_id=oai_doaj_org_article_4f9ffec2cff446abad724e4b53ad9450&rfr_iscdi=true