Nanopore metagenomic sequencing for detection and characterization of SARS-CoV-2 in clinical samples

Objectives The COVID-19 pandemic has underscored the need for rapid novel diagnostic strategies. Metagenomic Next-Generation Sequencing (mNGS) may allow for the detection of pathogens that can be missed in targeted assays. The goal of this study was to assess the performance of nanopore-based Sequen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-11, Vol.16 (11), p.e0259712-e0259712
Hauptverfasser: Gauthier, Nick P. G, Nelson, Cassidy, Bonsall, Michael B, Locher, Kerstin, Charles, Marthe, MacDonald, Clayton, Krajden, Mel, Chorlton, Samuel D, Manges, Amee R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0259712
container_issue 11
container_start_page e0259712
container_title PloS one
container_volume 16
creator Gauthier, Nick P. G
Nelson, Cassidy
Bonsall, Michael B
Locher, Kerstin
Charles, Marthe
MacDonald, Clayton
Krajden, Mel
Chorlton, Samuel D
Manges, Amee R
description Objectives The COVID-19 pandemic has underscored the need for rapid novel diagnostic strategies. Metagenomic Next-Generation Sequencing (mNGS) may allow for the detection of pathogens that can be missed in targeted assays. The goal of this study was to assess the performance of nanopore-based Sequence-Independent Single Primer Amplification (SISPA) for the detection and characterization of SARS-CoV-2. Methods We performed mNGS on clinical samples and designed a diagnostic classifier that corrects for barcode crosstalk between specimens. Phylogenetic analysis was performed on genome assemblies. Results Our assay yielded 100% specificity overall and 95.2% sensitivity for specimens with a RT-PCR cycle threshold value less than 30. We assembled 10 complete, and one near-complete genomes from 20 specimens that were classified as positive by mNGS. Phylogenetic analysis revealed that 10/11 specimens from British Columbia had a closest relative to another British Columbian specimen. We found 100% concordance between phylogenetic lineage assignment and Variant of Concern (VOC) PCR results. Our assay was able to distinguish between the Alpha and Gamma variants, which was not possible with the current standard VOC PCR being used in British Columbia. Conclusions This study supports future work examining the broader feasibility of nanopore mNGS as a diagnostic strategy for the detection and characterization of viral pathogens.
doi_str_mv 10.1371/journal.pone.0259712
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2599054300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A683045818</galeid><doaj_id>oai_doaj_org_article_531a03bde7e44076ac535ac0b73ed95f</doaj_id><sourcerecordid>A683045818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-f841f3a0a4009a20c32efd209b5004801b08e55cbf21189c5ffb9fbffd3e88a43</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6DwQLgujFjEmTtOmNMAx-DCwu7OjehtP0pJOhk4xJK-qvN7NTZUf2QnKRcPLkTc6bc7LsOSVzyir6duvH4KCf773DOSlEXdHiQXZOa1bMyoKwh3fWZ9mTGLeECCbL8nF2xnhVM0HkedZ-Buf3PmC-wwE6dH5ndR7x24hOW9flxoe8xQH1YL3LwbW53kAAPWCwv-A26E2-XlyvZ0t_Myty63LdW2c19HmE3b7H-DR7ZKCP-GyaL7KvH95_WX6aXV59XC0XlzNdlvUwM5JTw4AAJ6SGgmhWoGkLUjeCEC4JbYhEIXRjCkplrYUxTW0aY1qGUgJnF9mLo-6-91FNBkWVvKmJ4IyQRKyOROthq_bB7iD8VB6sug340CkIg9U9KsEoENa0WCHnpCpBCyZAk6Zi2NbCJK13021js8NWoxsC9CeipzvOblTnvytZEir44bmvJ4Hgk99xUDsbNfY9OPTj8d1Ucl6JhL78B70_u4nqICVgnfHpXn0QVYtSMsKFpDJR83uoNFpMf5-qydgUPznw5uRAYgb8MXQwxqhW6-v_Z69uTtlXd9gNQj9sou_HQ1HFU5AfQR18jAHNX5MpUYdm-OOGOjSDmpqB_Qasqvqu</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599054300</pqid></control><display><type>article</type><title>Nanopore metagenomic sequencing for detection and characterization of SARS-CoV-2 in clinical samples</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gauthier, Nick P. G ; Nelson, Cassidy ; Bonsall, Michael B ; Locher, Kerstin ; Charles, Marthe ; MacDonald, Clayton ; Krajden, Mel ; Chorlton, Samuel D ; Manges, Amee R</creator><contributor>Kalendar, Ruslan</contributor><creatorcontrib>Gauthier, Nick P. G ; Nelson, Cassidy ; Bonsall, Michael B ; Locher, Kerstin ; Charles, Marthe ; MacDonald, Clayton ; Krajden, Mel ; Chorlton, Samuel D ; Manges, Amee R ; Kalendar, Ruslan</creatorcontrib><description>Objectives The COVID-19 pandemic has underscored the need for rapid novel diagnostic strategies. Metagenomic Next-Generation Sequencing (mNGS) may allow for the detection of pathogens that can be missed in targeted assays. The goal of this study was to assess the performance of nanopore-based Sequence-Independent Single Primer Amplification (SISPA) for the detection and characterization of SARS-CoV-2. Methods We performed mNGS on clinical samples and designed a diagnostic classifier that corrects for barcode crosstalk between specimens. Phylogenetic analysis was performed on genome assemblies. Results Our assay yielded 100% specificity overall and 95.2% sensitivity for specimens with a RT-PCR cycle threshold value less than 30. We assembled 10 complete, and one near-complete genomes from 20 specimens that were classified as positive by mNGS. Phylogenetic analysis revealed that 10/11 specimens from British Columbia had a closest relative to another British Columbian specimen. We found 100% concordance between phylogenetic lineage assignment and Variant of Concern (VOC) PCR results. Our assay was able to distinguish between the Alpha and Gamma variants, which was not possible with the current standard VOC PCR being used in British Columbia. Conclusions This study supports future work examining the broader feasibility of nanopore mNGS as a diagnostic strategy for the detection and characterization of viral pathogens.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0259712</identifier><identifier>PMID: 34793508</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Analysis ; Assaying ; Bioinformatics ; Biology and life sciences ; Coronaviruses ; COVID-19 ; Crosstalk ; Diagnostic systems ; Disease control ; DNA sequencing ; Genomes ; Hospitals ; Infections ; Laboratories ; Medicine ; Medicine and health sciences ; Metagenomics ; Methods ; Next-generation sequencing ; Nucleotide sequencing ; Pandemics ; Pathogens ; Pathology ; Performance assessment ; Phylogeny ; Polymerase chain reaction ; Public health ; Research and Analysis Methods ; RNA polymerase ; Severe acute respiratory syndrome ; Severe acute respiratory syndrome coronavirus 2 ; Supervision ; Viral diseases ; Viral infections ; Viruses ; Zoology</subject><ispartof>PloS one, 2021-11, Vol.16 (11), p.e0259712-e0259712</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Gauthier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Gauthier et al 2021 Gauthier et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-f841f3a0a4009a20c32efd209b5004801b08e55cbf21189c5ffb9fbffd3e88a43</citedby><cites>FETCH-LOGICAL-c669t-f841f3a0a4009a20c32efd209b5004801b08e55cbf21189c5ffb9fbffd3e88a43</cites><orcidid>0000-0001-9891-8546 ; 0000-0003-2462-7249 ; 0000-0003-2567-8996</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601544/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601544/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids></links><search><contributor>Kalendar, Ruslan</contributor><creatorcontrib>Gauthier, Nick P. G</creatorcontrib><creatorcontrib>Nelson, Cassidy</creatorcontrib><creatorcontrib>Bonsall, Michael B</creatorcontrib><creatorcontrib>Locher, Kerstin</creatorcontrib><creatorcontrib>Charles, Marthe</creatorcontrib><creatorcontrib>MacDonald, Clayton</creatorcontrib><creatorcontrib>Krajden, Mel</creatorcontrib><creatorcontrib>Chorlton, Samuel D</creatorcontrib><creatorcontrib>Manges, Amee R</creatorcontrib><title>Nanopore metagenomic sequencing for detection and characterization of SARS-CoV-2 in clinical samples</title><title>PloS one</title><description>Objectives The COVID-19 pandemic has underscored the need for rapid novel diagnostic strategies. Metagenomic Next-Generation Sequencing (mNGS) may allow for the detection of pathogens that can be missed in targeted assays. The goal of this study was to assess the performance of nanopore-based Sequence-Independent Single Primer Amplification (SISPA) for the detection and characterization of SARS-CoV-2. Methods We performed mNGS on clinical samples and designed a diagnostic classifier that corrects for barcode crosstalk between specimens. Phylogenetic analysis was performed on genome assemblies. Results Our assay yielded 100% specificity overall and 95.2% sensitivity for specimens with a RT-PCR cycle threshold value less than 30. We assembled 10 complete, and one near-complete genomes from 20 specimens that were classified as positive by mNGS. Phylogenetic analysis revealed that 10/11 specimens from British Columbia had a closest relative to another British Columbian specimen. We found 100% concordance between phylogenetic lineage assignment and Variant of Concern (VOC) PCR results. Our assay was able to distinguish between the Alpha and Gamma variants, which was not possible with the current standard VOC PCR being used in British Columbia. Conclusions This study supports future work examining the broader feasibility of nanopore mNGS as a diagnostic strategy for the detection and characterization of viral pathogens.</description><subject>Analysis</subject><subject>Assaying</subject><subject>Bioinformatics</subject><subject>Biology and life sciences</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Crosstalk</subject><subject>Diagnostic systems</subject><subject>Disease control</subject><subject>DNA sequencing</subject><subject>Genomes</subject><subject>Hospitals</subject><subject>Infections</subject><subject>Laboratories</subject><subject>Medicine</subject><subject>Medicine and health sciences</subject><subject>Metagenomics</subject><subject>Methods</subject><subject>Next-generation sequencing</subject><subject>Nucleotide sequencing</subject><subject>Pandemics</subject><subject>Pathogens</subject><subject>Pathology</subject><subject>Performance assessment</subject><subject>Phylogeny</subject><subject>Polymerase chain reaction</subject><subject>Public health</subject><subject>Research and Analysis Methods</subject><subject>RNA polymerase</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Supervision</subject><subject>Viral diseases</subject><subject>Viral infections</subject><subject>Viruses</subject><subject>Zoology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6DwQLgujFjEmTtOmNMAx-DCwu7OjehtP0pJOhk4xJK-qvN7NTZUf2QnKRcPLkTc6bc7LsOSVzyir6duvH4KCf773DOSlEXdHiQXZOa1bMyoKwh3fWZ9mTGLeECCbL8nF2xnhVM0HkedZ-Buf3PmC-wwE6dH5ndR7x24hOW9flxoe8xQH1YL3LwbW53kAAPWCwv-A26E2-XlyvZ0t_Myty63LdW2c19HmE3b7H-DR7ZKCP-GyaL7KvH95_WX6aXV59XC0XlzNdlvUwM5JTw4AAJ6SGgmhWoGkLUjeCEC4JbYhEIXRjCkplrYUxTW0aY1qGUgJnF9mLo-6-91FNBkWVvKmJ4IyQRKyOROthq_bB7iD8VB6sug340CkIg9U9KsEoENa0WCHnpCpBCyZAk6Zi2NbCJK13021js8NWoxsC9CeipzvOblTnvytZEir44bmvJ4Hgk99xUDsbNfY9OPTj8d1Ucl6JhL78B70_u4nqICVgnfHpXn0QVYtSMsKFpDJR83uoNFpMf5-qydgUPznw5uRAYgb8MXQwxqhW6-v_Z69uTtlXd9gNQj9sou_HQ1HFU5AfQR18jAHNX5MpUYdm-OOGOjSDmpqB_Qasqvqu</recordid><startdate>20211118</startdate><enddate>20211118</enddate><creator>Gauthier, Nick P. G</creator><creator>Nelson, Cassidy</creator><creator>Bonsall, Michael B</creator><creator>Locher, Kerstin</creator><creator>Charles, Marthe</creator><creator>MacDonald, Clayton</creator><creator>Krajden, Mel</creator><creator>Chorlton, Samuel D</creator><creator>Manges, Amee R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9891-8546</orcidid><orcidid>https://orcid.org/0000-0003-2462-7249</orcidid><orcidid>https://orcid.org/0000-0003-2567-8996</orcidid></search><sort><creationdate>20211118</creationdate><title>Nanopore metagenomic sequencing for detection and characterization of SARS-CoV-2 in clinical samples</title><author>Gauthier, Nick P. G ; Nelson, Cassidy ; Bonsall, Michael B ; Locher, Kerstin ; Charles, Marthe ; MacDonald, Clayton ; Krajden, Mel ; Chorlton, Samuel D ; Manges, Amee R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-f841f3a0a4009a20c32efd209b5004801b08e55cbf21189c5ffb9fbffd3e88a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Assaying</topic><topic>Bioinformatics</topic><topic>Biology and life sciences</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Crosstalk</topic><topic>Diagnostic systems</topic><topic>Disease control</topic><topic>DNA sequencing</topic><topic>Genomes</topic><topic>Hospitals</topic><topic>Infections</topic><topic>Laboratories</topic><topic>Medicine</topic><topic>Medicine and health sciences</topic><topic>Metagenomics</topic><topic>Methods</topic><topic>Next-generation sequencing</topic><topic>Nucleotide sequencing</topic><topic>Pandemics</topic><topic>Pathogens</topic><topic>Pathology</topic><topic>Performance assessment</topic><topic>Phylogeny</topic><topic>Polymerase chain reaction</topic><topic>Public health</topic><topic>Research and Analysis Methods</topic><topic>RNA polymerase</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Supervision</topic><topic>Viral diseases</topic><topic>Viral infections</topic><topic>Viruses</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gauthier, Nick P. G</creatorcontrib><creatorcontrib>Nelson, Cassidy</creatorcontrib><creatorcontrib>Bonsall, Michael B</creatorcontrib><creatorcontrib>Locher, Kerstin</creatorcontrib><creatorcontrib>Charles, Marthe</creatorcontrib><creatorcontrib>MacDonald, Clayton</creatorcontrib><creatorcontrib>Krajden, Mel</creatorcontrib><creatorcontrib>Chorlton, Samuel D</creatorcontrib><creatorcontrib>Manges, Amee R</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gauthier, Nick P. G</au><au>Nelson, Cassidy</au><au>Bonsall, Michael B</au><au>Locher, Kerstin</au><au>Charles, Marthe</au><au>MacDonald, Clayton</au><au>Krajden, Mel</au><au>Chorlton, Samuel D</au><au>Manges, Amee R</au><au>Kalendar, Ruslan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanopore metagenomic sequencing for detection and characterization of SARS-CoV-2 in clinical samples</atitle><jtitle>PloS one</jtitle><date>2021-11-18</date><risdate>2021</risdate><volume>16</volume><issue>11</issue><spage>e0259712</spage><epage>e0259712</epage><pages>e0259712-e0259712</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Objectives The COVID-19 pandemic has underscored the need for rapid novel diagnostic strategies. Metagenomic Next-Generation Sequencing (mNGS) may allow for the detection of pathogens that can be missed in targeted assays. The goal of this study was to assess the performance of nanopore-based Sequence-Independent Single Primer Amplification (SISPA) for the detection and characterization of SARS-CoV-2. Methods We performed mNGS on clinical samples and designed a diagnostic classifier that corrects for barcode crosstalk between specimens. Phylogenetic analysis was performed on genome assemblies. Results Our assay yielded 100% specificity overall and 95.2% sensitivity for specimens with a RT-PCR cycle threshold value less than 30. We assembled 10 complete, and one near-complete genomes from 20 specimens that were classified as positive by mNGS. Phylogenetic analysis revealed that 10/11 specimens from British Columbia had a closest relative to another British Columbian specimen. We found 100% concordance between phylogenetic lineage assignment and Variant of Concern (VOC) PCR results. Our assay was able to distinguish between the Alpha and Gamma variants, which was not possible with the current standard VOC PCR being used in British Columbia. Conclusions This study supports future work examining the broader feasibility of nanopore mNGS as a diagnostic strategy for the detection and characterization of viral pathogens.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34793508</pmid><doi>10.1371/journal.pone.0259712</doi><tpages>e0259712</tpages><orcidid>https://orcid.org/0000-0001-9891-8546</orcidid><orcidid>https://orcid.org/0000-0003-2462-7249</orcidid><orcidid>https://orcid.org/0000-0003-2567-8996</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-11, Vol.16 (11), p.e0259712-e0259712
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2599054300
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Assaying
Bioinformatics
Biology and life sciences
Coronaviruses
COVID-19
Crosstalk
Diagnostic systems
Disease control
DNA sequencing
Genomes
Hospitals
Infections
Laboratories
Medicine
Medicine and health sciences
Metagenomics
Methods
Next-generation sequencing
Nucleotide sequencing
Pandemics
Pathogens
Pathology
Performance assessment
Phylogeny
Polymerase chain reaction
Public health
Research and Analysis Methods
RNA polymerase
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Supervision
Viral diseases
Viral infections
Viruses
Zoology
title Nanopore metagenomic sequencing for detection and characterization of SARS-CoV-2 in clinical samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanopore%20metagenomic%20sequencing%20for%20detection%20and%20characterization%20of%20SARS-CoV-2%20in%20clinical%20samples&rft.jtitle=PloS%20one&rft.au=Gauthier,%20Nick%20P.%20G&rft.date=2021-11-18&rft.volume=16&rft.issue=11&rft.spage=e0259712&rft.epage=e0259712&rft.pages=e0259712-e0259712&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0259712&rft_dat=%3Cgale_plos_%3EA683045818%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599054300&rft_id=info:pmid/34793508&rft_galeid=A683045818&rft_doaj_id=oai_doaj_org_article_531a03bde7e44076ac535ac0b73ed95f&rfr_iscdi=true