Inhibition of protein N-myristoylation blocks Plasmodium falciparum intraerythrocytic development, egress and invasion
We have combined chemical biology and genetic modification approaches to investigate the importance of protein myristoylation in the human malaria parasite, Plasmodium falciparum. Parasite treatment during schizogony in the last 10 to 15 hours of the erythrocytic cycle with IMP-1002, an inhibitor of...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2021-10, Vol.19 (10), p.e3001408-e3001408 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e3001408 |
---|---|
container_issue | 10 |
container_start_page | e3001408 |
container_title | PLoS biology |
container_volume | 19 |
creator | Schlott, Anja C Knuepfer, Ellen Green, Judith L Hobson, Philip Borg, Aaron J Morales-Sanfrutos, Julia Perrin, Abigail J Maclachlan, Catherine Collinson, Lucy M Snijders, Ambrosius P Tate, Edward W Holder, Anthony A |
description | We have combined chemical biology and genetic modification approaches to investigate the importance of protein myristoylation in the human malaria parasite, Plasmodium falciparum. Parasite treatment during schizogony in the last 10 to 15 hours of the erythrocytic cycle with IMP-1002, an inhibitor of N-myristoyl transferase (NMT), led to a significant blockade in parasite egress from the infected erythrocyte. Two rhoptry proteins were mislocalized in the cell, suggesting that rhoptry function is disrupted. We identified 16 NMT substrates for which myristoylation was significantly reduced by NMT inhibitor (NMTi) treatment, and, of these, 6 proteins were substantially reduced in abundance. In a viability screen, we showed that for 4 of these proteins replacement of the N-terminal glycine with alanine to prevent myristoylation had a substantial effect on parasite fitness. In detailed studies of one NMT substrate, glideosome-associated protein 45 (GAP45), loss of myristoylation had no impact on protein location or glideosome assembly, in contrast to the disruption caused by GAP45 gene deletion, but GAP45 myristoylation was essential for erythrocyte invasion. Therefore, there are at least 3 mechanisms by which inhibition of NMT can disrupt parasite development and growth: early in parasite development, leading to the inhibition of schizogony and formation of "pseudoschizonts," which has been described previously; at the end of schizogony, with disruption of rhoptry formation, merozoite development and egress from the infected erythrocyte; and at invasion, when impairment of motor complex function prevents invasion of new erythrocytes. These results underline the importance of P. falciparum NMT as a drug target because of the pleiotropic effect of its inhibition. |
doi_str_mv | 10.1371/journal.pbio.3001408 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2598103434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A682190008</galeid><doaj_id>oai_doaj_org_article_34e864e4f85047e9879d4fa62f5010e1</doaj_id><sourcerecordid>A682190008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-b37dd4f2b779f9a4e9882f9227977eab5d2a64c3a208c9412a57c5ae261ee5813</originalsourceid><addsrcrecordid>eNqVk11v0zAUhiMEYqPwDxBE4gYkWvyZ2DdI0zSg0rQhvm4txzlpXZI4s5Nq_fc4azataBcgX9iyn_c9H9ZJkpcYLTDN8YeNG3yr60VXWLegCGGGxKPkGHPG57kQ_PG981HyLIQNQoRIIp4mR5RlkmNKjpPtsl3bwvbWtamr0s67HmybXsybnbehd7ta37wVtTO_Q_q11qFxpR2atNK1sZ328Wjb3mvwu37tndn11qQlbKF2XQNt_z6FlYcQUt2WkdzqEP2eJ0-iPsCLaZ8lPz-d_Tj9Mj-__Lw8PTmfm5hgPy9oXpasIkWey0pqBlIIUklCcpnnoAteEp0xQzVBwkiGiea54RpIhgG4wHSWvN77drULampZUIRLgRFlcc2S5Z4ond6ozttG-51y2qqbC-dXSvtYUg2KMhAZA1YJjlgec8llTE5npOIIIxijfZyiDUUDpYGxL_WB6eFLa9dq5bZKcMYEp9Hg7WTg3dUAoVeNDQbqWrfghjHvmACTNCMRffMX-nB1E7XSsQDbVi7GNaOpOskEwRIhJCK1eICKq4TGGtdCZeP9geDdgSAyPVz3Kz2EoJbfv_0He_Hv7OWvQ5btWeNdCB6quz5jpMYJuW2IGidETRMSZa_u_9Gd6HYk6B9baA0p</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598103434</pqid></control><display><type>article</type><title>Inhibition of protein N-myristoylation blocks Plasmodium falciparum intraerythrocytic development, egress and invasion</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Schlott, Anja C ; Knuepfer, Ellen ; Green, Judith L ; Hobson, Philip ; Borg, Aaron J ; Morales-Sanfrutos, Julia ; Perrin, Abigail J ; Maclachlan, Catherine ; Collinson, Lucy M ; Snijders, Ambrosius P ; Tate, Edward W ; Holder, Anthony A</creator><contributor>Duffy, Michael</contributor><creatorcontrib>Schlott, Anja C ; Knuepfer, Ellen ; Green, Judith L ; Hobson, Philip ; Borg, Aaron J ; Morales-Sanfrutos, Julia ; Perrin, Abigail J ; Maclachlan, Catherine ; Collinson, Lucy M ; Snijders, Ambrosius P ; Tate, Edward W ; Holder, Anthony A ; Duffy, Michael</creatorcontrib><description>We have combined chemical biology and genetic modification approaches to investigate the importance of protein myristoylation in the human malaria parasite, Plasmodium falciparum. Parasite treatment during schizogony in the last 10 to 15 hours of the erythrocytic cycle with IMP-1002, an inhibitor of N-myristoyl transferase (NMT), led to a significant blockade in parasite egress from the infected erythrocyte. Two rhoptry proteins were mislocalized in the cell, suggesting that rhoptry function is disrupted. We identified 16 NMT substrates for which myristoylation was significantly reduced by NMT inhibitor (NMTi) treatment, and, of these, 6 proteins were substantially reduced in abundance. In a viability screen, we showed that for 4 of these proteins replacement of the N-terminal glycine with alanine to prevent myristoylation had a substantial effect on parasite fitness. In detailed studies of one NMT substrate, glideosome-associated protein 45 (GAP45), loss of myristoylation had no impact on protein location or glideosome assembly, in contrast to the disruption caused by GAP45 gene deletion, but GAP45 myristoylation was essential for erythrocyte invasion. Therefore, there are at least 3 mechanisms by which inhibition of NMT can disrupt parasite development and growth: early in parasite development, leading to the inhibition of schizogony and formation of "pseudoschizonts," which has been described previously; at the end of schizogony, with disruption of rhoptry formation, merozoite development and egress from the infected erythrocyte; and at invasion, when impairment of motor complex function prevents invasion of new erythrocytes. These results underline the importance of P. falciparum NMT as a drug target because of the pleiotropic effect of its inhibition.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3001408</identifier><identifier>PMID: 34695132</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acyltransferases - antagonists & inhibitors ; Acyltransferases - metabolism ; Alanine ; Animals ; Asexuality ; Binding sites ; Biology and Life Sciences ; Cell Survival - drug effects ; CRISPR-Cas Systems - genetics ; Disruption ; Egress ; Enzyme Inhibitors - pharmacology ; Enzymes ; Erythrocytes ; Erythrocytes - drug effects ; Erythrocytes - parasitology ; Flow cytometry ; Gene deletion ; Genetic modification ; Glycine ; Health aspects ; Inhibitors ; Kinases ; Lipoylation - drug effects ; Malaria ; Medicine and Health Sciences ; Merozoites - drug effects ; Merozoites - metabolism ; Morphology ; Myristic Acid - metabolism ; Myristoylation ; Parasites ; Parasites - drug effects ; Parasites - growth & development ; Physical Sciences ; Plasmodium falciparum ; Plasmodium falciparum - drug effects ; Plasmodium falciparum - enzymology ; Plasmodium falciparum - metabolism ; Plasmodium falciparum - ultrastructure ; Population ; Proteins ; Protozoan Proteins - metabolism ; Red blood cells ; Research and Analysis Methods ; Schizogony ; Solubility ; Substrate Specificity - drug effects ; Substrates ; Therapeutic targets ; Vector-borne diseases</subject><ispartof>PLoS biology, 2021-10, Vol.19 (10), p.e3001408-e3001408</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Schlott et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Schlott et al 2021 Schlott et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-b37dd4f2b779f9a4e9882f9227977eab5d2a64c3a208c9412a57c5ae261ee5813</citedby><cites>FETCH-LOGICAL-c695t-b37dd4f2b779f9a4e9882f9227977eab5d2a64c3a208c9412a57c5ae261ee5813</cites><orcidid>0000-0003-1283-8751 ; 0000-0002-6090-1877 ; 0000-0003-0260-613X ; 0000-0002-8490-6058 ; 0000-0001-5117-2994 ; 0000-0002-0367-2932 ; 0000-0001-6825-9404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8544853/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8544853/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34695132$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Duffy, Michael</contributor><creatorcontrib>Schlott, Anja C</creatorcontrib><creatorcontrib>Knuepfer, Ellen</creatorcontrib><creatorcontrib>Green, Judith L</creatorcontrib><creatorcontrib>Hobson, Philip</creatorcontrib><creatorcontrib>Borg, Aaron J</creatorcontrib><creatorcontrib>Morales-Sanfrutos, Julia</creatorcontrib><creatorcontrib>Perrin, Abigail J</creatorcontrib><creatorcontrib>Maclachlan, Catherine</creatorcontrib><creatorcontrib>Collinson, Lucy M</creatorcontrib><creatorcontrib>Snijders, Ambrosius P</creatorcontrib><creatorcontrib>Tate, Edward W</creatorcontrib><creatorcontrib>Holder, Anthony A</creatorcontrib><title>Inhibition of protein N-myristoylation blocks Plasmodium falciparum intraerythrocytic development, egress and invasion</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>We have combined chemical biology and genetic modification approaches to investigate the importance of protein myristoylation in the human malaria parasite, Plasmodium falciparum. Parasite treatment during schizogony in the last 10 to 15 hours of the erythrocytic cycle with IMP-1002, an inhibitor of N-myristoyl transferase (NMT), led to a significant blockade in parasite egress from the infected erythrocyte. Two rhoptry proteins were mislocalized in the cell, suggesting that rhoptry function is disrupted. We identified 16 NMT substrates for which myristoylation was significantly reduced by NMT inhibitor (NMTi) treatment, and, of these, 6 proteins were substantially reduced in abundance. In a viability screen, we showed that for 4 of these proteins replacement of the N-terminal glycine with alanine to prevent myristoylation had a substantial effect on parasite fitness. In detailed studies of one NMT substrate, glideosome-associated protein 45 (GAP45), loss of myristoylation had no impact on protein location or glideosome assembly, in contrast to the disruption caused by GAP45 gene deletion, but GAP45 myristoylation was essential for erythrocyte invasion. Therefore, there are at least 3 mechanisms by which inhibition of NMT can disrupt parasite development and growth: early in parasite development, leading to the inhibition of schizogony and formation of "pseudoschizonts," which has been described previously; at the end of schizogony, with disruption of rhoptry formation, merozoite development and egress from the infected erythrocyte; and at invasion, when impairment of motor complex function prevents invasion of new erythrocytes. These results underline the importance of P. falciparum NMT as a drug target because of the pleiotropic effect of its inhibition.</description><subject>Acyltransferases - antagonists & inhibitors</subject><subject>Acyltransferases - metabolism</subject><subject>Alanine</subject><subject>Animals</subject><subject>Asexuality</subject><subject>Binding sites</subject><subject>Biology and Life Sciences</subject><subject>Cell Survival - drug effects</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Disruption</subject><subject>Egress</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Enzymes</subject><subject>Erythrocytes</subject><subject>Erythrocytes - drug effects</subject><subject>Erythrocytes - parasitology</subject><subject>Flow cytometry</subject><subject>Gene deletion</subject><subject>Genetic modification</subject><subject>Glycine</subject><subject>Health aspects</subject><subject>Inhibitors</subject><subject>Kinases</subject><subject>Lipoylation - drug effects</subject><subject>Malaria</subject><subject>Medicine and Health Sciences</subject><subject>Merozoites - drug effects</subject><subject>Merozoites - metabolism</subject><subject>Morphology</subject><subject>Myristic Acid - metabolism</subject><subject>Myristoylation</subject><subject>Parasites</subject><subject>Parasites - drug effects</subject><subject>Parasites - growth & development</subject><subject>Physical Sciences</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - drug effects</subject><subject>Plasmodium falciparum - enzymology</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Plasmodium falciparum - ultrastructure</subject><subject>Population</subject><subject>Proteins</subject><subject>Protozoan Proteins - metabolism</subject><subject>Red blood cells</subject><subject>Research and Analysis Methods</subject><subject>Schizogony</subject><subject>Solubility</subject><subject>Substrate Specificity - drug effects</subject><subject>Substrates</subject><subject>Therapeutic targets</subject><subject>Vector-borne diseases</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11v0zAUhiMEYqPwDxBE4gYkWvyZ2DdI0zSg0rQhvm4txzlpXZI4s5Nq_fc4azataBcgX9iyn_c9H9ZJkpcYLTDN8YeNG3yr60VXWLegCGGGxKPkGHPG57kQ_PG981HyLIQNQoRIIp4mR5RlkmNKjpPtsl3bwvbWtamr0s67HmybXsybnbehd7ta37wVtTO_Q_q11qFxpR2atNK1sZ328Wjb3mvwu37tndn11qQlbKF2XQNt_z6FlYcQUt2WkdzqEP2eJ0-iPsCLaZ8lPz-d_Tj9Mj-__Lw8PTmfm5hgPy9oXpasIkWey0pqBlIIUklCcpnnoAteEp0xQzVBwkiGiea54RpIhgG4wHSWvN77drULampZUIRLgRFlcc2S5Z4ond6ozttG-51y2qqbC-dXSvtYUg2KMhAZA1YJjlgec8llTE5npOIIIxijfZyiDUUDpYGxL_WB6eFLa9dq5bZKcMYEp9Hg7WTg3dUAoVeNDQbqWrfghjHvmACTNCMRffMX-nB1E7XSsQDbVi7GNaOpOskEwRIhJCK1eICKq4TGGtdCZeP9geDdgSAyPVz3Kz2EoJbfv_0He_Hv7OWvQ5btWeNdCB6quz5jpMYJuW2IGidETRMSZa_u_9Gd6HYk6B9baA0p</recordid><startdate>20211025</startdate><enddate>20211025</enddate><creator>Schlott, Anja C</creator><creator>Knuepfer, Ellen</creator><creator>Green, Judith L</creator><creator>Hobson, Philip</creator><creator>Borg, Aaron J</creator><creator>Morales-Sanfrutos, Julia</creator><creator>Perrin, Abigail J</creator><creator>Maclachlan, Catherine</creator><creator>Collinson, Lucy M</creator><creator>Snijders, Ambrosius P</creator><creator>Tate, Edward W</creator><creator>Holder, Anthony A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0003-1283-8751</orcidid><orcidid>https://orcid.org/0000-0002-6090-1877</orcidid><orcidid>https://orcid.org/0000-0003-0260-613X</orcidid><orcidid>https://orcid.org/0000-0002-8490-6058</orcidid><orcidid>https://orcid.org/0000-0001-5117-2994</orcidid><orcidid>https://orcid.org/0000-0002-0367-2932</orcidid><orcidid>https://orcid.org/0000-0001-6825-9404</orcidid></search><sort><creationdate>20211025</creationdate><title>Inhibition of protein N-myristoylation blocks Plasmodium falciparum intraerythrocytic development, egress and invasion</title><author>Schlott, Anja C ; Knuepfer, Ellen ; Green, Judith L ; Hobson, Philip ; Borg, Aaron J ; Morales-Sanfrutos, Julia ; Perrin, Abigail J ; Maclachlan, Catherine ; Collinson, Lucy M ; Snijders, Ambrosius P ; Tate, Edward W ; Holder, Anthony A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-b37dd4f2b779f9a4e9882f9227977eab5d2a64c3a208c9412a57c5ae261ee5813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acyltransferases - antagonists & inhibitors</topic><topic>Acyltransferases - metabolism</topic><topic>Alanine</topic><topic>Animals</topic><topic>Asexuality</topic><topic>Binding sites</topic><topic>Biology and Life Sciences</topic><topic>Cell Survival - drug effects</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Disruption</topic><topic>Egress</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Enzymes</topic><topic>Erythrocytes</topic><topic>Erythrocytes - drug effects</topic><topic>Erythrocytes - parasitology</topic><topic>Flow cytometry</topic><topic>Gene deletion</topic><topic>Genetic modification</topic><topic>Glycine</topic><topic>Health aspects</topic><topic>Inhibitors</topic><topic>Kinases</topic><topic>Lipoylation - drug effects</topic><topic>Malaria</topic><topic>Medicine and Health Sciences</topic><topic>Merozoites - drug effects</topic><topic>Merozoites - metabolism</topic><topic>Morphology</topic><topic>Myristic Acid - metabolism</topic><topic>Myristoylation</topic><topic>Parasites</topic><topic>Parasites - drug effects</topic><topic>Parasites - growth & development</topic><topic>Physical Sciences</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - drug effects</topic><topic>Plasmodium falciparum - enzymology</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Plasmodium falciparum - ultrastructure</topic><topic>Population</topic><topic>Proteins</topic><topic>Protozoan Proteins - metabolism</topic><topic>Red blood cells</topic><topic>Research and Analysis Methods</topic><topic>Schizogony</topic><topic>Solubility</topic><topic>Substrate Specificity - drug effects</topic><topic>Substrates</topic><topic>Therapeutic targets</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlott, Anja C</creatorcontrib><creatorcontrib>Knuepfer, Ellen</creatorcontrib><creatorcontrib>Green, Judith L</creatorcontrib><creatorcontrib>Hobson, Philip</creatorcontrib><creatorcontrib>Borg, Aaron J</creatorcontrib><creatorcontrib>Morales-Sanfrutos, Julia</creatorcontrib><creatorcontrib>Perrin, Abigail J</creatorcontrib><creatorcontrib>Maclachlan, Catherine</creatorcontrib><creatorcontrib>Collinson, Lucy M</creatorcontrib><creatorcontrib>Snijders, Ambrosius P</creatorcontrib><creatorcontrib>Tate, Edward W</creatorcontrib><creatorcontrib>Holder, Anthony A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlott, Anja C</au><au>Knuepfer, Ellen</au><au>Green, Judith L</au><au>Hobson, Philip</au><au>Borg, Aaron J</au><au>Morales-Sanfrutos, Julia</au><au>Perrin, Abigail J</au><au>Maclachlan, Catherine</au><au>Collinson, Lucy M</au><au>Snijders, Ambrosius P</au><au>Tate, Edward W</au><au>Holder, Anthony A</au><au>Duffy, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of protein N-myristoylation blocks Plasmodium falciparum intraerythrocytic development, egress and invasion</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2021-10-25</date><risdate>2021</risdate><volume>19</volume><issue>10</issue><spage>e3001408</spage><epage>e3001408</epage><pages>e3001408-e3001408</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>We have combined chemical biology and genetic modification approaches to investigate the importance of protein myristoylation in the human malaria parasite, Plasmodium falciparum. Parasite treatment during schizogony in the last 10 to 15 hours of the erythrocytic cycle with IMP-1002, an inhibitor of N-myristoyl transferase (NMT), led to a significant blockade in parasite egress from the infected erythrocyte. Two rhoptry proteins were mislocalized in the cell, suggesting that rhoptry function is disrupted. We identified 16 NMT substrates for which myristoylation was significantly reduced by NMT inhibitor (NMTi) treatment, and, of these, 6 proteins were substantially reduced in abundance. In a viability screen, we showed that for 4 of these proteins replacement of the N-terminal glycine with alanine to prevent myristoylation had a substantial effect on parasite fitness. In detailed studies of one NMT substrate, glideosome-associated protein 45 (GAP45), loss of myristoylation had no impact on protein location or glideosome assembly, in contrast to the disruption caused by GAP45 gene deletion, but GAP45 myristoylation was essential for erythrocyte invasion. Therefore, there are at least 3 mechanisms by which inhibition of NMT can disrupt parasite development and growth: early in parasite development, leading to the inhibition of schizogony and formation of "pseudoschizonts," which has been described previously; at the end of schizogony, with disruption of rhoptry formation, merozoite development and egress from the infected erythrocyte; and at invasion, when impairment of motor complex function prevents invasion of new erythrocytes. These results underline the importance of P. falciparum NMT as a drug target because of the pleiotropic effect of its inhibition.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34695132</pmid><doi>10.1371/journal.pbio.3001408</doi><orcidid>https://orcid.org/0000-0003-1283-8751</orcidid><orcidid>https://orcid.org/0000-0002-6090-1877</orcidid><orcidid>https://orcid.org/0000-0003-0260-613X</orcidid><orcidid>https://orcid.org/0000-0002-8490-6058</orcidid><orcidid>https://orcid.org/0000-0001-5117-2994</orcidid><orcidid>https://orcid.org/0000-0002-0367-2932</orcidid><orcidid>https://orcid.org/0000-0001-6825-9404</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2021-10, Vol.19 (10), p.e3001408-e3001408 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_2598103434 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central |
subjects | Acyltransferases - antagonists & inhibitors Acyltransferases - metabolism Alanine Animals Asexuality Binding sites Biology and Life Sciences Cell Survival - drug effects CRISPR-Cas Systems - genetics Disruption Egress Enzyme Inhibitors - pharmacology Enzymes Erythrocytes Erythrocytes - drug effects Erythrocytes - parasitology Flow cytometry Gene deletion Genetic modification Glycine Health aspects Inhibitors Kinases Lipoylation - drug effects Malaria Medicine and Health Sciences Merozoites - drug effects Merozoites - metabolism Morphology Myristic Acid - metabolism Myristoylation Parasites Parasites - drug effects Parasites - growth & development Physical Sciences Plasmodium falciparum Plasmodium falciparum - drug effects Plasmodium falciparum - enzymology Plasmodium falciparum - metabolism Plasmodium falciparum - ultrastructure Population Proteins Protozoan Proteins - metabolism Red blood cells Research and Analysis Methods Schizogony Solubility Substrate Specificity - drug effects Substrates Therapeutic targets Vector-borne diseases |
title | Inhibition of protein N-myristoylation blocks Plasmodium falciparum intraerythrocytic development, egress and invasion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20protein%20N-myristoylation%20blocks%20Plasmodium%20falciparum%20intraerythrocytic%20development,%20egress%20and%20invasion&rft.jtitle=PLoS%20biology&rft.au=Schlott,%20Anja%20C&rft.date=2021-10-25&rft.volume=19&rft.issue=10&rft.spage=e3001408&rft.epage=e3001408&rft.pages=e3001408-e3001408&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3001408&rft_dat=%3Cgale_plos_%3EA682190008%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598103434&rft_id=info:pmid/34695132&rft_galeid=A682190008&rft_doaj_id=oai_doaj_org_article_34e864e4f85047e9879d4fa62f5010e1&rfr_iscdi=true |