Inhibition of protein N-myristoylation blocks Plasmodium falciparum intraerythrocytic development, egress and invasion

We have combined chemical biology and genetic modification approaches to investigate the importance of protein myristoylation in the human malaria parasite, Plasmodium falciparum. Parasite treatment during schizogony in the last 10 to 15 hours of the erythrocytic cycle with IMP-1002, an inhibitor of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2021-10, Vol.19 (10), p.e3001408-e3001408
Hauptverfasser: Schlott, Anja C, Knuepfer, Ellen, Green, Judith L, Hobson, Philip, Borg, Aaron J, Morales-Sanfrutos, Julia, Perrin, Abigail J, Maclachlan, Catherine, Collinson, Lucy M, Snijders, Ambrosius P, Tate, Edward W, Holder, Anthony A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e3001408
container_issue 10
container_start_page e3001408
container_title PLoS biology
container_volume 19
creator Schlott, Anja C
Knuepfer, Ellen
Green, Judith L
Hobson, Philip
Borg, Aaron J
Morales-Sanfrutos, Julia
Perrin, Abigail J
Maclachlan, Catherine
Collinson, Lucy M
Snijders, Ambrosius P
Tate, Edward W
Holder, Anthony A
description We have combined chemical biology and genetic modification approaches to investigate the importance of protein myristoylation in the human malaria parasite, Plasmodium falciparum. Parasite treatment during schizogony in the last 10 to 15 hours of the erythrocytic cycle with IMP-1002, an inhibitor of N-myristoyl transferase (NMT), led to a significant blockade in parasite egress from the infected erythrocyte. Two rhoptry proteins were mislocalized in the cell, suggesting that rhoptry function is disrupted. We identified 16 NMT substrates for which myristoylation was significantly reduced by NMT inhibitor (NMTi) treatment, and, of these, 6 proteins were substantially reduced in abundance. In a viability screen, we showed that for 4 of these proteins replacement of the N-terminal glycine with alanine to prevent myristoylation had a substantial effect on parasite fitness. In detailed studies of one NMT substrate, glideosome-associated protein 45 (GAP45), loss of myristoylation had no impact on protein location or glideosome assembly, in contrast to the disruption caused by GAP45 gene deletion, but GAP45 myristoylation was essential for erythrocyte invasion. Therefore, there are at least 3 mechanisms by which inhibition of NMT can disrupt parasite development and growth: early in parasite development, leading to the inhibition of schizogony and formation of "pseudoschizonts," which has been described previously; at the end of schizogony, with disruption of rhoptry formation, merozoite development and egress from the infected erythrocyte; and at invasion, when impairment of motor complex function prevents invasion of new erythrocytes. These results underline the importance of P. falciparum NMT as a drug target because of the pleiotropic effect of its inhibition.
doi_str_mv 10.1371/journal.pbio.3001408
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2598103434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A682190008</galeid><doaj_id>oai_doaj_org_article_34e864e4f85047e9879d4fa62f5010e1</doaj_id><sourcerecordid>A682190008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-b37dd4f2b779f9a4e9882f9227977eab5d2a64c3a208c9412a57c5ae261ee5813</originalsourceid><addsrcrecordid>eNqVk11v0zAUhiMEYqPwDxBE4gYkWvyZ2DdI0zSg0rQhvm4txzlpXZI4s5Nq_fc4azataBcgX9iyn_c9H9ZJkpcYLTDN8YeNG3yr60VXWLegCGGGxKPkGHPG57kQ_PG981HyLIQNQoRIIp4mR5RlkmNKjpPtsl3bwvbWtamr0s67HmybXsybnbehd7ta37wVtTO_Q_q11qFxpR2atNK1sZ328Wjb3mvwu37tndn11qQlbKF2XQNt_z6FlYcQUt2WkdzqEP2eJ0-iPsCLaZ8lPz-d_Tj9Mj-__Lw8PTmfm5hgPy9oXpasIkWey0pqBlIIUklCcpnnoAteEp0xQzVBwkiGiea54RpIhgG4wHSWvN77drULampZUIRLgRFlcc2S5Z4ond6ozttG-51y2qqbC-dXSvtYUg2KMhAZA1YJjlgec8llTE5npOIIIxijfZyiDUUDpYGxL_WB6eFLa9dq5bZKcMYEp9Hg7WTg3dUAoVeNDQbqWrfghjHvmACTNCMRffMX-nB1E7XSsQDbVi7GNaOpOskEwRIhJCK1eICKq4TGGtdCZeP9geDdgSAyPVz3Kz2EoJbfv_0He_Hv7OWvQ5btWeNdCB6quz5jpMYJuW2IGidETRMSZa_u_9Gd6HYk6B9baA0p</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598103434</pqid></control><display><type>article</type><title>Inhibition of protein N-myristoylation blocks Plasmodium falciparum intraerythrocytic development, egress and invasion</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Schlott, Anja C ; Knuepfer, Ellen ; Green, Judith L ; Hobson, Philip ; Borg, Aaron J ; Morales-Sanfrutos, Julia ; Perrin, Abigail J ; Maclachlan, Catherine ; Collinson, Lucy M ; Snijders, Ambrosius P ; Tate, Edward W ; Holder, Anthony A</creator><contributor>Duffy, Michael</contributor><creatorcontrib>Schlott, Anja C ; Knuepfer, Ellen ; Green, Judith L ; Hobson, Philip ; Borg, Aaron J ; Morales-Sanfrutos, Julia ; Perrin, Abigail J ; Maclachlan, Catherine ; Collinson, Lucy M ; Snijders, Ambrosius P ; Tate, Edward W ; Holder, Anthony A ; Duffy, Michael</creatorcontrib><description>We have combined chemical biology and genetic modification approaches to investigate the importance of protein myristoylation in the human malaria parasite, Plasmodium falciparum. Parasite treatment during schizogony in the last 10 to 15 hours of the erythrocytic cycle with IMP-1002, an inhibitor of N-myristoyl transferase (NMT), led to a significant blockade in parasite egress from the infected erythrocyte. Two rhoptry proteins were mislocalized in the cell, suggesting that rhoptry function is disrupted. We identified 16 NMT substrates for which myristoylation was significantly reduced by NMT inhibitor (NMTi) treatment, and, of these, 6 proteins were substantially reduced in abundance. In a viability screen, we showed that for 4 of these proteins replacement of the N-terminal glycine with alanine to prevent myristoylation had a substantial effect on parasite fitness. In detailed studies of one NMT substrate, glideosome-associated protein 45 (GAP45), loss of myristoylation had no impact on protein location or glideosome assembly, in contrast to the disruption caused by GAP45 gene deletion, but GAP45 myristoylation was essential for erythrocyte invasion. Therefore, there are at least 3 mechanisms by which inhibition of NMT can disrupt parasite development and growth: early in parasite development, leading to the inhibition of schizogony and formation of "pseudoschizonts," which has been described previously; at the end of schizogony, with disruption of rhoptry formation, merozoite development and egress from the infected erythrocyte; and at invasion, when impairment of motor complex function prevents invasion of new erythrocytes. These results underline the importance of P. falciparum NMT as a drug target because of the pleiotropic effect of its inhibition.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3001408</identifier><identifier>PMID: 34695132</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acyltransferases - antagonists &amp; inhibitors ; Acyltransferases - metabolism ; Alanine ; Animals ; Asexuality ; Binding sites ; Biology and Life Sciences ; Cell Survival - drug effects ; CRISPR-Cas Systems - genetics ; Disruption ; Egress ; Enzyme Inhibitors - pharmacology ; Enzymes ; Erythrocytes ; Erythrocytes - drug effects ; Erythrocytes - parasitology ; Flow cytometry ; Gene deletion ; Genetic modification ; Glycine ; Health aspects ; Inhibitors ; Kinases ; Lipoylation - drug effects ; Malaria ; Medicine and Health Sciences ; Merozoites - drug effects ; Merozoites - metabolism ; Morphology ; Myristic Acid - metabolism ; Myristoylation ; Parasites ; Parasites - drug effects ; Parasites - growth &amp; development ; Physical Sciences ; Plasmodium falciparum ; Plasmodium falciparum - drug effects ; Plasmodium falciparum - enzymology ; Plasmodium falciparum - metabolism ; Plasmodium falciparum - ultrastructure ; Population ; Proteins ; Protozoan Proteins - metabolism ; Red blood cells ; Research and Analysis Methods ; Schizogony ; Solubility ; Substrate Specificity - drug effects ; Substrates ; Therapeutic targets ; Vector-borne diseases</subject><ispartof>PLoS biology, 2021-10, Vol.19 (10), p.e3001408-e3001408</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Schlott et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Schlott et al 2021 Schlott et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-b37dd4f2b779f9a4e9882f9227977eab5d2a64c3a208c9412a57c5ae261ee5813</citedby><cites>FETCH-LOGICAL-c695t-b37dd4f2b779f9a4e9882f9227977eab5d2a64c3a208c9412a57c5ae261ee5813</cites><orcidid>0000-0003-1283-8751 ; 0000-0002-6090-1877 ; 0000-0003-0260-613X ; 0000-0002-8490-6058 ; 0000-0001-5117-2994 ; 0000-0002-0367-2932 ; 0000-0001-6825-9404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8544853/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8544853/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34695132$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Duffy, Michael</contributor><creatorcontrib>Schlott, Anja C</creatorcontrib><creatorcontrib>Knuepfer, Ellen</creatorcontrib><creatorcontrib>Green, Judith L</creatorcontrib><creatorcontrib>Hobson, Philip</creatorcontrib><creatorcontrib>Borg, Aaron J</creatorcontrib><creatorcontrib>Morales-Sanfrutos, Julia</creatorcontrib><creatorcontrib>Perrin, Abigail J</creatorcontrib><creatorcontrib>Maclachlan, Catherine</creatorcontrib><creatorcontrib>Collinson, Lucy M</creatorcontrib><creatorcontrib>Snijders, Ambrosius P</creatorcontrib><creatorcontrib>Tate, Edward W</creatorcontrib><creatorcontrib>Holder, Anthony A</creatorcontrib><title>Inhibition of protein N-myristoylation blocks Plasmodium falciparum intraerythrocytic development, egress and invasion</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>We have combined chemical biology and genetic modification approaches to investigate the importance of protein myristoylation in the human malaria parasite, Plasmodium falciparum. Parasite treatment during schizogony in the last 10 to 15 hours of the erythrocytic cycle with IMP-1002, an inhibitor of N-myristoyl transferase (NMT), led to a significant blockade in parasite egress from the infected erythrocyte. Two rhoptry proteins were mislocalized in the cell, suggesting that rhoptry function is disrupted. We identified 16 NMT substrates for which myristoylation was significantly reduced by NMT inhibitor (NMTi) treatment, and, of these, 6 proteins were substantially reduced in abundance. In a viability screen, we showed that for 4 of these proteins replacement of the N-terminal glycine with alanine to prevent myristoylation had a substantial effect on parasite fitness. In detailed studies of one NMT substrate, glideosome-associated protein 45 (GAP45), loss of myristoylation had no impact on protein location or glideosome assembly, in contrast to the disruption caused by GAP45 gene deletion, but GAP45 myristoylation was essential for erythrocyte invasion. Therefore, there are at least 3 mechanisms by which inhibition of NMT can disrupt parasite development and growth: early in parasite development, leading to the inhibition of schizogony and formation of "pseudoschizonts," which has been described previously; at the end of schizogony, with disruption of rhoptry formation, merozoite development and egress from the infected erythrocyte; and at invasion, when impairment of motor complex function prevents invasion of new erythrocytes. These results underline the importance of P. falciparum NMT as a drug target because of the pleiotropic effect of its inhibition.</description><subject>Acyltransferases - antagonists &amp; inhibitors</subject><subject>Acyltransferases - metabolism</subject><subject>Alanine</subject><subject>Animals</subject><subject>Asexuality</subject><subject>Binding sites</subject><subject>Biology and Life Sciences</subject><subject>Cell Survival - drug effects</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Disruption</subject><subject>Egress</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Enzymes</subject><subject>Erythrocytes</subject><subject>Erythrocytes - drug effects</subject><subject>Erythrocytes - parasitology</subject><subject>Flow cytometry</subject><subject>Gene deletion</subject><subject>Genetic modification</subject><subject>Glycine</subject><subject>Health aspects</subject><subject>Inhibitors</subject><subject>Kinases</subject><subject>Lipoylation - drug effects</subject><subject>Malaria</subject><subject>Medicine and Health Sciences</subject><subject>Merozoites - drug effects</subject><subject>Merozoites - metabolism</subject><subject>Morphology</subject><subject>Myristic Acid - metabolism</subject><subject>Myristoylation</subject><subject>Parasites</subject><subject>Parasites - drug effects</subject><subject>Parasites - growth &amp; development</subject><subject>Physical Sciences</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - drug effects</subject><subject>Plasmodium falciparum - enzymology</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Plasmodium falciparum - ultrastructure</subject><subject>Population</subject><subject>Proteins</subject><subject>Protozoan Proteins - metabolism</subject><subject>Red blood cells</subject><subject>Research and Analysis Methods</subject><subject>Schizogony</subject><subject>Solubility</subject><subject>Substrate Specificity - drug effects</subject><subject>Substrates</subject><subject>Therapeutic targets</subject><subject>Vector-borne diseases</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11v0zAUhiMEYqPwDxBE4gYkWvyZ2DdI0zSg0rQhvm4txzlpXZI4s5Nq_fc4azataBcgX9iyn_c9H9ZJkpcYLTDN8YeNG3yr60VXWLegCGGGxKPkGHPG57kQ_PG981HyLIQNQoRIIp4mR5RlkmNKjpPtsl3bwvbWtamr0s67HmybXsybnbehd7ta37wVtTO_Q_q11qFxpR2atNK1sZ328Wjb3mvwu37tndn11qQlbKF2XQNt_z6FlYcQUt2WkdzqEP2eJ0-iPsCLaZ8lPz-d_Tj9Mj-__Lw8PTmfm5hgPy9oXpasIkWey0pqBlIIUklCcpnnoAteEp0xQzVBwkiGiea54RpIhgG4wHSWvN77drULampZUIRLgRFlcc2S5Z4ond6ozttG-51y2qqbC-dXSvtYUg2KMhAZA1YJjlgec8llTE5npOIIIxijfZyiDUUDpYGxL_WB6eFLa9dq5bZKcMYEp9Hg7WTg3dUAoVeNDQbqWrfghjHvmACTNCMRffMX-nB1E7XSsQDbVi7GNaOpOskEwRIhJCK1eICKq4TGGtdCZeP9geDdgSAyPVz3Kz2EoJbfv_0He_Hv7OWvQ5btWeNdCB6quz5jpMYJuW2IGidETRMSZa_u_9Gd6HYk6B9baA0p</recordid><startdate>20211025</startdate><enddate>20211025</enddate><creator>Schlott, Anja C</creator><creator>Knuepfer, Ellen</creator><creator>Green, Judith L</creator><creator>Hobson, Philip</creator><creator>Borg, Aaron J</creator><creator>Morales-Sanfrutos, Julia</creator><creator>Perrin, Abigail J</creator><creator>Maclachlan, Catherine</creator><creator>Collinson, Lucy M</creator><creator>Snijders, Ambrosius P</creator><creator>Tate, Edward W</creator><creator>Holder, Anthony A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0003-1283-8751</orcidid><orcidid>https://orcid.org/0000-0002-6090-1877</orcidid><orcidid>https://orcid.org/0000-0003-0260-613X</orcidid><orcidid>https://orcid.org/0000-0002-8490-6058</orcidid><orcidid>https://orcid.org/0000-0001-5117-2994</orcidid><orcidid>https://orcid.org/0000-0002-0367-2932</orcidid><orcidid>https://orcid.org/0000-0001-6825-9404</orcidid></search><sort><creationdate>20211025</creationdate><title>Inhibition of protein N-myristoylation blocks Plasmodium falciparum intraerythrocytic development, egress and invasion</title><author>Schlott, Anja C ; Knuepfer, Ellen ; Green, Judith L ; Hobson, Philip ; Borg, Aaron J ; Morales-Sanfrutos, Julia ; Perrin, Abigail J ; Maclachlan, Catherine ; Collinson, Lucy M ; Snijders, Ambrosius P ; Tate, Edward W ; Holder, Anthony A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-b37dd4f2b779f9a4e9882f9227977eab5d2a64c3a208c9412a57c5ae261ee5813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acyltransferases - antagonists &amp; inhibitors</topic><topic>Acyltransferases - metabolism</topic><topic>Alanine</topic><topic>Animals</topic><topic>Asexuality</topic><topic>Binding sites</topic><topic>Biology and Life Sciences</topic><topic>Cell Survival - drug effects</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Disruption</topic><topic>Egress</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Enzymes</topic><topic>Erythrocytes</topic><topic>Erythrocytes - drug effects</topic><topic>Erythrocytes - parasitology</topic><topic>Flow cytometry</topic><topic>Gene deletion</topic><topic>Genetic modification</topic><topic>Glycine</topic><topic>Health aspects</topic><topic>Inhibitors</topic><topic>Kinases</topic><topic>Lipoylation - drug effects</topic><topic>Malaria</topic><topic>Medicine and Health Sciences</topic><topic>Merozoites - drug effects</topic><topic>Merozoites - metabolism</topic><topic>Morphology</topic><topic>Myristic Acid - metabolism</topic><topic>Myristoylation</topic><topic>Parasites</topic><topic>Parasites - drug effects</topic><topic>Parasites - growth &amp; development</topic><topic>Physical Sciences</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - drug effects</topic><topic>Plasmodium falciparum - enzymology</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Plasmodium falciparum - ultrastructure</topic><topic>Population</topic><topic>Proteins</topic><topic>Protozoan Proteins - metabolism</topic><topic>Red blood cells</topic><topic>Research and Analysis Methods</topic><topic>Schizogony</topic><topic>Solubility</topic><topic>Substrate Specificity - drug effects</topic><topic>Substrates</topic><topic>Therapeutic targets</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlott, Anja C</creatorcontrib><creatorcontrib>Knuepfer, Ellen</creatorcontrib><creatorcontrib>Green, Judith L</creatorcontrib><creatorcontrib>Hobson, Philip</creatorcontrib><creatorcontrib>Borg, Aaron J</creatorcontrib><creatorcontrib>Morales-Sanfrutos, Julia</creatorcontrib><creatorcontrib>Perrin, Abigail J</creatorcontrib><creatorcontrib>Maclachlan, Catherine</creatorcontrib><creatorcontrib>Collinson, Lucy M</creatorcontrib><creatorcontrib>Snijders, Ambrosius P</creatorcontrib><creatorcontrib>Tate, Edward W</creatorcontrib><creatorcontrib>Holder, Anthony A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlott, Anja C</au><au>Knuepfer, Ellen</au><au>Green, Judith L</au><au>Hobson, Philip</au><au>Borg, Aaron J</au><au>Morales-Sanfrutos, Julia</au><au>Perrin, Abigail J</au><au>Maclachlan, Catherine</au><au>Collinson, Lucy M</au><au>Snijders, Ambrosius P</au><au>Tate, Edward W</au><au>Holder, Anthony A</au><au>Duffy, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of protein N-myristoylation blocks Plasmodium falciparum intraerythrocytic development, egress and invasion</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2021-10-25</date><risdate>2021</risdate><volume>19</volume><issue>10</issue><spage>e3001408</spage><epage>e3001408</epage><pages>e3001408-e3001408</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>We have combined chemical biology and genetic modification approaches to investigate the importance of protein myristoylation in the human malaria parasite, Plasmodium falciparum. Parasite treatment during schizogony in the last 10 to 15 hours of the erythrocytic cycle with IMP-1002, an inhibitor of N-myristoyl transferase (NMT), led to a significant blockade in parasite egress from the infected erythrocyte. Two rhoptry proteins were mislocalized in the cell, suggesting that rhoptry function is disrupted. We identified 16 NMT substrates for which myristoylation was significantly reduced by NMT inhibitor (NMTi) treatment, and, of these, 6 proteins were substantially reduced in abundance. In a viability screen, we showed that for 4 of these proteins replacement of the N-terminal glycine with alanine to prevent myristoylation had a substantial effect on parasite fitness. In detailed studies of one NMT substrate, glideosome-associated protein 45 (GAP45), loss of myristoylation had no impact on protein location or glideosome assembly, in contrast to the disruption caused by GAP45 gene deletion, but GAP45 myristoylation was essential for erythrocyte invasion. Therefore, there are at least 3 mechanisms by which inhibition of NMT can disrupt parasite development and growth: early in parasite development, leading to the inhibition of schizogony and formation of "pseudoschizonts," which has been described previously; at the end of schizogony, with disruption of rhoptry formation, merozoite development and egress from the infected erythrocyte; and at invasion, when impairment of motor complex function prevents invasion of new erythrocytes. These results underline the importance of P. falciparum NMT as a drug target because of the pleiotropic effect of its inhibition.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34695132</pmid><doi>10.1371/journal.pbio.3001408</doi><orcidid>https://orcid.org/0000-0003-1283-8751</orcidid><orcidid>https://orcid.org/0000-0002-6090-1877</orcidid><orcidid>https://orcid.org/0000-0003-0260-613X</orcidid><orcidid>https://orcid.org/0000-0002-8490-6058</orcidid><orcidid>https://orcid.org/0000-0001-5117-2994</orcidid><orcidid>https://orcid.org/0000-0002-0367-2932</orcidid><orcidid>https://orcid.org/0000-0001-6825-9404</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2021-10, Vol.19 (10), p.e3001408-e3001408
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_2598103434
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central
subjects Acyltransferases - antagonists & inhibitors
Acyltransferases - metabolism
Alanine
Animals
Asexuality
Binding sites
Biology and Life Sciences
Cell Survival - drug effects
CRISPR-Cas Systems - genetics
Disruption
Egress
Enzyme Inhibitors - pharmacology
Enzymes
Erythrocytes
Erythrocytes - drug effects
Erythrocytes - parasitology
Flow cytometry
Gene deletion
Genetic modification
Glycine
Health aspects
Inhibitors
Kinases
Lipoylation - drug effects
Malaria
Medicine and Health Sciences
Merozoites - drug effects
Merozoites - metabolism
Morphology
Myristic Acid - metabolism
Myristoylation
Parasites
Parasites - drug effects
Parasites - growth & development
Physical Sciences
Plasmodium falciparum
Plasmodium falciparum - drug effects
Plasmodium falciparum - enzymology
Plasmodium falciparum - metabolism
Plasmodium falciparum - ultrastructure
Population
Proteins
Protozoan Proteins - metabolism
Red blood cells
Research and Analysis Methods
Schizogony
Solubility
Substrate Specificity - drug effects
Substrates
Therapeutic targets
Vector-borne diseases
title Inhibition of protein N-myristoylation blocks Plasmodium falciparum intraerythrocytic development, egress and invasion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20protein%20N-myristoylation%20blocks%20Plasmodium%20falciparum%20intraerythrocytic%20development,%20egress%20and%20invasion&rft.jtitle=PLoS%20biology&rft.au=Schlott,%20Anja%20C&rft.date=2021-10-25&rft.volume=19&rft.issue=10&rft.spage=e3001408&rft.epage=e3001408&rft.pages=e3001408-e3001408&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3001408&rft_dat=%3Cgale_plos_%3EA682190008%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598103434&rft_id=info:pmid/34695132&rft_galeid=A682190008&rft_doaj_id=oai_doaj_org_article_34e864e4f85047e9879d4fa62f5010e1&rfr_iscdi=true