Bile acid-independent protection against Clostridioides difficile infection
Clostridioides difficile infections occur upon ecological / metabolic disruptions to the normal colonic microbiota, commonly due to broad-spectrum antibiotic use. Metabolism of bile acids through a 7α-dehydroxylation pathway found in select members of the healthy microbiota is regarded to be the pro...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2021-10, Vol.17 (10), p.e1010015-e1010015 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1010015 |
---|---|
container_issue | 10 |
container_start_page | e1010015 |
container_title | PLoS pathogens |
container_volume | 17 |
creator | Aguirre, Andrea Martinez Yalcinkaya, Nazli Wu, Qinglong Swennes, Alton Tessier, Mary Elizabeth Roberts, Paul Miyajima, Fabio Savidge, Tor Sorg, Joseph A |
description | Clostridioides difficile infections occur upon ecological / metabolic disruptions to the normal colonic microbiota, commonly due to broad-spectrum antibiotic use. Metabolism of bile acids through a 7α-dehydroxylation pathway found in select members of the healthy microbiota is regarded to be the protective mechanism by which C. difficile is excluded. These 7α-dehydroxylated secondary bile acids are highly toxic to C. difficile vegetative growth, and antibiotic treatment abolishes the bacteria that perform this metabolism. However, the data that supports the hypothesis that secondary bile acids protect against C. difficile infection is supported only by in vitro data and correlative studies. Here we show that bacteria that 7α-dehydroxylate primary bile acids protect against C. difficile infection in a bile acid-independent manner. We monoassociated germ-free, wildtype or Cyp8b1-/- (cholic acid-deficient) mutant mice and infected them with C. difficile spores. We show that 7α-dehydroxylation (i.e., secondary bile acid generation) is dispensable for protection against C. difficile infection and provide evidence that Stickland metabolism by these organisms consumes nutrients essential for C. difficile growth. Our findings indicate secondary bile acid production by the microbiome is a useful biomarker for a C. difficile-resistant environment but the microbiome protects against C. difficile infection in bile acid-independent mechanisms. |
doi_str_mv | 10.1371/journal.ppat.1010015 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2598100913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681018507</galeid><doaj_id>oai_doaj_org_article_a68d3cc2a7c4485c800df500d3fb295e</doaj_id><sourcerecordid>A681018507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-1ada28010d38d6ef994e672e6f684cb3d950982b8020023563972e809c8762713</originalsourceid><addsrcrecordid>eNqVkluL1DAUx4so7kW_geiAL-tDx1yaS1-EdfAyuCh4eQ6ZJK0ZOk1NUtFv76nTXbayL1JIQ_I7_3POP6conmC0xlTgl_swxl5362HQeY0RRgize8UpZoyWgorq_q39SXGW0h6hClPMHxYntOKcyUqcFh9e-86ttPG29L11g4Olz6shhuxM9qFf6Vb7PuXVpgspR2998NallfVN480U7PvmiD4qHjS6S-7x_D8vvr1983Xzvrz69G67ubwqDec4l1hbTSQUbKm03DV1XTkuiOMNl5XZUVszVEuyk4ggRCjjtIZbiWojBScC0_Pi2VF3gJLU7ENShNUSXKgxBWJ7JGzQezVEf9Dxtwraq78HIbZKx-xN55Tm0lJjiBamqiQzEiHbMFhosyM1c6D1as427g7OGrAn6m4hurzp_XfVhp9KMsYkQyBwMQvE8GN0KauDT8Z1ne5dGKe6ZYWwFIIA-vwf9O7uZqrV0ADYHyCvmUTVJQcIQ1YB1PoOCj7rDt6E3jXweMuAF4sAYLL7lVs9pqS2Xz7_B_txyVZH1sSQUnTNjXcYqWmUr5tU0yireZQh7Olt32-CrmeX_gFtBu2V</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598100913</pqid></control><display><type>article</type><title>Bile acid-independent protection against Clostridioides difficile infection</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Aguirre, Andrea Martinez ; Yalcinkaya, Nazli ; Wu, Qinglong ; Swennes, Alton ; Tessier, Mary Elizabeth ; Roberts, Paul ; Miyajima, Fabio ; Savidge, Tor ; Sorg, Joseph A</creator><contributor>McClane, Bruce A.</contributor><creatorcontrib>Aguirre, Andrea Martinez ; Yalcinkaya, Nazli ; Wu, Qinglong ; Swennes, Alton ; Tessier, Mary Elizabeth ; Roberts, Paul ; Miyajima, Fabio ; Savidge, Tor ; Sorg, Joseph A ; McClane, Bruce A.</creatorcontrib><description>Clostridioides difficile infections occur upon ecological / metabolic disruptions to the normal colonic microbiota, commonly due to broad-spectrum antibiotic use. Metabolism of bile acids through a 7α-dehydroxylation pathway found in select members of the healthy microbiota is regarded to be the protective mechanism by which C. difficile is excluded. These 7α-dehydroxylated secondary bile acids are highly toxic to C. difficile vegetative growth, and antibiotic treatment abolishes the bacteria that perform this metabolism. However, the data that supports the hypothesis that secondary bile acids protect against C. difficile infection is supported only by in vitro data and correlative studies. Here we show that bacteria that 7α-dehydroxylate primary bile acids protect against C. difficile infection in a bile acid-independent manner. We monoassociated germ-free, wildtype or Cyp8b1-/- (cholic acid-deficient) mutant mice and infected them with C. difficile spores. We show that 7α-dehydroxylation (i.e., secondary bile acid generation) is dispensable for protection against C. difficile infection and provide evidence that Stickland metabolism by these organisms consumes nutrients essential for C. difficile growth. Our findings indicate secondary bile acid production by the microbiome is a useful biomarker for a C. difficile-resistant environment but the microbiome protects against C. difficile infection in bile acid-independent mechanisms.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1010015</identifier><identifier>PMID: 34665847</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acid production ; Acids ; Amino acids ; Animals ; Antibiotics ; Bacteria ; Bile ; Bile acid metabolism ; Bile acids ; Bile Acids and Salts - metabolism ; Biology and Life Sciences ; Biomarkers ; Cholesterol ; Cholic acid ; Clostridioides difficile ; Clostridium infections ; Clostridium Infections - metabolism ; Development and progression ; Disease Resistance - physiology ; Gastrointestinal Microbiome - physiology ; Germfree ; Health aspects ; Infections ; Liver ; Medicine and Health Sciences ; Metabolism ; Mice ; Mice, Knockout ; Microbiomes ; Microbiota ; Microbiota (Symbiotic organisms) ; Nutrients ; Physical Sciences ; Prevention ; Research and Analysis Methods ; Spores</subject><ispartof>PLoS pathogens, 2021-10, Vol.17 (10), p.e1010015-e1010015</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Aguirre et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Aguirre et al 2021 Aguirre et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-1ada28010d38d6ef994e672e6f684cb3d950982b8020023563972e809c8762713</citedby><cites>FETCH-LOGICAL-c661t-1ada28010d38d6ef994e672e6f684cb3d950982b8020023563972e809c8762713</cites><orcidid>0000-0002-4569-198X ; 0000-0002-5609-1138 ; 0000-0001-7822-2656 ; 0000-0002-0341-5442 ; 0000-0002-1347-4825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8555850/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8555850/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23868,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34665847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>McClane, Bruce A.</contributor><creatorcontrib>Aguirre, Andrea Martinez</creatorcontrib><creatorcontrib>Yalcinkaya, Nazli</creatorcontrib><creatorcontrib>Wu, Qinglong</creatorcontrib><creatorcontrib>Swennes, Alton</creatorcontrib><creatorcontrib>Tessier, Mary Elizabeth</creatorcontrib><creatorcontrib>Roberts, Paul</creatorcontrib><creatorcontrib>Miyajima, Fabio</creatorcontrib><creatorcontrib>Savidge, Tor</creatorcontrib><creatorcontrib>Sorg, Joseph A</creatorcontrib><title>Bile acid-independent protection against Clostridioides difficile infection</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Clostridioides difficile infections occur upon ecological / metabolic disruptions to the normal colonic microbiota, commonly due to broad-spectrum antibiotic use. Metabolism of bile acids through a 7α-dehydroxylation pathway found in select members of the healthy microbiota is regarded to be the protective mechanism by which C. difficile is excluded. These 7α-dehydroxylated secondary bile acids are highly toxic to C. difficile vegetative growth, and antibiotic treatment abolishes the bacteria that perform this metabolism. However, the data that supports the hypothesis that secondary bile acids protect against C. difficile infection is supported only by in vitro data and correlative studies. Here we show that bacteria that 7α-dehydroxylate primary bile acids protect against C. difficile infection in a bile acid-independent manner. We monoassociated germ-free, wildtype or Cyp8b1-/- (cholic acid-deficient) mutant mice and infected them with C. difficile spores. We show that 7α-dehydroxylation (i.e., secondary bile acid generation) is dispensable for protection against C. difficile infection and provide evidence that Stickland metabolism by these organisms consumes nutrients essential for C. difficile growth. Our findings indicate secondary bile acid production by the microbiome is a useful biomarker for a C. difficile-resistant environment but the microbiome protects against C. difficile infection in bile acid-independent mechanisms.</description><subject>Acid production</subject><subject>Acids</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bile</subject><subject>Bile acid metabolism</subject><subject>Bile acids</subject><subject>Bile Acids and Salts - metabolism</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Cholesterol</subject><subject>Cholic acid</subject><subject>Clostridioides difficile</subject><subject>Clostridium infections</subject><subject>Clostridium Infections - metabolism</subject><subject>Development and progression</subject><subject>Disease Resistance - physiology</subject><subject>Gastrointestinal Microbiome - physiology</subject><subject>Germfree</subject><subject>Health aspects</subject><subject>Infections</subject><subject>Liver</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Nutrients</subject><subject>Physical Sciences</subject><subject>Prevention</subject><subject>Research and Analysis Methods</subject><subject>Spores</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkluL1DAUx4so7kW_geiAL-tDx1yaS1-EdfAyuCh4eQ6ZJK0ZOk1NUtFv76nTXbayL1JIQ_I7_3POP6conmC0xlTgl_swxl5362HQeY0RRgize8UpZoyWgorq_q39SXGW0h6hClPMHxYntOKcyUqcFh9e-86ttPG29L11g4Olz6shhuxM9qFf6Vb7PuXVpgspR2998NallfVN480U7PvmiD4qHjS6S-7x_D8vvr1983Xzvrz69G67ubwqDec4l1hbTSQUbKm03DV1XTkuiOMNl5XZUVszVEuyk4ggRCjjtIZbiWojBScC0_Pi2VF3gJLU7ENShNUSXKgxBWJ7JGzQezVEf9Dxtwraq78HIbZKx-xN55Tm0lJjiBamqiQzEiHbMFhosyM1c6D1as427g7OGrAn6m4hurzp_XfVhp9KMsYkQyBwMQvE8GN0KauDT8Z1ne5dGKe6ZYWwFIIA-vwf9O7uZqrV0ADYHyCvmUTVJQcIQ1YB1PoOCj7rDt6E3jXweMuAF4sAYLL7lVs9pqS2Xz7_B_txyVZH1sSQUnTNjXcYqWmUr5tU0yireZQh7Olt32-CrmeX_gFtBu2V</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Aguirre, Andrea Martinez</creator><creator>Yalcinkaya, Nazli</creator><creator>Wu, Qinglong</creator><creator>Swennes, Alton</creator><creator>Tessier, Mary Elizabeth</creator><creator>Roberts, Paul</creator><creator>Miyajima, Fabio</creator><creator>Savidge, Tor</creator><creator>Sorg, Joseph A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4569-198X</orcidid><orcidid>https://orcid.org/0000-0002-5609-1138</orcidid><orcidid>https://orcid.org/0000-0001-7822-2656</orcidid><orcidid>https://orcid.org/0000-0002-0341-5442</orcidid><orcidid>https://orcid.org/0000-0002-1347-4825</orcidid></search><sort><creationdate>20211001</creationdate><title>Bile acid-independent protection against Clostridioides difficile infection</title><author>Aguirre, Andrea Martinez ; Yalcinkaya, Nazli ; Wu, Qinglong ; Swennes, Alton ; Tessier, Mary Elizabeth ; Roberts, Paul ; Miyajima, Fabio ; Savidge, Tor ; Sorg, Joseph A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-1ada28010d38d6ef994e672e6f684cb3d950982b8020023563972e809c8762713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acid production</topic><topic>Acids</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bile</topic><topic>Bile acid metabolism</topic><topic>Bile acids</topic><topic>Bile Acids and Salts - metabolism</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Cholesterol</topic><topic>Cholic acid</topic><topic>Clostridioides difficile</topic><topic>Clostridium infections</topic><topic>Clostridium Infections - metabolism</topic><topic>Development and progression</topic><topic>Disease Resistance - physiology</topic><topic>Gastrointestinal Microbiome - physiology</topic><topic>Germfree</topic><topic>Health aspects</topic><topic>Infections</topic><topic>Liver</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Nutrients</topic><topic>Physical Sciences</topic><topic>Prevention</topic><topic>Research and Analysis Methods</topic><topic>Spores</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguirre, Andrea Martinez</creatorcontrib><creatorcontrib>Yalcinkaya, Nazli</creatorcontrib><creatorcontrib>Wu, Qinglong</creatorcontrib><creatorcontrib>Swennes, Alton</creatorcontrib><creatorcontrib>Tessier, Mary Elizabeth</creatorcontrib><creatorcontrib>Roberts, Paul</creatorcontrib><creatorcontrib>Miyajima, Fabio</creatorcontrib><creatorcontrib>Savidge, Tor</creatorcontrib><creatorcontrib>Sorg, Joseph A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguirre, Andrea Martinez</au><au>Yalcinkaya, Nazli</au><au>Wu, Qinglong</au><au>Swennes, Alton</au><au>Tessier, Mary Elizabeth</au><au>Roberts, Paul</au><au>Miyajima, Fabio</au><au>Savidge, Tor</au><au>Sorg, Joseph A</au><au>McClane, Bruce A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bile acid-independent protection against Clostridioides difficile infection</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>17</volume><issue>10</issue><spage>e1010015</spage><epage>e1010015</epage><pages>e1010015-e1010015</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Clostridioides difficile infections occur upon ecological / metabolic disruptions to the normal colonic microbiota, commonly due to broad-spectrum antibiotic use. Metabolism of bile acids through a 7α-dehydroxylation pathway found in select members of the healthy microbiota is regarded to be the protective mechanism by which C. difficile is excluded. These 7α-dehydroxylated secondary bile acids are highly toxic to C. difficile vegetative growth, and antibiotic treatment abolishes the bacteria that perform this metabolism. However, the data that supports the hypothesis that secondary bile acids protect against C. difficile infection is supported only by in vitro data and correlative studies. Here we show that bacteria that 7α-dehydroxylate primary bile acids protect against C. difficile infection in a bile acid-independent manner. We monoassociated germ-free, wildtype or Cyp8b1-/- (cholic acid-deficient) mutant mice and infected them with C. difficile spores. We show that 7α-dehydroxylation (i.e., secondary bile acid generation) is dispensable for protection against C. difficile infection and provide evidence that Stickland metabolism by these organisms consumes nutrients essential for C. difficile growth. Our findings indicate secondary bile acid production by the microbiome is a useful biomarker for a C. difficile-resistant environment but the microbiome protects against C. difficile infection in bile acid-independent mechanisms.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34665847</pmid><doi>10.1371/journal.ppat.1010015</doi><orcidid>https://orcid.org/0000-0002-4569-198X</orcidid><orcidid>https://orcid.org/0000-0002-5609-1138</orcidid><orcidid>https://orcid.org/0000-0001-7822-2656</orcidid><orcidid>https://orcid.org/0000-0002-0341-5442</orcidid><orcidid>https://orcid.org/0000-0002-1347-4825</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2021-10, Vol.17 (10), p.e1010015-e1010015 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2598100913 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Acid production Acids Amino acids Animals Antibiotics Bacteria Bile Bile acid metabolism Bile acids Bile Acids and Salts - metabolism Biology and Life Sciences Biomarkers Cholesterol Cholic acid Clostridioides difficile Clostridium infections Clostridium Infections - metabolism Development and progression Disease Resistance - physiology Gastrointestinal Microbiome - physiology Germfree Health aspects Infections Liver Medicine and Health Sciences Metabolism Mice Mice, Knockout Microbiomes Microbiota Microbiota (Symbiotic organisms) Nutrients Physical Sciences Prevention Research and Analysis Methods Spores |
title | Bile acid-independent protection against Clostridioides difficile infection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T04%3A16%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bile%20acid-independent%20protection%20against%20Clostridioides%20difficile%20infection&rft.jtitle=PLoS%20pathogens&rft.au=Aguirre,%20Andrea%20Martinez&rft.date=2021-10-01&rft.volume=17&rft.issue=10&rft.spage=e1010015&rft.epage=e1010015&rft.pages=e1010015-e1010015&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1010015&rft_dat=%3Cgale_plos_%3EA681018507%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598100913&rft_id=info:pmid/34665847&rft_galeid=A681018507&rft_doaj_id=oai_doaj_org_article_a68d3cc2a7c4485c800df500d3fb295e&rfr_iscdi=true |