Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases

Corruption of cellular prion protein (PrP C ) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrP C ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2021-10, Vol.17 (10), p.e1009991-e1009991
Hauptverfasser: Arnould, Hélène, Baudouin, Vincent, Baudry, Anne, Ribeiro, Luiz W, Ardila-Osorio, Hector, Pietri, Mathéa, Caradeuc, Cédric, Soultawi, Cynthia, Williams, Declan, Alvarez, Marjorie, Crozet, Carole, Djouadi, Fatima, Laforge, Mireille, Bertho, Gildas, Kellermann, Odile, Launay, Jean-Marie, Schmitt-Ulms, Gerold, Schneider, Benoit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1009991
container_issue 10
container_start_page e1009991
container_title PLoS pathogens
container_volume 17
creator Arnould, Hélène
Baudouin, Vincent
Baudry, Anne
Ribeiro, Luiz W
Ardila-Osorio, Hector
Pietri, Mathéa
Caradeuc, Cédric
Soultawi, Cynthia
Williams, Declan
Alvarez, Marjorie
Crozet, Carole
Djouadi, Fatima
Laforge, Mireille
Bertho, Gildas
Kellermann, Odile
Launay, Jean-Marie
Schmitt-Ulms, Gerold
Schneider, Benoit
description Corruption of cellular prion protein (PrP C ) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrP C , however, remain poorly elucidated. With the perspective to grasp the molecular pathways of neurodegeneration occurring in prion diseases, and to identify therapeutic targets, achieving a better understanding of PrP C roles is a priority. Based on global approaches that compare the proteome and metabolome of the PrP C expressing 1C11 neuronal stem cell line to those of PrP null -1C11 cells stably repressed for PrP C expression, we here unravel that PrP C contributes to the regulation of the energetic metabolism by orienting cells towards mitochondrial oxidative degradation of glucose. Through its coupling to cAMP/protein kinase A signaling, PrP C tones down the expression of the pyruvate dehydrogenase kinase 4 (PDK4). Such an event favors the transfer of pyruvate into mitochondria and its conversion into acetyl-CoA by the pyruvate dehydrogenase complex and, thereby, limits fatty acids β-oxidation and subsequent onset of oxidative stress conditions. The corruption of PrP C metabolic role by pathogenic prions PrP Sc causes in the mouse hippocampus an imbalance between glucose oxidative degradation and fatty acids β-oxidation in a PDK4-dependent manner. The inhibition of PDK4 extends the survival of prion-infected mice, supporting that PrP Sc -induced deregulation of PDK4 activity and subsequent metabolic derangements contribute to prion diseases. Our study posits PDK4 as a potential therapeutic target to fight against prion diseases.
doi_str_mv 10.1371/journal.ppat.1009991
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2598100866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681018416</galeid><doaj_id>oai_doaj_org_article_e0f84de0ab084344b839c7190a6a9010</doaj_id><sourcerecordid>A681018416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c672t-fbdf7ff69a159ddab9ec55219eb2a0af394effd8f6ff59d9bdcf1569297313363</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7rr6DwQHvHEvZkyaNGluhGFRd2BQ8OM6pOlJN0PajEm76L83cepHl72RQhtOnvdNzuk5RfEcow0mHL8--CkMym2ORzVuMEJCCPygOMdVRdaccPrwn_VZ8STGA0IUE8weF2eEsqSo6Hlh9z7GlTerY7B-SG8_gh1W2g9j8C5vdG7SPsKqh1E13tnYZ6pPXFwNMAXfQgcDBDVmg6TtU8T9tWxtBBUhPi0eGeUiPJu_F8XXd2-_XF2v9x_f7662-7VmvBzXpmkNN4YJhSvRtqoRoKuqxAKaUiFliKBgTFsbZkwCRNNqgysmSsEJJoSRi-LFyffofJRzlaIsK1GnnGuWid2JaL06yHTLXoUf0isrfwV86KQKo9UOJCBT0xaQalBNCaVNTYTmWCDFlEAYJa8382lT00OrIdVNuYXpcmewN7Lzt7KusKCkSgaXJ4ObO7Lr7V7mGCLpr1Fe3-LEvpoPC_7bBHGUvY0anFMD-CnnyAUrOebZ9uUd9P5KzFSnUrJ2MD7dUWdTuWUJwjXFmdrcQ6Wnhd6mTgFjU3whuFwIcjfB97FTU4xy9_nTf7Afliw9sTqkrg1g_hQMI5mH4neSMg-FnIeC_ATskP8C</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598100866</pqid></control><display><type>article</type><title>Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>Arnould, Hélène ; Baudouin, Vincent ; Baudry, Anne ; Ribeiro, Luiz W ; Ardila-Osorio, Hector ; Pietri, Mathéa ; Caradeuc, Cédric ; Soultawi, Cynthia ; Williams, Declan ; Alvarez, Marjorie ; Crozet, Carole ; Djouadi, Fatima ; Laforge, Mireille ; Bertho, Gildas ; Kellermann, Odile ; Launay, Jean-Marie ; Schmitt-Ulms, Gerold ; Schneider, Benoit</creator><creatorcontrib>Arnould, Hélène ; Baudouin, Vincent ; Baudry, Anne ; Ribeiro, Luiz W ; Ardila-Osorio, Hector ; Pietri, Mathéa ; Caradeuc, Cédric ; Soultawi, Cynthia ; Williams, Declan ; Alvarez, Marjorie ; Crozet, Carole ; Djouadi, Fatima ; Laforge, Mireille ; Bertho, Gildas ; Kellermann, Odile ; Launay, Jean-Marie ; Schmitt-Ulms, Gerold ; Schneider, Benoit</creatorcontrib><description>Corruption of cellular prion protein (PrP C ) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrP C , however, remain poorly elucidated. With the perspective to grasp the molecular pathways of neurodegeneration occurring in prion diseases, and to identify therapeutic targets, achieving a better understanding of PrP C roles is a priority. Based on global approaches that compare the proteome and metabolome of the PrP C expressing 1C11 neuronal stem cell line to those of PrP null -1C11 cells stably repressed for PrP C expression, we here unravel that PrP C contributes to the regulation of the energetic metabolism by orienting cells towards mitochondrial oxidative degradation of glucose. Through its coupling to cAMP/protein kinase A signaling, PrP C tones down the expression of the pyruvate dehydrogenase kinase 4 (PDK4). Such an event favors the transfer of pyruvate into mitochondria and its conversion into acetyl-CoA by the pyruvate dehydrogenase complex and, thereby, limits fatty acids β-oxidation and subsequent onset of oxidative stress conditions. The corruption of PrP C metabolic role by pathogenic prions PrP Sc causes in the mouse hippocampus an imbalance between glucose oxidative degradation and fatty acids β-oxidation in a PDK4-dependent manner. The inhibition of PDK4 extends the survival of prion-infected mice, supporting that PrP Sc -induced deregulation of PDK4 activity and subsequent metabolic derangements contribute to prion diseases. Our study posits PDK4 as a potential therapeutic target to fight against prion diseases.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1009991</identifier><identifier>PMID: 34610054</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Biochemistry ; Biochemistry, Molecular Biology ; Biology and Life Sciences ; Bovine spongiform encephalopathy ; Cattle ; Cell adhesion &amp; migration ; Corruption ; Coupling (molecular) ; Creutzfeldt-Jakob disease ; Degradation ; Dehydrogenase ; Dehydrogenases ; Deregulation ; Development and progression ; Enzymes ; Fatty acids ; Genetic aspects ; Glucose ; Glucose metabolism ; Health aspects ; Kinases ; Life Sciences ; Mass spectrometry ; Medicine and Health Sciences ; Metabolic diseases ; Metabolism ; Mitochondria ; Neural stem cells ; Neurodegeneration ; Neurons and Cognition ; Oxidation ; Oxidative stress ; Physical Sciences ; Prion diseases ; Prion protein ; Prions ; Protein kinase A ; Protein metabolism ; Protein turnover ; Proteins ; Proteomes ; Pyruvate dehydrogenase (lipoamide) ; Pyruvic acid ; Scientific imaging ; Stem cells ; Target recognition ; Therapeutic applications ; Therapeutic targets</subject><ispartof>PLoS pathogens, 2021-10, Vol.17 (10), p.e1009991-e1009991</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Arnould et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2021 Arnould et al 2021 Arnould et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c672t-fbdf7ff69a159ddab9ec55219eb2a0af394effd8f6ff59d9bdcf1569297313363</citedby><cites>FETCH-LOGICAL-c672t-fbdf7ff69a159ddab9ec55219eb2a0af394effd8f6ff59d9bdcf1569297313363</cites><orcidid>0000-0002-6754-1624 ; 0000-0002-1377-2670 ; 0000-0002-7383-4132 ; 0000-0002-5525-0571 ; 0000-0002-7750-5803 ; 0000-0003-0350-0935 ; 0000-0003-4809-1020 ; 0000-0003-2809-9439 ; 0000-0002-5958-9732 ; 0000-0002-4929-763X ; 0000-0001-6962-0919 ; 0000-0002-7292-7046 ; 0000-0002-1892-5250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519435/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519435/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03413478$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnould, Hélène</creatorcontrib><creatorcontrib>Baudouin, Vincent</creatorcontrib><creatorcontrib>Baudry, Anne</creatorcontrib><creatorcontrib>Ribeiro, Luiz W</creatorcontrib><creatorcontrib>Ardila-Osorio, Hector</creatorcontrib><creatorcontrib>Pietri, Mathéa</creatorcontrib><creatorcontrib>Caradeuc, Cédric</creatorcontrib><creatorcontrib>Soultawi, Cynthia</creatorcontrib><creatorcontrib>Williams, Declan</creatorcontrib><creatorcontrib>Alvarez, Marjorie</creatorcontrib><creatorcontrib>Crozet, Carole</creatorcontrib><creatorcontrib>Djouadi, Fatima</creatorcontrib><creatorcontrib>Laforge, Mireille</creatorcontrib><creatorcontrib>Bertho, Gildas</creatorcontrib><creatorcontrib>Kellermann, Odile</creatorcontrib><creatorcontrib>Launay, Jean-Marie</creatorcontrib><creatorcontrib>Schmitt-Ulms, Gerold</creatorcontrib><creatorcontrib>Schneider, Benoit</creatorcontrib><title>Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases</title><title>PLoS pathogens</title><description>Corruption of cellular prion protein (PrP C ) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrP C , however, remain poorly elucidated. With the perspective to grasp the molecular pathways of neurodegeneration occurring in prion diseases, and to identify therapeutic targets, achieving a better understanding of PrP C roles is a priority. Based on global approaches that compare the proteome and metabolome of the PrP C expressing 1C11 neuronal stem cell line to those of PrP null -1C11 cells stably repressed for PrP C expression, we here unravel that PrP C contributes to the regulation of the energetic metabolism by orienting cells towards mitochondrial oxidative degradation of glucose. Through its coupling to cAMP/protein kinase A signaling, PrP C tones down the expression of the pyruvate dehydrogenase kinase 4 (PDK4). Such an event favors the transfer of pyruvate into mitochondria and its conversion into acetyl-CoA by the pyruvate dehydrogenase complex and, thereby, limits fatty acids β-oxidation and subsequent onset of oxidative stress conditions. The corruption of PrP C metabolic role by pathogenic prions PrP Sc causes in the mouse hippocampus an imbalance between glucose oxidative degradation and fatty acids β-oxidation in a PDK4-dependent manner. The inhibition of PDK4 extends the survival of prion-infected mice, supporting that PrP Sc -induced deregulation of PDK4 activity and subsequent metabolic derangements contribute to prion diseases. Our study posits PDK4 as a potential therapeutic target to fight against prion diseases.</description><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biology and Life Sciences</subject><subject>Bovine spongiform encephalopathy</subject><subject>Cattle</subject><subject>Cell adhesion &amp; migration</subject><subject>Corruption</subject><subject>Coupling (molecular)</subject><subject>Creutzfeldt-Jakob disease</subject><subject>Degradation</subject><subject>Dehydrogenase</subject><subject>Dehydrogenases</subject><subject>Deregulation</subject><subject>Development and progression</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Genetic aspects</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Health aspects</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Mass spectrometry</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic diseases</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Neural stem cells</subject><subject>Neurodegeneration</subject><subject>Neurons and Cognition</subject><subject>Oxidation</subject><subject>Oxidative stress</subject><subject>Physical Sciences</subject><subject>Prion diseases</subject><subject>Prion protein</subject><subject>Prions</subject><subject>Protein kinase A</subject><subject>Protein metabolism</subject><subject>Protein turnover</subject><subject>Proteins</subject><subject>Proteomes</subject><subject>Pyruvate dehydrogenase (lipoamide)</subject><subject>Pyruvic acid</subject><subject>Scientific imaging</subject><subject>Stem cells</subject><subject>Target recognition</subject><subject>Therapeutic applications</subject><subject>Therapeutic targets</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7rr6DwQHvHEvZkyaNGluhGFRd2BQ8OM6pOlJN0PajEm76L83cepHl72RQhtOnvdNzuk5RfEcow0mHL8--CkMym2ORzVuMEJCCPygOMdVRdaccPrwn_VZ8STGA0IUE8weF2eEsqSo6Hlh9z7GlTerY7B-SG8_gh1W2g9j8C5vdG7SPsKqh1E13tnYZ6pPXFwNMAXfQgcDBDVmg6TtU8T9tWxtBBUhPi0eGeUiPJu_F8XXd2-_XF2v9x_f7662-7VmvBzXpmkNN4YJhSvRtqoRoKuqxAKaUiFliKBgTFsbZkwCRNNqgysmSsEJJoSRi-LFyffofJRzlaIsK1GnnGuWid2JaL06yHTLXoUf0isrfwV86KQKo9UOJCBT0xaQalBNCaVNTYTmWCDFlEAYJa8382lT00OrIdVNuYXpcmewN7Lzt7KusKCkSgaXJ4ObO7Lr7V7mGCLpr1Fe3-LEvpoPC_7bBHGUvY0anFMD-CnnyAUrOebZ9uUd9P5KzFSnUrJ2MD7dUWdTuWUJwjXFmdrcQ6Wnhd6mTgFjU3whuFwIcjfB97FTU4xy9_nTf7Afliw9sTqkrg1g_hQMI5mH4neSMg-FnIeC_ATskP8C</recordid><startdate>20211005</startdate><enddate>20211005</enddate><creator>Arnould, Hélène</creator><creator>Baudouin, Vincent</creator><creator>Baudry, Anne</creator><creator>Ribeiro, Luiz W</creator><creator>Ardila-Osorio, Hector</creator><creator>Pietri, Mathéa</creator><creator>Caradeuc, Cédric</creator><creator>Soultawi, Cynthia</creator><creator>Williams, Declan</creator><creator>Alvarez, Marjorie</creator><creator>Crozet, Carole</creator><creator>Djouadi, Fatima</creator><creator>Laforge, Mireille</creator><creator>Bertho, Gildas</creator><creator>Kellermann, Odile</creator><creator>Launay, Jean-Marie</creator><creator>Schmitt-Ulms, Gerold</creator><creator>Schneider, Benoit</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6754-1624</orcidid><orcidid>https://orcid.org/0000-0002-1377-2670</orcidid><orcidid>https://orcid.org/0000-0002-7383-4132</orcidid><orcidid>https://orcid.org/0000-0002-5525-0571</orcidid><orcidid>https://orcid.org/0000-0002-7750-5803</orcidid><orcidid>https://orcid.org/0000-0003-0350-0935</orcidid><orcidid>https://orcid.org/0000-0003-4809-1020</orcidid><orcidid>https://orcid.org/0000-0003-2809-9439</orcidid><orcidid>https://orcid.org/0000-0002-5958-9732</orcidid><orcidid>https://orcid.org/0000-0002-4929-763X</orcidid><orcidid>https://orcid.org/0000-0001-6962-0919</orcidid><orcidid>https://orcid.org/0000-0002-7292-7046</orcidid><orcidid>https://orcid.org/0000-0002-1892-5250</orcidid></search><sort><creationdate>20211005</creationdate><title>Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases</title><author>Arnould, Hélène ; Baudouin, Vincent ; Baudry, Anne ; Ribeiro, Luiz W ; Ardila-Osorio, Hector ; Pietri, Mathéa ; Caradeuc, Cédric ; Soultawi, Cynthia ; Williams, Declan ; Alvarez, Marjorie ; Crozet, Carole ; Djouadi, Fatima ; Laforge, Mireille ; Bertho, Gildas ; Kellermann, Odile ; Launay, Jean-Marie ; Schmitt-Ulms, Gerold ; Schneider, Benoit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c672t-fbdf7ff69a159ddab9ec55219eb2a0af394effd8f6ff59d9bdcf1569297313363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biology and Life Sciences</topic><topic>Bovine spongiform encephalopathy</topic><topic>Cattle</topic><topic>Cell adhesion &amp; migration</topic><topic>Corruption</topic><topic>Coupling (molecular)</topic><topic>Creutzfeldt-Jakob disease</topic><topic>Degradation</topic><topic>Dehydrogenase</topic><topic>Dehydrogenases</topic><topic>Deregulation</topic><topic>Development and progression</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Genetic aspects</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Health aspects</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Mass spectrometry</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic diseases</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Neural stem cells</topic><topic>Neurodegeneration</topic><topic>Neurons and Cognition</topic><topic>Oxidation</topic><topic>Oxidative stress</topic><topic>Physical Sciences</topic><topic>Prion diseases</topic><topic>Prion protein</topic><topic>Prions</topic><topic>Protein kinase A</topic><topic>Protein metabolism</topic><topic>Protein turnover</topic><topic>Proteins</topic><topic>Proteomes</topic><topic>Pyruvate dehydrogenase (lipoamide)</topic><topic>Pyruvic acid</topic><topic>Scientific imaging</topic><topic>Stem cells</topic><topic>Target recognition</topic><topic>Therapeutic applications</topic><topic>Therapeutic targets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnould, Hélène</creatorcontrib><creatorcontrib>Baudouin, Vincent</creatorcontrib><creatorcontrib>Baudry, Anne</creatorcontrib><creatorcontrib>Ribeiro, Luiz W</creatorcontrib><creatorcontrib>Ardila-Osorio, Hector</creatorcontrib><creatorcontrib>Pietri, Mathéa</creatorcontrib><creatorcontrib>Caradeuc, Cédric</creatorcontrib><creatorcontrib>Soultawi, Cynthia</creatorcontrib><creatorcontrib>Williams, Declan</creatorcontrib><creatorcontrib>Alvarez, Marjorie</creatorcontrib><creatorcontrib>Crozet, Carole</creatorcontrib><creatorcontrib>Djouadi, Fatima</creatorcontrib><creatorcontrib>Laforge, Mireille</creatorcontrib><creatorcontrib>Bertho, Gildas</creatorcontrib><creatorcontrib>Kellermann, Odile</creatorcontrib><creatorcontrib>Launay, Jean-Marie</creatorcontrib><creatorcontrib>Schmitt-Ulms, Gerold</creatorcontrib><creatorcontrib>Schneider, Benoit</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnould, Hélène</au><au>Baudouin, Vincent</au><au>Baudry, Anne</au><au>Ribeiro, Luiz W</au><au>Ardila-Osorio, Hector</au><au>Pietri, Mathéa</au><au>Caradeuc, Cédric</au><au>Soultawi, Cynthia</au><au>Williams, Declan</au><au>Alvarez, Marjorie</au><au>Crozet, Carole</au><au>Djouadi, Fatima</au><au>Laforge, Mireille</au><au>Bertho, Gildas</au><au>Kellermann, Odile</au><au>Launay, Jean-Marie</au><au>Schmitt-Ulms, Gerold</au><au>Schneider, Benoit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases</atitle><jtitle>PLoS pathogens</jtitle><date>2021-10-05</date><risdate>2021</risdate><volume>17</volume><issue>10</issue><spage>e1009991</spage><epage>e1009991</epage><pages>e1009991-e1009991</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Corruption of cellular prion protein (PrP C ) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrP C , however, remain poorly elucidated. With the perspective to grasp the molecular pathways of neurodegeneration occurring in prion diseases, and to identify therapeutic targets, achieving a better understanding of PrP C roles is a priority. Based on global approaches that compare the proteome and metabolome of the PrP C expressing 1C11 neuronal stem cell line to those of PrP null -1C11 cells stably repressed for PrP C expression, we here unravel that PrP C contributes to the regulation of the energetic metabolism by orienting cells towards mitochondrial oxidative degradation of glucose. Through its coupling to cAMP/protein kinase A signaling, PrP C tones down the expression of the pyruvate dehydrogenase kinase 4 (PDK4). Such an event favors the transfer of pyruvate into mitochondria and its conversion into acetyl-CoA by the pyruvate dehydrogenase complex and, thereby, limits fatty acids β-oxidation and subsequent onset of oxidative stress conditions. The corruption of PrP C metabolic role by pathogenic prions PrP Sc causes in the mouse hippocampus an imbalance between glucose oxidative degradation and fatty acids β-oxidation in a PDK4-dependent manner. The inhibition of PDK4 extends the survival of prion-infected mice, supporting that PrP Sc -induced deregulation of PDK4 activity and subsequent metabolic derangements contribute to prion diseases. Our study posits PDK4 as a potential therapeutic target to fight against prion diseases.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34610054</pmid><doi>10.1371/journal.ppat.1009991</doi><orcidid>https://orcid.org/0000-0002-6754-1624</orcidid><orcidid>https://orcid.org/0000-0002-1377-2670</orcidid><orcidid>https://orcid.org/0000-0002-7383-4132</orcidid><orcidid>https://orcid.org/0000-0002-5525-0571</orcidid><orcidid>https://orcid.org/0000-0002-7750-5803</orcidid><orcidid>https://orcid.org/0000-0003-0350-0935</orcidid><orcidid>https://orcid.org/0000-0003-4809-1020</orcidid><orcidid>https://orcid.org/0000-0003-2809-9439</orcidid><orcidid>https://orcid.org/0000-0002-5958-9732</orcidid><orcidid>https://orcid.org/0000-0002-4929-763X</orcidid><orcidid>https://orcid.org/0000-0001-6962-0919</orcidid><orcidid>https://orcid.org/0000-0002-7292-7046</orcidid><orcidid>https://orcid.org/0000-0002-1892-5250</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2021-10, Vol.17 (10), p.e1009991-e1009991
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_2598100866
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS)
subjects Biochemistry
Biochemistry, Molecular Biology
Biology and Life Sciences
Bovine spongiform encephalopathy
Cattle
Cell adhesion & migration
Corruption
Coupling (molecular)
Creutzfeldt-Jakob disease
Degradation
Dehydrogenase
Dehydrogenases
Deregulation
Development and progression
Enzymes
Fatty acids
Genetic aspects
Glucose
Glucose metabolism
Health aspects
Kinases
Life Sciences
Mass spectrometry
Medicine and Health Sciences
Metabolic diseases
Metabolism
Mitochondria
Neural stem cells
Neurodegeneration
Neurons and Cognition
Oxidation
Oxidative stress
Physical Sciences
Prion diseases
Prion protein
Prions
Protein kinase A
Protein metabolism
Protein turnover
Proteins
Proteomes
Pyruvate dehydrogenase (lipoamide)
Pyruvic acid
Scientific imaging
Stem cells
Target recognition
Therapeutic applications
Therapeutic targets
title Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20prion%20protein%20control%20of%20glucose%20metabolism%20promotes%20neurodegeneration%20in%20model%20of%20prion%20diseases&rft.jtitle=PLoS%20pathogens&rft.au=Arnould,%20H%C3%A9l%C3%A8ne&rft.date=2021-10-05&rft.volume=17&rft.issue=10&rft.spage=e1009991&rft.epage=e1009991&rft.pages=e1009991-e1009991&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1009991&rft_dat=%3Cgale_plos_%3EA681018416%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598100866&rft_id=info:pmid/34610054&rft_galeid=A681018416&rft_doaj_id=oai_doaj_org_article_e0f84de0ab084344b839c7190a6a9010&rfr_iscdi=true