Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases
Corruption of cellular prion protein (PrP C ) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrP C ,...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2021-10, Vol.17 (10), p.e1009991-e1009991 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009991 |
---|---|
container_issue | 10 |
container_start_page | e1009991 |
container_title | PLoS pathogens |
container_volume | 17 |
creator | Arnould, Hélène Baudouin, Vincent Baudry, Anne Ribeiro, Luiz W Ardila-Osorio, Hector Pietri, Mathéa Caradeuc, Cédric Soultawi, Cynthia Williams, Declan Alvarez, Marjorie Crozet, Carole Djouadi, Fatima Laforge, Mireille Bertho, Gildas Kellermann, Odile Launay, Jean-Marie Schmitt-Ulms, Gerold Schneider, Benoit |
description | Corruption of cellular prion protein (PrP
C
) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrP
C
, however, remain poorly elucidated. With the perspective to grasp the molecular pathways of neurodegeneration occurring in prion diseases, and to identify therapeutic targets, achieving a better understanding of PrP
C
roles is a priority. Based on global approaches that compare the proteome and metabolome of the PrP
C
expressing 1C11 neuronal stem cell line to those of PrP
null
-1C11 cells stably repressed for PrP
C
expression, we here unravel that PrP
C
contributes to the regulation of the energetic metabolism by orienting cells towards mitochondrial oxidative degradation of glucose. Through its coupling to cAMP/protein kinase A signaling, PrP
C
tones down the expression of the pyruvate dehydrogenase kinase 4 (PDK4). Such an event favors the transfer of pyruvate into mitochondria and its conversion into acetyl-CoA by the pyruvate dehydrogenase complex and, thereby, limits fatty acids β-oxidation and subsequent onset of oxidative stress conditions. The corruption of PrP
C
metabolic role by pathogenic prions PrP
Sc
causes in the mouse hippocampus an imbalance between glucose oxidative degradation and fatty acids β-oxidation in a PDK4-dependent manner. The inhibition of PDK4 extends the survival of prion-infected mice, supporting that PrP
Sc
-induced deregulation of PDK4 activity and subsequent metabolic derangements contribute to prion diseases. Our study posits PDK4 as a potential therapeutic target to fight against prion diseases. |
doi_str_mv | 10.1371/journal.ppat.1009991 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2598100866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681018416</galeid><doaj_id>oai_doaj_org_article_e0f84de0ab084344b839c7190a6a9010</doaj_id><sourcerecordid>A681018416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c672t-fbdf7ff69a159ddab9ec55219eb2a0af394effd8f6ff59d9bdcf1569297313363</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7rr6DwQHvHEvZkyaNGluhGFRd2BQ8OM6pOlJN0PajEm76L83cepHl72RQhtOnvdNzuk5RfEcow0mHL8--CkMym2ORzVuMEJCCPygOMdVRdaccPrwn_VZ8STGA0IUE8weF2eEsqSo6Hlh9z7GlTerY7B-SG8_gh1W2g9j8C5vdG7SPsKqh1E13tnYZ6pPXFwNMAXfQgcDBDVmg6TtU8T9tWxtBBUhPi0eGeUiPJu_F8XXd2-_XF2v9x_f7662-7VmvBzXpmkNN4YJhSvRtqoRoKuqxAKaUiFliKBgTFsbZkwCRNNqgysmSsEJJoSRi-LFyffofJRzlaIsK1GnnGuWid2JaL06yHTLXoUf0isrfwV86KQKo9UOJCBT0xaQalBNCaVNTYTmWCDFlEAYJa8382lT00OrIdVNuYXpcmewN7Lzt7KusKCkSgaXJ4ObO7Lr7V7mGCLpr1Fe3-LEvpoPC_7bBHGUvY0anFMD-CnnyAUrOebZ9uUd9P5KzFSnUrJ2MD7dUWdTuWUJwjXFmdrcQ6Wnhd6mTgFjU3whuFwIcjfB97FTU4xy9_nTf7Afliw9sTqkrg1g_hQMI5mH4neSMg-FnIeC_ATskP8C</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598100866</pqid></control><display><type>article</type><title>Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>Arnould, Hélène ; Baudouin, Vincent ; Baudry, Anne ; Ribeiro, Luiz W ; Ardila-Osorio, Hector ; Pietri, Mathéa ; Caradeuc, Cédric ; Soultawi, Cynthia ; Williams, Declan ; Alvarez, Marjorie ; Crozet, Carole ; Djouadi, Fatima ; Laforge, Mireille ; Bertho, Gildas ; Kellermann, Odile ; Launay, Jean-Marie ; Schmitt-Ulms, Gerold ; Schneider, Benoit</creator><creatorcontrib>Arnould, Hélène ; Baudouin, Vincent ; Baudry, Anne ; Ribeiro, Luiz W ; Ardila-Osorio, Hector ; Pietri, Mathéa ; Caradeuc, Cédric ; Soultawi, Cynthia ; Williams, Declan ; Alvarez, Marjorie ; Crozet, Carole ; Djouadi, Fatima ; Laforge, Mireille ; Bertho, Gildas ; Kellermann, Odile ; Launay, Jean-Marie ; Schmitt-Ulms, Gerold ; Schneider, Benoit</creatorcontrib><description>Corruption of cellular prion protein (PrP
C
) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrP
C
, however, remain poorly elucidated. With the perspective to grasp the molecular pathways of neurodegeneration occurring in prion diseases, and to identify therapeutic targets, achieving a better understanding of PrP
C
roles is a priority. Based on global approaches that compare the proteome and metabolome of the PrP
C
expressing 1C11 neuronal stem cell line to those of PrP
null
-1C11 cells stably repressed for PrP
C
expression, we here unravel that PrP
C
contributes to the regulation of the energetic metabolism by orienting cells towards mitochondrial oxidative degradation of glucose. Through its coupling to cAMP/protein kinase A signaling, PrP
C
tones down the expression of the pyruvate dehydrogenase kinase 4 (PDK4). Such an event favors the transfer of pyruvate into mitochondria and its conversion into acetyl-CoA by the pyruvate dehydrogenase complex and, thereby, limits fatty acids β-oxidation and subsequent onset of oxidative stress conditions. The corruption of PrP
C
metabolic role by pathogenic prions PrP
Sc
causes in the mouse hippocampus an imbalance between glucose oxidative degradation and fatty acids β-oxidation in a PDK4-dependent manner. The inhibition of PDK4 extends the survival of prion-infected mice, supporting that PrP
Sc
-induced deregulation of PDK4 activity and subsequent metabolic derangements contribute to prion diseases. Our study posits PDK4 as a potential therapeutic target to fight against prion diseases.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1009991</identifier><identifier>PMID: 34610054</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Biochemistry ; Biochemistry, Molecular Biology ; Biology and Life Sciences ; Bovine spongiform encephalopathy ; Cattle ; Cell adhesion & migration ; Corruption ; Coupling (molecular) ; Creutzfeldt-Jakob disease ; Degradation ; Dehydrogenase ; Dehydrogenases ; Deregulation ; Development and progression ; Enzymes ; Fatty acids ; Genetic aspects ; Glucose ; Glucose metabolism ; Health aspects ; Kinases ; Life Sciences ; Mass spectrometry ; Medicine and Health Sciences ; Metabolic diseases ; Metabolism ; Mitochondria ; Neural stem cells ; Neurodegeneration ; Neurons and Cognition ; Oxidation ; Oxidative stress ; Physical Sciences ; Prion diseases ; Prion protein ; Prions ; Protein kinase A ; Protein metabolism ; Protein turnover ; Proteins ; Proteomes ; Pyruvate dehydrogenase (lipoamide) ; Pyruvic acid ; Scientific imaging ; Stem cells ; Target recognition ; Therapeutic applications ; Therapeutic targets</subject><ispartof>PLoS pathogens, 2021-10, Vol.17 (10), p.e1009991-e1009991</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Arnould et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2021 Arnould et al 2021 Arnould et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c672t-fbdf7ff69a159ddab9ec55219eb2a0af394effd8f6ff59d9bdcf1569297313363</citedby><cites>FETCH-LOGICAL-c672t-fbdf7ff69a159ddab9ec55219eb2a0af394effd8f6ff59d9bdcf1569297313363</cites><orcidid>0000-0002-6754-1624 ; 0000-0002-1377-2670 ; 0000-0002-7383-4132 ; 0000-0002-5525-0571 ; 0000-0002-7750-5803 ; 0000-0003-0350-0935 ; 0000-0003-4809-1020 ; 0000-0003-2809-9439 ; 0000-0002-5958-9732 ; 0000-0002-4929-763X ; 0000-0001-6962-0919 ; 0000-0002-7292-7046 ; 0000-0002-1892-5250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519435/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519435/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03413478$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnould, Hélène</creatorcontrib><creatorcontrib>Baudouin, Vincent</creatorcontrib><creatorcontrib>Baudry, Anne</creatorcontrib><creatorcontrib>Ribeiro, Luiz W</creatorcontrib><creatorcontrib>Ardila-Osorio, Hector</creatorcontrib><creatorcontrib>Pietri, Mathéa</creatorcontrib><creatorcontrib>Caradeuc, Cédric</creatorcontrib><creatorcontrib>Soultawi, Cynthia</creatorcontrib><creatorcontrib>Williams, Declan</creatorcontrib><creatorcontrib>Alvarez, Marjorie</creatorcontrib><creatorcontrib>Crozet, Carole</creatorcontrib><creatorcontrib>Djouadi, Fatima</creatorcontrib><creatorcontrib>Laforge, Mireille</creatorcontrib><creatorcontrib>Bertho, Gildas</creatorcontrib><creatorcontrib>Kellermann, Odile</creatorcontrib><creatorcontrib>Launay, Jean-Marie</creatorcontrib><creatorcontrib>Schmitt-Ulms, Gerold</creatorcontrib><creatorcontrib>Schneider, Benoit</creatorcontrib><title>Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases</title><title>PLoS pathogens</title><description>Corruption of cellular prion protein (PrP
C
) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrP
C
, however, remain poorly elucidated. With the perspective to grasp the molecular pathways of neurodegeneration occurring in prion diseases, and to identify therapeutic targets, achieving a better understanding of PrP
C
roles is a priority. Based on global approaches that compare the proteome and metabolome of the PrP
C
expressing 1C11 neuronal stem cell line to those of PrP
null
-1C11 cells stably repressed for PrP
C
expression, we here unravel that PrP
C
contributes to the regulation of the energetic metabolism by orienting cells towards mitochondrial oxidative degradation of glucose. Through its coupling to cAMP/protein kinase A signaling, PrP
C
tones down the expression of the pyruvate dehydrogenase kinase 4 (PDK4). Such an event favors the transfer of pyruvate into mitochondria and its conversion into acetyl-CoA by the pyruvate dehydrogenase complex and, thereby, limits fatty acids β-oxidation and subsequent onset of oxidative stress conditions. The corruption of PrP
C
metabolic role by pathogenic prions PrP
Sc
causes in the mouse hippocampus an imbalance between glucose oxidative degradation and fatty acids β-oxidation in a PDK4-dependent manner. The inhibition of PDK4 extends the survival of prion-infected mice, supporting that PrP
Sc
-induced deregulation of PDK4 activity and subsequent metabolic derangements contribute to prion diseases. Our study posits PDK4 as a potential therapeutic target to fight against prion diseases.</description><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biology and Life Sciences</subject><subject>Bovine spongiform encephalopathy</subject><subject>Cattle</subject><subject>Cell adhesion & migration</subject><subject>Corruption</subject><subject>Coupling (molecular)</subject><subject>Creutzfeldt-Jakob disease</subject><subject>Degradation</subject><subject>Dehydrogenase</subject><subject>Dehydrogenases</subject><subject>Deregulation</subject><subject>Development and progression</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Genetic aspects</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Health aspects</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Mass spectrometry</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic diseases</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Neural stem cells</subject><subject>Neurodegeneration</subject><subject>Neurons and Cognition</subject><subject>Oxidation</subject><subject>Oxidative stress</subject><subject>Physical Sciences</subject><subject>Prion diseases</subject><subject>Prion protein</subject><subject>Prions</subject><subject>Protein kinase A</subject><subject>Protein metabolism</subject><subject>Protein turnover</subject><subject>Proteins</subject><subject>Proteomes</subject><subject>Pyruvate dehydrogenase (lipoamide)</subject><subject>Pyruvic acid</subject><subject>Scientific imaging</subject><subject>Stem cells</subject><subject>Target recognition</subject><subject>Therapeutic applications</subject><subject>Therapeutic targets</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7rr6DwQHvHEvZkyaNGluhGFRd2BQ8OM6pOlJN0PajEm76L83cepHl72RQhtOnvdNzuk5RfEcow0mHL8--CkMym2ORzVuMEJCCPygOMdVRdaccPrwn_VZ8STGA0IUE8weF2eEsqSo6Hlh9z7GlTerY7B-SG8_gh1W2g9j8C5vdG7SPsKqh1E13tnYZ6pPXFwNMAXfQgcDBDVmg6TtU8T9tWxtBBUhPi0eGeUiPJu_F8XXd2-_XF2v9x_f7662-7VmvBzXpmkNN4YJhSvRtqoRoKuqxAKaUiFliKBgTFsbZkwCRNNqgysmSsEJJoSRi-LFyffofJRzlaIsK1GnnGuWid2JaL06yHTLXoUf0isrfwV86KQKo9UOJCBT0xaQalBNCaVNTYTmWCDFlEAYJa8382lT00OrIdVNuYXpcmewN7Lzt7KusKCkSgaXJ4ObO7Lr7V7mGCLpr1Fe3-LEvpoPC_7bBHGUvY0anFMD-CnnyAUrOebZ9uUd9P5KzFSnUrJ2MD7dUWdTuWUJwjXFmdrcQ6Wnhd6mTgFjU3whuFwIcjfB97FTU4xy9_nTf7Afliw9sTqkrg1g_hQMI5mH4neSMg-FnIeC_ATskP8C</recordid><startdate>20211005</startdate><enddate>20211005</enddate><creator>Arnould, Hélène</creator><creator>Baudouin, Vincent</creator><creator>Baudry, Anne</creator><creator>Ribeiro, Luiz W</creator><creator>Ardila-Osorio, Hector</creator><creator>Pietri, Mathéa</creator><creator>Caradeuc, Cédric</creator><creator>Soultawi, Cynthia</creator><creator>Williams, Declan</creator><creator>Alvarez, Marjorie</creator><creator>Crozet, Carole</creator><creator>Djouadi, Fatima</creator><creator>Laforge, Mireille</creator><creator>Bertho, Gildas</creator><creator>Kellermann, Odile</creator><creator>Launay, Jean-Marie</creator><creator>Schmitt-Ulms, Gerold</creator><creator>Schneider, Benoit</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6754-1624</orcidid><orcidid>https://orcid.org/0000-0002-1377-2670</orcidid><orcidid>https://orcid.org/0000-0002-7383-4132</orcidid><orcidid>https://orcid.org/0000-0002-5525-0571</orcidid><orcidid>https://orcid.org/0000-0002-7750-5803</orcidid><orcidid>https://orcid.org/0000-0003-0350-0935</orcidid><orcidid>https://orcid.org/0000-0003-4809-1020</orcidid><orcidid>https://orcid.org/0000-0003-2809-9439</orcidid><orcidid>https://orcid.org/0000-0002-5958-9732</orcidid><orcidid>https://orcid.org/0000-0002-4929-763X</orcidid><orcidid>https://orcid.org/0000-0001-6962-0919</orcidid><orcidid>https://orcid.org/0000-0002-7292-7046</orcidid><orcidid>https://orcid.org/0000-0002-1892-5250</orcidid></search><sort><creationdate>20211005</creationdate><title>Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases</title><author>Arnould, Hélène ; Baudouin, Vincent ; Baudry, Anne ; Ribeiro, Luiz W ; Ardila-Osorio, Hector ; Pietri, Mathéa ; Caradeuc, Cédric ; Soultawi, Cynthia ; Williams, Declan ; Alvarez, Marjorie ; Crozet, Carole ; Djouadi, Fatima ; Laforge, Mireille ; Bertho, Gildas ; Kellermann, Odile ; Launay, Jean-Marie ; Schmitt-Ulms, Gerold ; Schneider, Benoit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c672t-fbdf7ff69a159ddab9ec55219eb2a0af394effd8f6ff59d9bdcf1569297313363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biology and Life Sciences</topic><topic>Bovine spongiform encephalopathy</topic><topic>Cattle</topic><topic>Cell adhesion & migration</topic><topic>Corruption</topic><topic>Coupling (molecular)</topic><topic>Creutzfeldt-Jakob disease</topic><topic>Degradation</topic><topic>Dehydrogenase</topic><topic>Dehydrogenases</topic><topic>Deregulation</topic><topic>Development and progression</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Genetic aspects</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Health aspects</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Mass spectrometry</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic diseases</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Neural stem cells</topic><topic>Neurodegeneration</topic><topic>Neurons and Cognition</topic><topic>Oxidation</topic><topic>Oxidative stress</topic><topic>Physical Sciences</topic><topic>Prion diseases</topic><topic>Prion protein</topic><topic>Prions</topic><topic>Protein kinase A</topic><topic>Protein metabolism</topic><topic>Protein turnover</topic><topic>Proteins</topic><topic>Proteomes</topic><topic>Pyruvate dehydrogenase (lipoamide)</topic><topic>Pyruvic acid</topic><topic>Scientific imaging</topic><topic>Stem cells</topic><topic>Target recognition</topic><topic>Therapeutic applications</topic><topic>Therapeutic targets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnould, Hélène</creatorcontrib><creatorcontrib>Baudouin, Vincent</creatorcontrib><creatorcontrib>Baudry, Anne</creatorcontrib><creatorcontrib>Ribeiro, Luiz W</creatorcontrib><creatorcontrib>Ardila-Osorio, Hector</creatorcontrib><creatorcontrib>Pietri, Mathéa</creatorcontrib><creatorcontrib>Caradeuc, Cédric</creatorcontrib><creatorcontrib>Soultawi, Cynthia</creatorcontrib><creatorcontrib>Williams, Declan</creatorcontrib><creatorcontrib>Alvarez, Marjorie</creatorcontrib><creatorcontrib>Crozet, Carole</creatorcontrib><creatorcontrib>Djouadi, Fatima</creatorcontrib><creatorcontrib>Laforge, Mireille</creatorcontrib><creatorcontrib>Bertho, Gildas</creatorcontrib><creatorcontrib>Kellermann, Odile</creatorcontrib><creatorcontrib>Launay, Jean-Marie</creatorcontrib><creatorcontrib>Schmitt-Ulms, Gerold</creatorcontrib><creatorcontrib>Schneider, Benoit</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnould, Hélène</au><au>Baudouin, Vincent</au><au>Baudry, Anne</au><au>Ribeiro, Luiz W</au><au>Ardila-Osorio, Hector</au><au>Pietri, Mathéa</au><au>Caradeuc, Cédric</au><au>Soultawi, Cynthia</au><au>Williams, Declan</au><au>Alvarez, Marjorie</au><au>Crozet, Carole</au><au>Djouadi, Fatima</au><au>Laforge, Mireille</au><au>Bertho, Gildas</au><au>Kellermann, Odile</au><au>Launay, Jean-Marie</au><au>Schmitt-Ulms, Gerold</au><au>Schneider, Benoit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases</atitle><jtitle>PLoS pathogens</jtitle><date>2021-10-05</date><risdate>2021</risdate><volume>17</volume><issue>10</issue><spage>e1009991</spage><epage>e1009991</epage><pages>e1009991-e1009991</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Corruption of cellular prion protein (PrP
C
) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrP
C
, however, remain poorly elucidated. With the perspective to grasp the molecular pathways of neurodegeneration occurring in prion diseases, and to identify therapeutic targets, achieving a better understanding of PrP
C
roles is a priority. Based on global approaches that compare the proteome and metabolome of the PrP
C
expressing 1C11 neuronal stem cell line to those of PrP
null
-1C11 cells stably repressed for PrP
C
expression, we here unravel that PrP
C
contributes to the regulation of the energetic metabolism by orienting cells towards mitochondrial oxidative degradation of glucose. Through its coupling to cAMP/protein kinase A signaling, PrP
C
tones down the expression of the pyruvate dehydrogenase kinase 4 (PDK4). Such an event favors the transfer of pyruvate into mitochondria and its conversion into acetyl-CoA by the pyruvate dehydrogenase complex and, thereby, limits fatty acids β-oxidation and subsequent onset of oxidative stress conditions. The corruption of PrP
C
metabolic role by pathogenic prions PrP
Sc
causes in the mouse hippocampus an imbalance between glucose oxidative degradation and fatty acids β-oxidation in a PDK4-dependent manner. The inhibition of PDK4 extends the survival of prion-infected mice, supporting that PrP
Sc
-induced deregulation of PDK4 activity and subsequent metabolic derangements contribute to prion diseases. Our study posits PDK4 as a potential therapeutic target to fight against prion diseases.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34610054</pmid><doi>10.1371/journal.ppat.1009991</doi><orcidid>https://orcid.org/0000-0002-6754-1624</orcidid><orcidid>https://orcid.org/0000-0002-1377-2670</orcidid><orcidid>https://orcid.org/0000-0002-7383-4132</orcidid><orcidid>https://orcid.org/0000-0002-5525-0571</orcidid><orcidid>https://orcid.org/0000-0002-7750-5803</orcidid><orcidid>https://orcid.org/0000-0003-0350-0935</orcidid><orcidid>https://orcid.org/0000-0003-4809-1020</orcidid><orcidid>https://orcid.org/0000-0003-2809-9439</orcidid><orcidid>https://orcid.org/0000-0002-5958-9732</orcidid><orcidid>https://orcid.org/0000-0002-4929-763X</orcidid><orcidid>https://orcid.org/0000-0001-6962-0919</orcidid><orcidid>https://orcid.org/0000-0002-7292-7046</orcidid><orcidid>https://orcid.org/0000-0002-1892-5250</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2021-10, Vol.17 (10), p.e1009991-e1009991 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2598100866 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS) |
subjects | Biochemistry Biochemistry, Molecular Biology Biology and Life Sciences Bovine spongiform encephalopathy Cattle Cell adhesion & migration Corruption Coupling (molecular) Creutzfeldt-Jakob disease Degradation Dehydrogenase Dehydrogenases Deregulation Development and progression Enzymes Fatty acids Genetic aspects Glucose Glucose metabolism Health aspects Kinases Life Sciences Mass spectrometry Medicine and Health Sciences Metabolic diseases Metabolism Mitochondria Neural stem cells Neurodegeneration Neurons and Cognition Oxidation Oxidative stress Physical Sciences Prion diseases Prion protein Prions Protein kinase A Protein metabolism Protein turnover Proteins Proteomes Pyruvate dehydrogenase (lipoamide) Pyruvic acid Scientific imaging Stem cells Target recognition Therapeutic applications Therapeutic targets |
title | Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20prion%20protein%20control%20of%20glucose%20metabolism%20promotes%20neurodegeneration%20in%20model%20of%20prion%20diseases&rft.jtitle=PLoS%20pathogens&rft.au=Arnould,%20H%C3%A9l%C3%A8ne&rft.date=2021-10-05&rft.volume=17&rft.issue=10&rft.spage=e1009991&rft.epage=e1009991&rft.pages=e1009991-e1009991&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1009991&rft_dat=%3Cgale_plos_%3EA681018416%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598100866&rft_id=info:pmid/34610054&rft_galeid=A681018416&rft_doaj_id=oai_doaj_org_article_e0f84de0ab084344b839c7190a6a9010&rfr_iscdi=true |