A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study
Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasti...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-11, Vol.16 (11), p.e0259724 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | e0259724 |
container_title | PloS one |
container_volume | 16 |
creator | Amodeo, Ilaria De Nunzio, Giorgio Raffaeli, Genny Borzani, Irene Griggio, Alice Conte, Luana Macchini, Francesco Condò, Valentina Persico, Nicola Fabietti, Isabella Ghirardello, Stefano Pierro, Maria Tafuri, Benedetta Como, Giuseppe Cascio, Donato Colnaghi, Mariarosa Mosca, Fabio Cavallaro, Giacomo |
description | Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses.
Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns' and mothers' clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed.
This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study.
The study was registered at ClinicalTrials.gov with the identifier NCT04609163. |
doi_str_mv | 10.1371/journal.pone.0259724 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2595527295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681775801</galeid><doaj_id>oai_doaj_org_article_6cc919b88fd14fa38fa0a7a614277afb</doaj_id><sourcerecordid>A681775801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-b0f626ee3452d0e553ea9e3a68a412d2d31d7baf798017ec0e84dbc47a59574b3</originalsourceid><addsrcrecordid>eNptUlFv0zAQjhCIjcE_QGCJl_HQEsdxnPCAVFVAK1UFafBsXexL6ymxg-Nu6h_id-Ku2bSiyQ-2zt99d993lyRvaTqlTNBP127nLbTT3lmcphmvRJY_S85pxbJJkaXs-aP3WfJqGK7TlLOyKF4mZywXPMsrep78nZEO5ltjkYDVRCP2ZIXgrbEbMut770BtSXCk96iNCqTftZ1bg9-T7b5HH3A9LJ0lxhKLt7Xz9orcmrAlytkNWhOgJdpAv_Ww6SAYRRYYyYFczlez9Xp5tfj4mfz0LjjlWtI4T4B4DN4NPapgbpAMYaf3r5MXDbQDvhnvi-T3t6-_5ovJ6sf35Xy2mihesTCp06bICkSW80ynyDlDqJBBUUJOM51pRrWooRFVmVKBKsUy17XKBfCKi7xmF8n7I2_fukGOFg8yust5JrKKR8TyiNAOrmXvTRe9kA6MvAs4v5Hgo84WZaFURau6LBtN8wZY2UAKAgqaZ0JAc6j2Zay2qzvUCm3w0J6Qnv5Ys5UbdyNLLoTIi0hwORJ492eHQ5CdGRS2LVh0u7u-iyi0Kg59f_gP-rS6EbWBKMDYxsW66kAqZ0VJheDRuIiaPoGKR2Nn4uCxMTF-kpAfE1Qc7OCxedBIU3nY5vtm5GGb5bjNMe3dY38eku7Xl_0DbaL0WA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595527295</pqid></control><display><type>article</type><title>A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Amodeo, Ilaria ; De Nunzio, Giorgio ; Raffaeli, Genny ; Borzani, Irene ; Griggio, Alice ; Conte, Luana ; Macchini, Francesco ; Condò, Valentina ; Persico, Nicola ; Fabietti, Isabella ; Ghirardello, Stefano ; Pierro, Maria ; Tafuri, Benedetta ; Como, Giuseppe ; Cascio, Donato ; Colnaghi, Mariarosa ; Mosca, Fabio ; Cavallaro, Giacomo</creator><contributor>Cruz-Martinez, Rogelio</contributor><creatorcontrib>Amodeo, Ilaria ; De Nunzio, Giorgio ; Raffaeli, Genny ; Borzani, Irene ; Griggio, Alice ; Conte, Luana ; Macchini, Francesco ; Condò, Valentina ; Persico, Nicola ; Fabietti, Isabella ; Ghirardello, Stefano ; Pierro, Maria ; Tafuri, Benedetta ; Como, Giuseppe ; Cascio, Donato ; Colnaghi, Mariarosa ; Mosca, Fabio ; Cavallaro, Giacomo ; Cruz-Martinez, Rogelio</creatorcontrib><description>Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses.
Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns' and mothers' clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed.
This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study.
The study was registered at ClinicalTrials.gov with the identifier NCT04609163.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0259724</identifier><identifier>PMID: 34752491</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Artificial intelligence ; Biology and Life Sciences ; Computer and Information Sciences ; Data analysis ; Data collection ; Deep Learning ; Diagnosis ; Diaphragm ; Engineering and Technology ; Ethics ; Extracorporeal membrane oxygenation ; Extracorporeal Membrane Oxygenation - methods ; Feature extraction ; Female ; Fetuses ; Forecasting ; Gynecology ; Health aspects ; Hernia ; Hernias ; Hernias, Diaphragmatic, Congenital - complications ; Hernias, Diaphragmatic, Congenital - diagnostic imaging ; Hernias, Diaphragmatic, Congenital - surgery ; Humans ; Hypertension ; Hypertension, Pulmonary - diagnosis ; Hypertension, Pulmonary - diagnostic imaging ; Image processing ; Image segmentation ; Infant, Newborn ; Infants (Newborn) ; Interdisciplinary aspects ; Laboratories ; Learning algorithms ; Lung - diagnostic imaging ; Lungs ; Machine Learning ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Mathematical models ; Mathematics ; Medical imaging ; Medical prognosis ; Medicine ; Medicine and Health Sciences ; Neonates ; Newborn babies ; Obstetrics ; Occlusion ; Oxygenation ; Patients ; Pediatrics ; Physical Sciences ; Physics ; Prediction models ; Pregnancy ; Prenatal Diagnosis - methods ; Pulmonary hypertension ; Research and Analysis Methods ; Resonance ; Resource allocation ; Retrospective Studies ; Study Protocol</subject><ispartof>PloS one, 2021-11, Vol.16 (11), p.e0259724</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Amodeo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Amodeo et al 2021 Amodeo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-b0f626ee3452d0e553ea9e3a68a412d2d31d7baf798017ec0e84dbc47a59574b3</citedby><cites>FETCH-LOGICAL-c593t-b0f626ee3452d0e553ea9e3a68a412d2d31d7baf798017ec0e84dbc47a59574b3</cites><orcidid>0000-0002-4921-1437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577746/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577746/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23868,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34752491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cruz-Martinez, Rogelio</contributor><creatorcontrib>Amodeo, Ilaria</creatorcontrib><creatorcontrib>De Nunzio, Giorgio</creatorcontrib><creatorcontrib>Raffaeli, Genny</creatorcontrib><creatorcontrib>Borzani, Irene</creatorcontrib><creatorcontrib>Griggio, Alice</creatorcontrib><creatorcontrib>Conte, Luana</creatorcontrib><creatorcontrib>Macchini, Francesco</creatorcontrib><creatorcontrib>Condò, Valentina</creatorcontrib><creatorcontrib>Persico, Nicola</creatorcontrib><creatorcontrib>Fabietti, Isabella</creatorcontrib><creatorcontrib>Ghirardello, Stefano</creatorcontrib><creatorcontrib>Pierro, Maria</creatorcontrib><creatorcontrib>Tafuri, Benedetta</creatorcontrib><creatorcontrib>Como, Giuseppe</creatorcontrib><creatorcontrib>Cascio, Donato</creatorcontrib><creatorcontrib>Colnaghi, Mariarosa</creatorcontrib><creatorcontrib>Mosca, Fabio</creatorcontrib><creatorcontrib>Cavallaro, Giacomo</creatorcontrib><title>A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses.
Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns' and mothers' clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed.
This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study.
The study was registered at ClinicalTrials.gov with the identifier NCT04609163.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Deep Learning</subject><subject>Diagnosis</subject><subject>Diaphragm</subject><subject>Engineering and Technology</subject><subject>Ethics</subject><subject>Extracorporeal membrane oxygenation</subject><subject>Extracorporeal Membrane Oxygenation - methods</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Fetuses</subject><subject>Forecasting</subject><subject>Gynecology</subject><subject>Health aspects</subject><subject>Hernia</subject><subject>Hernias</subject><subject>Hernias, Diaphragmatic, Congenital - complications</subject><subject>Hernias, Diaphragmatic, Congenital - diagnostic imaging</subject><subject>Hernias, Diaphragmatic, Congenital - surgery</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Hypertension, Pulmonary - diagnosis</subject><subject>Hypertension, Pulmonary - diagnostic imaging</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Infant, Newborn</subject><subject>Infants (Newborn)</subject><subject>Interdisciplinary aspects</subject><subject>Laboratories</subject><subject>Learning algorithms</subject><subject>Lung - diagnostic imaging</subject><subject>Lungs</subject><subject>Machine Learning</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Medical imaging</subject><subject>Medical prognosis</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Neonates</subject><subject>Newborn babies</subject><subject>Obstetrics</subject><subject>Occlusion</subject><subject>Oxygenation</subject><subject>Patients</subject><subject>Pediatrics</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Prediction models</subject><subject>Pregnancy</subject><subject>Prenatal Diagnosis - methods</subject><subject>Pulmonary hypertension</subject><subject>Research and Analysis Methods</subject><subject>Resonance</subject><subject>Resource allocation</subject><subject>Retrospective Studies</subject><subject>Study Protocol</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUlFv0zAQjhCIjcE_QGCJl_HQEsdxnPCAVFVAK1UFafBsXexL6ymxg-Nu6h_id-Ku2bSiyQ-2zt99d993lyRvaTqlTNBP127nLbTT3lmcphmvRJY_S85pxbJJkaXs-aP3WfJqGK7TlLOyKF4mZywXPMsrep78nZEO5ltjkYDVRCP2ZIXgrbEbMut770BtSXCk96iNCqTftZ1bg9-T7b5HH3A9LJ0lxhKLt7Xz9orcmrAlytkNWhOgJdpAv_Ww6SAYRRYYyYFczlez9Xp5tfj4mfz0LjjlWtI4T4B4DN4NPapgbpAMYaf3r5MXDbQDvhnvi-T3t6-_5ovJ6sf35Xy2mihesTCp06bICkSW80ynyDlDqJBBUUJOM51pRrWooRFVmVKBKsUy17XKBfCKi7xmF8n7I2_fukGOFg8yust5JrKKR8TyiNAOrmXvTRe9kA6MvAs4v5Hgo84WZaFURau6LBtN8wZY2UAKAgqaZ0JAc6j2Zay2qzvUCm3w0J6Qnv5Ys5UbdyNLLoTIi0hwORJ492eHQ5CdGRS2LVh0u7u-iyi0Kg59f_gP-rS6EbWBKMDYxsW66kAqZ0VJheDRuIiaPoGKR2Nn4uCxMTF-kpAfE1Qc7OCxedBIU3nY5vtm5GGb5bjNMe3dY38eku7Xl_0DbaL0WA</recordid><startdate>20211109</startdate><enddate>20211109</enddate><creator>Amodeo, Ilaria</creator><creator>De Nunzio, Giorgio</creator><creator>Raffaeli, Genny</creator><creator>Borzani, Irene</creator><creator>Griggio, Alice</creator><creator>Conte, Luana</creator><creator>Macchini, Francesco</creator><creator>Condò, Valentina</creator><creator>Persico, Nicola</creator><creator>Fabietti, Isabella</creator><creator>Ghirardello, Stefano</creator><creator>Pierro, Maria</creator><creator>Tafuri, Benedetta</creator><creator>Como, Giuseppe</creator><creator>Cascio, Donato</creator><creator>Colnaghi, Mariarosa</creator><creator>Mosca, Fabio</creator><creator>Cavallaro, Giacomo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4921-1437</orcidid></search><sort><creationdate>20211109</creationdate><title>A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study</title><author>Amodeo, Ilaria ; De Nunzio, Giorgio ; Raffaeli, Genny ; Borzani, Irene ; Griggio, Alice ; Conte, Luana ; Macchini, Francesco ; Condò, Valentina ; Persico, Nicola ; Fabietti, Isabella ; Ghirardello, Stefano ; Pierro, Maria ; Tafuri, Benedetta ; Como, Giuseppe ; Cascio, Donato ; Colnaghi, Mariarosa ; Mosca, Fabio ; Cavallaro, Giacomo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-b0f626ee3452d0e553ea9e3a68a412d2d31d7baf798017ec0e84dbc47a59574b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Deep Learning</topic><topic>Diagnosis</topic><topic>Diaphragm</topic><topic>Engineering and Technology</topic><topic>Ethics</topic><topic>Extracorporeal membrane oxygenation</topic><topic>Extracorporeal Membrane Oxygenation - methods</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Fetuses</topic><topic>Forecasting</topic><topic>Gynecology</topic><topic>Health aspects</topic><topic>Hernia</topic><topic>Hernias</topic><topic>Hernias, Diaphragmatic, Congenital - complications</topic><topic>Hernias, Diaphragmatic, Congenital - diagnostic imaging</topic><topic>Hernias, Diaphragmatic, Congenital - surgery</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Hypertension, Pulmonary - diagnosis</topic><topic>Hypertension, Pulmonary - diagnostic imaging</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Infant, Newborn</topic><topic>Infants (Newborn)</topic><topic>Interdisciplinary aspects</topic><topic>Laboratories</topic><topic>Learning algorithms</topic><topic>Lung - diagnostic imaging</topic><topic>Lungs</topic><topic>Machine Learning</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Medical imaging</topic><topic>Medical prognosis</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Neonates</topic><topic>Newborn babies</topic><topic>Obstetrics</topic><topic>Occlusion</topic><topic>Oxygenation</topic><topic>Patients</topic><topic>Pediatrics</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Prediction models</topic><topic>Pregnancy</topic><topic>Prenatal Diagnosis - methods</topic><topic>Pulmonary hypertension</topic><topic>Research and Analysis Methods</topic><topic>Resonance</topic><topic>Resource allocation</topic><topic>Retrospective Studies</topic><topic>Study Protocol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amodeo, Ilaria</creatorcontrib><creatorcontrib>De Nunzio, Giorgio</creatorcontrib><creatorcontrib>Raffaeli, Genny</creatorcontrib><creatorcontrib>Borzani, Irene</creatorcontrib><creatorcontrib>Griggio, Alice</creatorcontrib><creatorcontrib>Conte, Luana</creatorcontrib><creatorcontrib>Macchini, Francesco</creatorcontrib><creatorcontrib>Condò, Valentina</creatorcontrib><creatorcontrib>Persico, Nicola</creatorcontrib><creatorcontrib>Fabietti, Isabella</creatorcontrib><creatorcontrib>Ghirardello, Stefano</creatorcontrib><creatorcontrib>Pierro, Maria</creatorcontrib><creatorcontrib>Tafuri, Benedetta</creatorcontrib><creatorcontrib>Como, Giuseppe</creatorcontrib><creatorcontrib>Cascio, Donato</creatorcontrib><creatorcontrib>Colnaghi, Mariarosa</creatorcontrib><creatorcontrib>Mosca, Fabio</creatorcontrib><creatorcontrib>Cavallaro, Giacomo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amodeo, Ilaria</au><au>De Nunzio, Giorgio</au><au>Raffaeli, Genny</au><au>Borzani, Irene</au><au>Griggio, Alice</au><au>Conte, Luana</au><au>Macchini, Francesco</au><au>Condò, Valentina</au><au>Persico, Nicola</au><au>Fabietti, Isabella</au><au>Ghirardello, Stefano</au><au>Pierro, Maria</au><au>Tafuri, Benedetta</au><au>Como, Giuseppe</au><au>Cascio, Donato</au><au>Colnaghi, Mariarosa</au><au>Mosca, Fabio</au><au>Cavallaro, Giacomo</au><au>Cruz-Martinez, Rogelio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-11-09</date><risdate>2021</risdate><volume>16</volume><issue>11</issue><spage>e0259724</spage><pages>e0259724-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses.
Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns' and mothers' clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed.
This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study.
The study was registered at ClinicalTrials.gov with the identifier NCT04609163.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34752491</pmid><doi>10.1371/journal.pone.0259724</doi><orcidid>https://orcid.org/0000-0002-4921-1437</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-11, Vol.16 (11), p.e0259724 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2595527295 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Analysis Artificial intelligence Biology and Life Sciences Computer and Information Sciences Data analysis Data collection Deep Learning Diagnosis Diaphragm Engineering and Technology Ethics Extracorporeal membrane oxygenation Extracorporeal Membrane Oxygenation - methods Feature extraction Female Fetuses Forecasting Gynecology Health aspects Hernia Hernias Hernias, Diaphragmatic, Congenital - complications Hernias, Diaphragmatic, Congenital - diagnostic imaging Hernias, Diaphragmatic, Congenital - surgery Humans Hypertension Hypertension, Pulmonary - diagnosis Hypertension, Pulmonary - diagnostic imaging Image processing Image segmentation Infant, Newborn Infants (Newborn) Interdisciplinary aspects Laboratories Learning algorithms Lung - diagnostic imaging Lungs Machine Learning Magnetic resonance Magnetic resonance imaging Magnetic Resonance Imaging - methods Mathematical models Mathematics Medical imaging Medical prognosis Medicine Medicine and Health Sciences Neonates Newborn babies Obstetrics Occlusion Oxygenation Patients Pediatrics Physical Sciences Physics Prediction models Pregnancy Prenatal Diagnosis - methods Pulmonary hypertension Research and Analysis Methods Resonance Resource allocation Retrospective Studies Study Protocol |
title | A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20maChine%20and%20deep%20Learning%20Approach%20to%20predict%20pulmoNary%20hyperteNsIon%20in%20newbornS%20with%20congenital%20diaphragmatic%20Hernia%20(CLANNISH):%20Protocol%20for%20a%20retrospective%20study&rft.jtitle=PloS%20one&rft.au=Amodeo,%20Ilaria&rft.date=2021-11-09&rft.volume=16&rft.issue=11&rft.spage=e0259724&rft.pages=e0259724-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0259724&rft_dat=%3Cgale_plos_%3EA681775801%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595527295&rft_id=info:pmid/34752491&rft_galeid=A681775801&rft_doaj_id=oai_doaj_org_article_6cc919b88fd14fa38fa0a7a614277afb&rfr_iscdi=true |