A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study

Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-11, Vol.16 (11), p.e0259724
Hauptverfasser: Amodeo, Ilaria, De Nunzio, Giorgio, Raffaeli, Genny, Borzani, Irene, Griggio, Alice, Conte, Luana, Macchini, Francesco, Condò, Valentina, Persico, Nicola, Fabietti, Isabella, Ghirardello, Stefano, Pierro, Maria, Tafuri, Benedetta, Como, Giuseppe, Cascio, Donato, Colnaghi, Mariarosa, Mosca, Fabio, Cavallaro, Giacomo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page e0259724
container_title PloS one
container_volume 16
creator Amodeo, Ilaria
De Nunzio, Giorgio
Raffaeli, Genny
Borzani, Irene
Griggio, Alice
Conte, Luana
Macchini, Francesco
Condò, Valentina
Persico, Nicola
Fabietti, Isabella
Ghirardello, Stefano
Pierro, Maria
Tafuri, Benedetta
Como, Giuseppe
Cascio, Donato
Colnaghi, Mariarosa
Mosca, Fabio
Cavallaro, Giacomo
description Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses. Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns' and mothers' clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed. This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study. The study was registered at ClinicalTrials.gov with the identifier NCT04609163.
doi_str_mv 10.1371/journal.pone.0259724
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2595527295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681775801</galeid><doaj_id>oai_doaj_org_article_6cc919b88fd14fa38fa0a7a614277afb</doaj_id><sourcerecordid>A681775801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-b0f626ee3452d0e553ea9e3a68a412d2d31d7baf798017ec0e84dbc47a59574b3</originalsourceid><addsrcrecordid>eNptUlFv0zAQjhCIjcE_QGCJl_HQEsdxnPCAVFVAK1UFafBsXexL6ymxg-Nu6h_id-Ku2bSiyQ-2zt99d993lyRvaTqlTNBP127nLbTT3lmcphmvRJY_S85pxbJJkaXs-aP3WfJqGK7TlLOyKF4mZywXPMsrep78nZEO5ltjkYDVRCP2ZIXgrbEbMut770BtSXCk96iNCqTftZ1bg9-T7b5HH3A9LJ0lxhKLt7Xz9orcmrAlytkNWhOgJdpAv_Ww6SAYRRYYyYFczlez9Xp5tfj4mfz0LjjlWtI4T4B4DN4NPapgbpAMYaf3r5MXDbQDvhnvi-T3t6-_5ovJ6sf35Xy2mihesTCp06bICkSW80ynyDlDqJBBUUJOM51pRrWooRFVmVKBKsUy17XKBfCKi7xmF8n7I2_fukGOFg8yust5JrKKR8TyiNAOrmXvTRe9kA6MvAs4v5Hgo84WZaFURau6LBtN8wZY2UAKAgqaZ0JAc6j2Zay2qzvUCm3w0J6Qnv5Ys5UbdyNLLoTIi0hwORJ492eHQ5CdGRS2LVh0u7u-iyi0Kg59f_gP-rS6EbWBKMDYxsW66kAqZ0VJheDRuIiaPoGKR2Nn4uCxMTF-kpAfE1Qc7OCxedBIU3nY5vtm5GGb5bjNMe3dY38eku7Xl_0DbaL0WA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595527295</pqid></control><display><type>article</type><title>A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Amodeo, Ilaria ; De Nunzio, Giorgio ; Raffaeli, Genny ; Borzani, Irene ; Griggio, Alice ; Conte, Luana ; Macchini, Francesco ; Condò, Valentina ; Persico, Nicola ; Fabietti, Isabella ; Ghirardello, Stefano ; Pierro, Maria ; Tafuri, Benedetta ; Como, Giuseppe ; Cascio, Donato ; Colnaghi, Mariarosa ; Mosca, Fabio ; Cavallaro, Giacomo</creator><contributor>Cruz-Martinez, Rogelio</contributor><creatorcontrib>Amodeo, Ilaria ; De Nunzio, Giorgio ; Raffaeli, Genny ; Borzani, Irene ; Griggio, Alice ; Conte, Luana ; Macchini, Francesco ; Condò, Valentina ; Persico, Nicola ; Fabietti, Isabella ; Ghirardello, Stefano ; Pierro, Maria ; Tafuri, Benedetta ; Como, Giuseppe ; Cascio, Donato ; Colnaghi, Mariarosa ; Mosca, Fabio ; Cavallaro, Giacomo ; Cruz-Martinez, Rogelio</creatorcontrib><description>Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses. Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns' and mothers' clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed. This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study. The study was registered at ClinicalTrials.gov with the identifier NCT04609163.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0259724</identifier><identifier>PMID: 34752491</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Artificial intelligence ; Biology and Life Sciences ; Computer and Information Sciences ; Data analysis ; Data collection ; Deep Learning ; Diagnosis ; Diaphragm ; Engineering and Technology ; Ethics ; Extracorporeal membrane oxygenation ; Extracorporeal Membrane Oxygenation - methods ; Feature extraction ; Female ; Fetuses ; Forecasting ; Gynecology ; Health aspects ; Hernia ; Hernias ; Hernias, Diaphragmatic, Congenital - complications ; Hernias, Diaphragmatic, Congenital - diagnostic imaging ; Hernias, Diaphragmatic, Congenital - surgery ; Humans ; Hypertension ; Hypertension, Pulmonary - diagnosis ; Hypertension, Pulmonary - diagnostic imaging ; Image processing ; Image segmentation ; Infant, Newborn ; Infants (Newborn) ; Interdisciplinary aspects ; Laboratories ; Learning algorithms ; Lung - diagnostic imaging ; Lungs ; Machine Learning ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Mathematical models ; Mathematics ; Medical imaging ; Medical prognosis ; Medicine ; Medicine and Health Sciences ; Neonates ; Newborn babies ; Obstetrics ; Occlusion ; Oxygenation ; Patients ; Pediatrics ; Physical Sciences ; Physics ; Prediction models ; Pregnancy ; Prenatal Diagnosis - methods ; Pulmonary hypertension ; Research and Analysis Methods ; Resonance ; Resource allocation ; Retrospective Studies ; Study Protocol</subject><ispartof>PloS one, 2021-11, Vol.16 (11), p.e0259724</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Amodeo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Amodeo et al 2021 Amodeo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-b0f626ee3452d0e553ea9e3a68a412d2d31d7baf798017ec0e84dbc47a59574b3</citedby><cites>FETCH-LOGICAL-c593t-b0f626ee3452d0e553ea9e3a68a412d2d31d7baf798017ec0e84dbc47a59574b3</cites><orcidid>0000-0002-4921-1437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577746/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577746/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23868,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34752491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cruz-Martinez, Rogelio</contributor><creatorcontrib>Amodeo, Ilaria</creatorcontrib><creatorcontrib>De Nunzio, Giorgio</creatorcontrib><creatorcontrib>Raffaeli, Genny</creatorcontrib><creatorcontrib>Borzani, Irene</creatorcontrib><creatorcontrib>Griggio, Alice</creatorcontrib><creatorcontrib>Conte, Luana</creatorcontrib><creatorcontrib>Macchini, Francesco</creatorcontrib><creatorcontrib>Condò, Valentina</creatorcontrib><creatorcontrib>Persico, Nicola</creatorcontrib><creatorcontrib>Fabietti, Isabella</creatorcontrib><creatorcontrib>Ghirardello, Stefano</creatorcontrib><creatorcontrib>Pierro, Maria</creatorcontrib><creatorcontrib>Tafuri, Benedetta</creatorcontrib><creatorcontrib>Como, Giuseppe</creatorcontrib><creatorcontrib>Cascio, Donato</creatorcontrib><creatorcontrib>Colnaghi, Mariarosa</creatorcontrib><creatorcontrib>Mosca, Fabio</creatorcontrib><creatorcontrib>Cavallaro, Giacomo</creatorcontrib><title>A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses. Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns' and mothers' clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed. This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study. The study was registered at ClinicalTrials.gov with the identifier NCT04609163.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Deep Learning</subject><subject>Diagnosis</subject><subject>Diaphragm</subject><subject>Engineering and Technology</subject><subject>Ethics</subject><subject>Extracorporeal membrane oxygenation</subject><subject>Extracorporeal Membrane Oxygenation - methods</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Fetuses</subject><subject>Forecasting</subject><subject>Gynecology</subject><subject>Health aspects</subject><subject>Hernia</subject><subject>Hernias</subject><subject>Hernias, Diaphragmatic, Congenital - complications</subject><subject>Hernias, Diaphragmatic, Congenital - diagnostic imaging</subject><subject>Hernias, Diaphragmatic, Congenital - surgery</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Hypertension, Pulmonary - diagnosis</subject><subject>Hypertension, Pulmonary - diagnostic imaging</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Infant, Newborn</subject><subject>Infants (Newborn)</subject><subject>Interdisciplinary aspects</subject><subject>Laboratories</subject><subject>Learning algorithms</subject><subject>Lung - diagnostic imaging</subject><subject>Lungs</subject><subject>Machine Learning</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Medical imaging</subject><subject>Medical prognosis</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Neonates</subject><subject>Newborn babies</subject><subject>Obstetrics</subject><subject>Occlusion</subject><subject>Oxygenation</subject><subject>Patients</subject><subject>Pediatrics</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Prediction models</subject><subject>Pregnancy</subject><subject>Prenatal Diagnosis - methods</subject><subject>Pulmonary hypertension</subject><subject>Research and Analysis Methods</subject><subject>Resonance</subject><subject>Resource allocation</subject><subject>Retrospective Studies</subject><subject>Study Protocol</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUlFv0zAQjhCIjcE_QGCJl_HQEsdxnPCAVFVAK1UFafBsXexL6ymxg-Nu6h_id-Ku2bSiyQ-2zt99d993lyRvaTqlTNBP127nLbTT3lmcphmvRJY_S85pxbJJkaXs-aP3WfJqGK7TlLOyKF4mZywXPMsrep78nZEO5ltjkYDVRCP2ZIXgrbEbMut770BtSXCk96iNCqTftZ1bg9-T7b5HH3A9LJ0lxhKLt7Xz9orcmrAlytkNWhOgJdpAv_Ww6SAYRRYYyYFczlez9Xp5tfj4mfz0LjjlWtI4T4B4DN4NPapgbpAMYaf3r5MXDbQDvhnvi-T3t6-_5ovJ6sf35Xy2mihesTCp06bICkSW80ynyDlDqJBBUUJOM51pRrWooRFVmVKBKsUy17XKBfCKi7xmF8n7I2_fukGOFg8yust5JrKKR8TyiNAOrmXvTRe9kA6MvAs4v5Hgo84WZaFURau6LBtN8wZY2UAKAgqaZ0JAc6j2Zay2qzvUCm3w0J6Qnv5Ys5UbdyNLLoTIi0hwORJ492eHQ5CdGRS2LVh0u7u-iyi0Kg59f_gP-rS6EbWBKMDYxsW66kAqZ0VJheDRuIiaPoGKR2Nn4uCxMTF-kpAfE1Qc7OCxedBIU3nY5vtm5GGb5bjNMe3dY38eku7Xl_0DbaL0WA</recordid><startdate>20211109</startdate><enddate>20211109</enddate><creator>Amodeo, Ilaria</creator><creator>De Nunzio, Giorgio</creator><creator>Raffaeli, Genny</creator><creator>Borzani, Irene</creator><creator>Griggio, Alice</creator><creator>Conte, Luana</creator><creator>Macchini, Francesco</creator><creator>Condò, Valentina</creator><creator>Persico, Nicola</creator><creator>Fabietti, Isabella</creator><creator>Ghirardello, Stefano</creator><creator>Pierro, Maria</creator><creator>Tafuri, Benedetta</creator><creator>Como, Giuseppe</creator><creator>Cascio, Donato</creator><creator>Colnaghi, Mariarosa</creator><creator>Mosca, Fabio</creator><creator>Cavallaro, Giacomo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4921-1437</orcidid></search><sort><creationdate>20211109</creationdate><title>A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study</title><author>Amodeo, Ilaria ; De Nunzio, Giorgio ; Raffaeli, Genny ; Borzani, Irene ; Griggio, Alice ; Conte, Luana ; Macchini, Francesco ; Condò, Valentina ; Persico, Nicola ; Fabietti, Isabella ; Ghirardello, Stefano ; Pierro, Maria ; Tafuri, Benedetta ; Como, Giuseppe ; Cascio, Donato ; Colnaghi, Mariarosa ; Mosca, Fabio ; Cavallaro, Giacomo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-b0f626ee3452d0e553ea9e3a68a412d2d31d7baf798017ec0e84dbc47a59574b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Deep Learning</topic><topic>Diagnosis</topic><topic>Diaphragm</topic><topic>Engineering and Technology</topic><topic>Ethics</topic><topic>Extracorporeal membrane oxygenation</topic><topic>Extracorporeal Membrane Oxygenation - methods</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Fetuses</topic><topic>Forecasting</topic><topic>Gynecology</topic><topic>Health aspects</topic><topic>Hernia</topic><topic>Hernias</topic><topic>Hernias, Diaphragmatic, Congenital - complications</topic><topic>Hernias, Diaphragmatic, Congenital - diagnostic imaging</topic><topic>Hernias, Diaphragmatic, Congenital - surgery</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Hypertension, Pulmonary - diagnosis</topic><topic>Hypertension, Pulmonary - diagnostic imaging</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Infant, Newborn</topic><topic>Infants (Newborn)</topic><topic>Interdisciplinary aspects</topic><topic>Laboratories</topic><topic>Learning algorithms</topic><topic>Lung - diagnostic imaging</topic><topic>Lungs</topic><topic>Machine Learning</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Medical imaging</topic><topic>Medical prognosis</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Neonates</topic><topic>Newborn babies</topic><topic>Obstetrics</topic><topic>Occlusion</topic><topic>Oxygenation</topic><topic>Patients</topic><topic>Pediatrics</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Prediction models</topic><topic>Pregnancy</topic><topic>Prenatal Diagnosis - methods</topic><topic>Pulmonary hypertension</topic><topic>Research and Analysis Methods</topic><topic>Resonance</topic><topic>Resource allocation</topic><topic>Retrospective Studies</topic><topic>Study Protocol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amodeo, Ilaria</creatorcontrib><creatorcontrib>De Nunzio, Giorgio</creatorcontrib><creatorcontrib>Raffaeli, Genny</creatorcontrib><creatorcontrib>Borzani, Irene</creatorcontrib><creatorcontrib>Griggio, Alice</creatorcontrib><creatorcontrib>Conte, Luana</creatorcontrib><creatorcontrib>Macchini, Francesco</creatorcontrib><creatorcontrib>Condò, Valentina</creatorcontrib><creatorcontrib>Persico, Nicola</creatorcontrib><creatorcontrib>Fabietti, Isabella</creatorcontrib><creatorcontrib>Ghirardello, Stefano</creatorcontrib><creatorcontrib>Pierro, Maria</creatorcontrib><creatorcontrib>Tafuri, Benedetta</creatorcontrib><creatorcontrib>Como, Giuseppe</creatorcontrib><creatorcontrib>Cascio, Donato</creatorcontrib><creatorcontrib>Colnaghi, Mariarosa</creatorcontrib><creatorcontrib>Mosca, Fabio</creatorcontrib><creatorcontrib>Cavallaro, Giacomo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amodeo, Ilaria</au><au>De Nunzio, Giorgio</au><au>Raffaeli, Genny</au><au>Borzani, Irene</au><au>Griggio, Alice</au><au>Conte, Luana</au><au>Macchini, Francesco</au><au>Condò, Valentina</au><au>Persico, Nicola</au><au>Fabietti, Isabella</au><au>Ghirardello, Stefano</au><au>Pierro, Maria</au><au>Tafuri, Benedetta</au><au>Como, Giuseppe</au><au>Cascio, Donato</au><au>Colnaghi, Mariarosa</au><au>Mosca, Fabio</au><au>Cavallaro, Giacomo</au><au>Cruz-Martinez, Rogelio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-11-09</date><risdate>2021</risdate><volume>16</volume><issue>11</issue><spage>e0259724</spage><pages>e0259724-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonance Imaging (MRI), which will be useful during project implementation but will also be an important tool itself to standardize lung volume measures for CDH fetuses. Patients with isolated CDH from singleton pregnancies will be enrolled, whose prenatal checks were performed at the Fetal Surgery Unit of the Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico (Milan, Italy) from the 30th week of gestation. A retrospective data collection of clinical and radiological variables from newborns' and mothers' clinical records will be performed for eligible patients born between 01/01/2012 and 31/12/2020. The native sequences from fetal magnetic resonance imaging (MRI) will be collected. Data from different sources will be integrated and analyzed using ML and DL, and forecasting algorithms will be developed for each outcome. Methods of data augmentation and dimensionality reduction (feature selection and extraction) will be employed to increase sample size and avoid overfitting. A software system for automatic fetal lung volume segmentation in MRI based on the DL 3D U-NET approach will also be developed. This retrospective study received approval from the local ethics committee (Milan Area 2, Italy). The development of predictive models in CDH outcomes will provide a key contribution in disease prediction, early targeted interventions, and personalized management, with an overall improvement in care quality, resource allocation, healthcare, and family savings. Our findings will be validated in a future prospective multicenter cohort study. The study was registered at ClinicalTrials.gov with the identifier NCT04609163.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34752491</pmid><doi>10.1371/journal.pone.0259724</doi><orcidid>https://orcid.org/0000-0002-4921-1437</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-11, Vol.16 (11), p.e0259724
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2595527295
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Analysis
Artificial intelligence
Biology and Life Sciences
Computer and Information Sciences
Data analysis
Data collection
Deep Learning
Diagnosis
Diaphragm
Engineering and Technology
Ethics
Extracorporeal membrane oxygenation
Extracorporeal Membrane Oxygenation - methods
Feature extraction
Female
Fetuses
Forecasting
Gynecology
Health aspects
Hernia
Hernias
Hernias, Diaphragmatic, Congenital - complications
Hernias, Diaphragmatic, Congenital - diagnostic imaging
Hernias, Diaphragmatic, Congenital - surgery
Humans
Hypertension
Hypertension, Pulmonary - diagnosis
Hypertension, Pulmonary - diagnostic imaging
Image processing
Image segmentation
Infant, Newborn
Infants (Newborn)
Interdisciplinary aspects
Laboratories
Learning algorithms
Lung - diagnostic imaging
Lungs
Machine Learning
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mathematical models
Mathematics
Medical imaging
Medical prognosis
Medicine
Medicine and Health Sciences
Neonates
Newborn babies
Obstetrics
Occlusion
Oxygenation
Patients
Pediatrics
Physical Sciences
Physics
Prediction models
Pregnancy
Prenatal Diagnosis - methods
Pulmonary hypertension
Research and Analysis Methods
Resonance
Resource allocation
Retrospective Studies
Study Protocol
title A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20maChine%20and%20deep%20Learning%20Approach%20to%20predict%20pulmoNary%20hyperteNsIon%20in%20newbornS%20with%20congenital%20diaphragmatic%20Hernia%20(CLANNISH):%20Protocol%20for%20a%20retrospective%20study&rft.jtitle=PloS%20one&rft.au=Amodeo,%20Ilaria&rft.date=2021-11-09&rft.volume=16&rft.issue=11&rft.spage=e0259724&rft.pages=e0259724-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0259724&rft_dat=%3Cgale_plos_%3EA681775801%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595527295&rft_id=info:pmid/34752491&rft_galeid=A681775801&rft_doaj_id=oai_doaj_org_article_6cc919b88fd14fa38fa0a7a614277afb&rfr_iscdi=true