Bioindicator snake shows genomic signatures of natural and anthropogenic barriers to gene flow

Urbanisation alters landscapes, introduces wildlife to novel stressors, and fragments habitats into remnant 'islands'. Within these islands, isolated wildlife populations can experience genetic drift and subsequently suffer from inbreeding depression and reduced adaptive potential. The Wes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-10, Vol.16 (10), p.e0259124
Hauptverfasser: Lettoof, Damian C, Thomson, Vicki A, Cornelis, Jari, Bateman, Philip W, Aubret, Fabien, Gagnon, Marthe M, von Takach, Brenton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page e0259124
container_title PloS one
container_volume 16
creator Lettoof, Damian C
Thomson, Vicki A
Cornelis, Jari
Bateman, Philip W
Aubret, Fabien
Gagnon, Marthe M
von Takach, Brenton
description Urbanisation alters landscapes, introduces wildlife to novel stressors, and fragments habitats into remnant 'islands'. Within these islands, isolated wildlife populations can experience genetic drift and subsequently suffer from inbreeding depression and reduced adaptive potential. The Western tiger snake (Notechis scutatus occidentalis) is a predator of wetlands in the Swan Coastal Plain, a unique bioregion that has suffered substantial degradation through the development of the city of Perth, Western Australia. Within the urban matrix, tiger snakes now only persist in a handful of wetlands where they are known to bioaccumulate a suite of contaminants, and have recently been suggested as a relevant bioindicator of ecosystem health. Here, we used genome-wide single nucleotide polymorphism (SNP) data to explore the contemporary population genomics of seven tiger snake populations across the urban matrix. Specifically, we used population genomic structure and diversity, effective population sizes (Ne), and heterozygosity-fitness correlations to assess fitness of each population with respect to urbanisation. We found that population genomic structure was strongest across the northern and southern sides of a major river system, with the northern cluster of populations exhibiting lower heterozygosities than the southern cluster, likely due to a lack of historical gene flow. We also observed an increasing signal of inbreeding and genetic drift with increasing geographic isolation due to urbanisation. Effective population sizes (Ne) at most sites were small (< 100), with Ne appearing to reflect the area of available habitat rather than the degree of adjacent urbanisation. This suggests that ecosystem management and restoration may be the best method to buffer the further loss of genetic diversity in urban wetlands. If tiger snake populations continue to decline in urban areas, our results provide a baseline measure of genomic diversity, as well as highlighting which 'islands' of habitat are most in need of management and protection.
doi_str_mv 10.1371/journal.pone.0259124
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2588314734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A680628870</galeid><doaj_id>oai_doaj_org_article_bcafb737ab114467a57ca0183105f384</doaj_id><sourcerecordid>A680628870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-8046cc2a0b13324e5ece21ae785a0bdb09931005927f9f81fa4c1e58e6b6a9ab3</originalsourceid><addsrcrecordid>eNqNk2-L1DAQxoso3nn6DUQLgnAvdk2atEnfHKyHegsLB_57aZimaZu1m6xJeqff3uxu79iKgpTSMP09zyQzmSR5jtEcE4bfrO3gDPTzrTVqjrK8xBl9kJzikmSzIkPk4dH6JHni_RqhnPCieJycEMow5QSfJt_eaqtNrSUE61Jv4LtKfWdvfdoqYzdapl63BsLglE9tk-6X0Kdg6viGztmtjWTkKnBOK-fTYHdalTa9vX2aPGqg9-rZ-D1Lvrx_9_nyara6_rC8XKxmkmVFmHFECykzQBUmJKMqV1JlGBTjeYzVFSpLguP2y4w1ZcNxA1RilXNVVAWUUJGz5OXBd9tbL8bSeJHlPJ6SMkIjsTwQtYW12Dq9AfdLWNBiH7CuFeCClr0SlYSmYoRBhTGlBYOcSUA4OqG8IXzndTFmG6qNqqUyIdZkYjr9Y3QnWnsjeJ7nbG9wfjDo_pBdLVZiF0Nxx7F79AZH9tWYzNkfg_LhH8cbqRbiCbRpbEwsN9pLsSg4KjLOGYrU_C9UfGoVWx0vUqNjfCI4nwgiE9TP0MLgvVh--vj_7PXXKfv6iO0U9KHzth-CtsZPQXoApbPeO9XclwsjsZuDu2qI3RyIcQ6i7MVxh-5Fdxef_AauuAKx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2588314734</pqid></control><display><type>article</type><title>Bioindicator snake shows genomic signatures of natural and anthropogenic barriers to gene flow</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Lettoof, Damian C ; Thomson, Vicki A ; Cornelis, Jari ; Bateman, Philip W ; Aubret, Fabien ; Gagnon, Marthe M ; von Takach, Brenton</creator><contributor>Singh, Randeep</contributor><creatorcontrib>Lettoof, Damian C ; Thomson, Vicki A ; Cornelis, Jari ; Bateman, Philip W ; Aubret, Fabien ; Gagnon, Marthe M ; von Takach, Brenton ; Singh, Randeep</creatorcontrib><description>Urbanisation alters landscapes, introduces wildlife to novel stressors, and fragments habitats into remnant 'islands'. Within these islands, isolated wildlife populations can experience genetic drift and subsequently suffer from inbreeding depression and reduced adaptive potential. The Western tiger snake (Notechis scutatus occidentalis) is a predator of wetlands in the Swan Coastal Plain, a unique bioregion that has suffered substantial degradation through the development of the city of Perth, Western Australia. Within the urban matrix, tiger snakes now only persist in a handful of wetlands where they are known to bioaccumulate a suite of contaminants, and have recently been suggested as a relevant bioindicator of ecosystem health. Here, we used genome-wide single nucleotide polymorphism (SNP) data to explore the contemporary population genomics of seven tiger snake populations across the urban matrix. Specifically, we used population genomic structure and diversity, effective population sizes (Ne), and heterozygosity-fitness correlations to assess fitness of each population with respect to urbanisation. We found that population genomic structure was strongest across the northern and southern sides of a major river system, with the northern cluster of populations exhibiting lower heterozygosities than the southern cluster, likely due to a lack of historical gene flow. We also observed an increasing signal of inbreeding and genetic drift with increasing geographic isolation due to urbanisation. Effective population sizes (Ne) at most sites were small (&lt; 100), with Ne appearing to reflect the area of available habitat rather than the degree of adjacent urbanisation. This suggests that ecosystem management and restoration may be the best method to buffer the further loss of genetic diversity in urban wetlands. If tiger snake populations continue to decline in urban areas, our results provide a baseline measure of genomic diversity, as well as highlighting which 'islands' of habitat are most in need of management and protection.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0259124</identifier><identifier>PMID: 34714831</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Anthropogenic factors ; Bioaccumulation ; Biodiversity ; Bioindicators ; Biology and Life Sciences ; Biomonitoring ; Cities ; Clusters ; Coastal plains ; Conservation of Natural Resources - methods ; Contaminants ; Earth Sciences ; Ecology ; Ecology and Environmental Sciences ; Ecosystem management ; Elapidae - genetics ; Endangered &amp; extinct species ; Environmental Biomarkers ; Environmental protection ; Enzymes ; Fitness ; Gene flow ; Genetic diversity ; Genetic Drift ; Genetic Variation ; Genetics, Population ; Genomics ; Habitats ; Heterozygosity ; Inbreeding ; Inbreeding depression ; Indicator species ; Life Sciences ; Natural resources ; Notechis scutatus occidentalis ; Nucleotides ; Polymorphism ; Population genetics ; Populations ; Reproductive fitness ; Single-nucleotide polymorphism ; Snakes ; Urban areas ; Urban populations ; Urbanization ; Western Australia ; Wetlands ; Wildlife ; Wildlife conservation ; Wildlife habitats ; Wildlife management</subject><ispartof>PloS one, 2021-10, Vol.16 (10), p.e0259124</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Lettoof et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2021 Lettoof et al 2021 Lettoof et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-8046cc2a0b13324e5ece21ae785a0bdb09931005927f9f81fa4c1e58e6b6a9ab3</citedby><cites>FETCH-LOGICAL-c726t-8046cc2a0b13324e5ece21ae785a0bdb09931005927f9f81fa4c1e58e6b6a9ab3</cites><orcidid>0000-0002-3190-5094 ; 0000-0002-9108-5921 ; 0000-0002-6309-6914 ; 0000-0001-8368-9664 ; 0000-0002-7783-8659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8555784/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8555784/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34714831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03431934$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Singh, Randeep</contributor><creatorcontrib>Lettoof, Damian C</creatorcontrib><creatorcontrib>Thomson, Vicki A</creatorcontrib><creatorcontrib>Cornelis, Jari</creatorcontrib><creatorcontrib>Bateman, Philip W</creatorcontrib><creatorcontrib>Aubret, Fabien</creatorcontrib><creatorcontrib>Gagnon, Marthe M</creatorcontrib><creatorcontrib>von Takach, Brenton</creatorcontrib><title>Bioindicator snake shows genomic signatures of natural and anthropogenic barriers to gene flow</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Urbanisation alters landscapes, introduces wildlife to novel stressors, and fragments habitats into remnant 'islands'. Within these islands, isolated wildlife populations can experience genetic drift and subsequently suffer from inbreeding depression and reduced adaptive potential. The Western tiger snake (Notechis scutatus occidentalis) is a predator of wetlands in the Swan Coastal Plain, a unique bioregion that has suffered substantial degradation through the development of the city of Perth, Western Australia. Within the urban matrix, tiger snakes now only persist in a handful of wetlands where they are known to bioaccumulate a suite of contaminants, and have recently been suggested as a relevant bioindicator of ecosystem health. Here, we used genome-wide single nucleotide polymorphism (SNP) data to explore the contemporary population genomics of seven tiger snake populations across the urban matrix. Specifically, we used population genomic structure and diversity, effective population sizes (Ne), and heterozygosity-fitness correlations to assess fitness of each population with respect to urbanisation. We found that population genomic structure was strongest across the northern and southern sides of a major river system, with the northern cluster of populations exhibiting lower heterozygosities than the southern cluster, likely due to a lack of historical gene flow. We also observed an increasing signal of inbreeding and genetic drift with increasing geographic isolation due to urbanisation. Effective population sizes (Ne) at most sites were small (&lt; 100), with Ne appearing to reflect the area of available habitat rather than the degree of adjacent urbanisation. This suggests that ecosystem management and restoration may be the best method to buffer the further loss of genetic diversity in urban wetlands. If tiger snake populations continue to decline in urban areas, our results provide a baseline measure of genomic diversity, as well as highlighting which 'islands' of habitat are most in need of management and protection.</description><subject>Animals</subject><subject>Anthropogenic factors</subject><subject>Bioaccumulation</subject><subject>Biodiversity</subject><subject>Bioindicators</subject><subject>Biology and Life Sciences</subject><subject>Biomonitoring</subject><subject>Cities</subject><subject>Clusters</subject><subject>Coastal plains</subject><subject>Conservation of Natural Resources - methods</subject><subject>Contaminants</subject><subject>Earth Sciences</subject><subject>Ecology</subject><subject>Ecology and Environmental Sciences</subject><subject>Ecosystem management</subject><subject>Elapidae - genetics</subject><subject>Endangered &amp; extinct species</subject><subject>Environmental Biomarkers</subject><subject>Environmental protection</subject><subject>Enzymes</subject><subject>Fitness</subject><subject>Gene flow</subject><subject>Genetic diversity</subject><subject>Genetic Drift</subject><subject>Genetic Variation</subject><subject>Genetics, Population</subject><subject>Genomics</subject><subject>Habitats</subject><subject>Heterozygosity</subject><subject>Inbreeding</subject><subject>Inbreeding depression</subject><subject>Indicator species</subject><subject>Life Sciences</subject><subject>Natural resources</subject><subject>Notechis scutatus occidentalis</subject><subject>Nucleotides</subject><subject>Polymorphism</subject><subject>Population genetics</subject><subject>Populations</subject><subject>Reproductive fitness</subject><subject>Single-nucleotide polymorphism</subject><subject>Snakes</subject><subject>Urban areas</subject><subject>Urban populations</subject><subject>Urbanization</subject><subject>Western Australia</subject><subject>Wetlands</subject><subject>Wildlife</subject><subject>Wildlife conservation</subject><subject>Wildlife habitats</subject><subject>Wildlife management</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk2-L1DAQxoso3nn6DUQLgnAvdk2atEnfHKyHegsLB_57aZimaZu1m6xJeqff3uxu79iKgpTSMP09zyQzmSR5jtEcE4bfrO3gDPTzrTVqjrK8xBl9kJzikmSzIkPk4dH6JHni_RqhnPCieJycEMow5QSfJt_eaqtNrSUE61Jv4LtKfWdvfdoqYzdapl63BsLglE9tk-6X0Kdg6viGztmtjWTkKnBOK-fTYHdalTa9vX2aPGqg9-rZ-D1Lvrx_9_nyara6_rC8XKxmkmVFmHFECykzQBUmJKMqV1JlGBTjeYzVFSpLguP2y4w1ZcNxA1RilXNVVAWUUJGz5OXBd9tbL8bSeJHlPJ6SMkIjsTwQtYW12Dq9AfdLWNBiH7CuFeCClr0SlYSmYoRBhTGlBYOcSUA4OqG8IXzndTFmG6qNqqUyIdZkYjr9Y3QnWnsjeJ7nbG9wfjDo_pBdLVZiF0Nxx7F79AZH9tWYzNkfg_LhH8cbqRbiCbRpbEwsN9pLsSg4KjLOGYrU_C9UfGoVWx0vUqNjfCI4nwgiE9TP0MLgvVh--vj_7PXXKfv6iO0U9KHzth-CtsZPQXoApbPeO9XclwsjsZuDu2qI3RyIcQ6i7MVxh-5Fdxef_AauuAKx</recordid><startdate>20211029</startdate><enddate>20211029</enddate><creator>Lettoof, Damian C</creator><creator>Thomson, Vicki A</creator><creator>Cornelis, Jari</creator><creator>Bateman, Philip W</creator><creator>Aubret, Fabien</creator><creator>Gagnon, Marthe M</creator><creator>von Takach, Brenton</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3190-5094</orcidid><orcidid>https://orcid.org/0000-0002-9108-5921</orcidid><orcidid>https://orcid.org/0000-0002-6309-6914</orcidid><orcidid>https://orcid.org/0000-0001-8368-9664</orcidid><orcidid>https://orcid.org/0000-0002-7783-8659</orcidid></search><sort><creationdate>20211029</creationdate><title>Bioindicator snake shows genomic signatures of natural and anthropogenic barriers to gene flow</title><author>Lettoof, Damian C ; Thomson, Vicki A ; Cornelis, Jari ; Bateman, Philip W ; Aubret, Fabien ; Gagnon, Marthe M ; von Takach, Brenton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-8046cc2a0b13324e5ece21ae785a0bdb09931005927f9f81fa4c1e58e6b6a9ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Anthropogenic factors</topic><topic>Bioaccumulation</topic><topic>Biodiversity</topic><topic>Bioindicators</topic><topic>Biology and Life Sciences</topic><topic>Biomonitoring</topic><topic>Cities</topic><topic>Clusters</topic><topic>Coastal plains</topic><topic>Conservation of Natural Resources - methods</topic><topic>Contaminants</topic><topic>Earth Sciences</topic><topic>Ecology</topic><topic>Ecology and Environmental Sciences</topic><topic>Ecosystem management</topic><topic>Elapidae - genetics</topic><topic>Endangered &amp; extinct species</topic><topic>Environmental Biomarkers</topic><topic>Environmental protection</topic><topic>Enzymes</topic><topic>Fitness</topic><topic>Gene flow</topic><topic>Genetic diversity</topic><topic>Genetic Drift</topic><topic>Genetic Variation</topic><topic>Genetics, Population</topic><topic>Genomics</topic><topic>Habitats</topic><topic>Heterozygosity</topic><topic>Inbreeding</topic><topic>Inbreeding depression</topic><topic>Indicator species</topic><topic>Life Sciences</topic><topic>Natural resources</topic><topic>Notechis scutatus occidentalis</topic><topic>Nucleotides</topic><topic>Polymorphism</topic><topic>Population genetics</topic><topic>Populations</topic><topic>Reproductive fitness</topic><topic>Single-nucleotide polymorphism</topic><topic>Snakes</topic><topic>Urban areas</topic><topic>Urban populations</topic><topic>Urbanization</topic><topic>Western Australia</topic><topic>Wetlands</topic><topic>Wildlife</topic><topic>Wildlife conservation</topic><topic>Wildlife habitats</topic><topic>Wildlife management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lettoof, Damian C</creatorcontrib><creatorcontrib>Thomson, Vicki A</creatorcontrib><creatorcontrib>Cornelis, Jari</creatorcontrib><creatorcontrib>Bateman, Philip W</creatorcontrib><creatorcontrib>Aubret, Fabien</creatorcontrib><creatorcontrib>Gagnon, Marthe M</creatorcontrib><creatorcontrib>von Takach, Brenton</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lettoof, Damian C</au><au>Thomson, Vicki A</au><au>Cornelis, Jari</au><au>Bateman, Philip W</au><au>Aubret, Fabien</au><au>Gagnon, Marthe M</au><au>von Takach, Brenton</au><au>Singh, Randeep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioindicator snake shows genomic signatures of natural and anthropogenic barriers to gene flow</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-10-29</date><risdate>2021</risdate><volume>16</volume><issue>10</issue><spage>e0259124</spage><pages>e0259124-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Urbanisation alters landscapes, introduces wildlife to novel stressors, and fragments habitats into remnant 'islands'. Within these islands, isolated wildlife populations can experience genetic drift and subsequently suffer from inbreeding depression and reduced adaptive potential. The Western tiger snake (Notechis scutatus occidentalis) is a predator of wetlands in the Swan Coastal Plain, a unique bioregion that has suffered substantial degradation through the development of the city of Perth, Western Australia. Within the urban matrix, tiger snakes now only persist in a handful of wetlands where they are known to bioaccumulate a suite of contaminants, and have recently been suggested as a relevant bioindicator of ecosystem health. Here, we used genome-wide single nucleotide polymorphism (SNP) data to explore the contemporary population genomics of seven tiger snake populations across the urban matrix. Specifically, we used population genomic structure and diversity, effective population sizes (Ne), and heterozygosity-fitness correlations to assess fitness of each population with respect to urbanisation. We found that population genomic structure was strongest across the northern and southern sides of a major river system, with the northern cluster of populations exhibiting lower heterozygosities than the southern cluster, likely due to a lack of historical gene flow. We also observed an increasing signal of inbreeding and genetic drift with increasing geographic isolation due to urbanisation. Effective population sizes (Ne) at most sites were small (&lt; 100), with Ne appearing to reflect the area of available habitat rather than the degree of adjacent urbanisation. This suggests that ecosystem management and restoration may be the best method to buffer the further loss of genetic diversity in urban wetlands. If tiger snake populations continue to decline in urban areas, our results provide a baseline measure of genomic diversity, as well as highlighting which 'islands' of habitat are most in need of management and protection.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34714831</pmid><doi>10.1371/journal.pone.0259124</doi><tpages>e0259124</tpages><orcidid>https://orcid.org/0000-0002-3190-5094</orcidid><orcidid>https://orcid.org/0000-0002-9108-5921</orcidid><orcidid>https://orcid.org/0000-0002-6309-6914</orcidid><orcidid>https://orcid.org/0000-0001-8368-9664</orcidid><orcidid>https://orcid.org/0000-0002-7783-8659</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-10, Vol.16 (10), p.e0259124
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2588314734
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Animals
Anthropogenic factors
Bioaccumulation
Biodiversity
Bioindicators
Biology and Life Sciences
Biomonitoring
Cities
Clusters
Coastal plains
Conservation of Natural Resources - methods
Contaminants
Earth Sciences
Ecology
Ecology and Environmental Sciences
Ecosystem management
Elapidae - genetics
Endangered & extinct species
Environmental Biomarkers
Environmental protection
Enzymes
Fitness
Gene flow
Genetic diversity
Genetic Drift
Genetic Variation
Genetics, Population
Genomics
Habitats
Heterozygosity
Inbreeding
Inbreeding depression
Indicator species
Life Sciences
Natural resources
Notechis scutatus occidentalis
Nucleotides
Polymorphism
Population genetics
Populations
Reproductive fitness
Single-nucleotide polymorphism
Snakes
Urban areas
Urban populations
Urbanization
Western Australia
Wetlands
Wildlife
Wildlife conservation
Wildlife habitats
Wildlife management
title Bioindicator snake shows genomic signatures of natural and anthropogenic barriers to gene flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A41%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioindicator%20snake%20shows%20genomic%20signatures%20of%20natural%20and%20anthropogenic%20barriers%20to%20gene%20flow&rft.jtitle=PloS%20one&rft.au=Lettoof,%20Damian%20C&rft.date=2021-10-29&rft.volume=16&rft.issue=10&rft.spage=e0259124&rft.pages=e0259124-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0259124&rft_dat=%3Cgale_plos_%3EA680628870%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2588314734&rft_id=info:pmid/34714831&rft_galeid=A680628870&rft_doaj_id=oai_doaj_org_article_bcafb737ab114467a57ca0183105f384&rfr_iscdi=true