Local field potentials in a pre-motor region predict learned vocal sequences

Neuronal activity within the premotor region HVC is tightly synchronized to, and crucial for, the articulate production of learned song in birds. Characterizations of this neural activity detail patterns of sequential bursting in small, carefully identified subsets of neurons in the HVC population....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2021-09, Vol.17 (9), p.e1008100
Hauptverfasser: Brown, 2nd, Daril E, Chavez, Jairo I, Nguyen, Derek H, Kadwory, Adam, Voytek, Bradley, Arneodo, Ezequiel M, Gentner, Timothy Q, Gilja, Vikash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page e1008100
container_title PLoS computational biology
container_volume 17
creator Brown, 2nd, Daril E
Chavez, Jairo I
Nguyen, Derek H
Kadwory, Adam
Voytek, Bradley
Arneodo, Ezequiel M
Gentner, Timothy Q
Gilja, Vikash
description Neuronal activity within the premotor region HVC is tightly synchronized to, and crucial for, the articulate production of learned song in birds. Characterizations of this neural activity detail patterns of sequential bursting in small, carefully identified subsets of neurons in the HVC population. The dynamics of HVC are well described by these characterizations, but have not been verified beyond this scale of measurement. There is a rich history of using local field potentials (LFP) to extract information about behavior that extends beyond the contribution of individual cells. These signals have the advantage of being stable over longer periods of time, and they have been used to study and decode human speech and other complex motor behaviors. Here we characterize LFP signals presumptively from the HVC of freely behaving male zebra finches during song production to determine if population activity may yield similar insights into the mechanisms underlying complex motor-vocal behavior. Following an initial observation that structured changes in the LFP were distinct to all vocalizations during song, we show that it is possible to extract time-varying features from multiple frequency bands to decode the identity of specific vocalization elements (syllables) and to predict their temporal onsets within the motif. This demonstrates the utility of LFP for studying vocal behavior in songbirds. Surprisingly, the time frequency structure of HVC LFP is qualitatively similar to well-established oscillations found in both human and non-human mammalian motor areas. This physiological similarity, despite distinct anatomical structures, may give insight into common computational principles for learning and/or generating complex motor-vocal behaviors.
doi_str_mv 10.1371/journal.pcbi.1008100
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2582586703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A677505768</galeid><doaj_id>oai_doaj_org_article_d0003db28ee94801b869ad86964ec34e</doaj_id><sourcerecordid>A677505768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-7e592789c197e6d24cd61e0ae939e8aab1a643770ff1314a3dcb7a47189f82473</originalsourceid><addsrcrecordid>eNqVkltv1DAQhSMEoqXwDxBE4gUedrFjx3ZekKqqwEorkLg8W449CV458WJnK_j3ne2mVRf1BeVmjb9znDmaonhJyZIySd9v4i6NJiy3tvVLSojC51FxSuuaLSSr1eN765PiWc4bQnDZiKfFCeN1XZOKnBbrdbQmlJ2H4MptnGCcvAm59GNpym2CxRCnmMoEvY_jvuC8ncoAJo3gyqsbcYbfOxgt5OfFkw7F8GL-nhU_P17-uPi8WH_9tLo4Xy-sEHRaSKibSqrG0kaCcBW3TlAgBhrWgDKmpUZwJiXpOsooN8zZVhouqWo6VXHJzorXB99tiFnPQWRd1QpvIQlDYnUgXDQbvU1-MOmvjsbrm0JMvTZp8jaAdgRzcW2lABquCG2VaIzDl-BgGQf0-jCftmsHcBYjSiYcmR7vjP6X7uOVVlygdYMGb2eDFDGpPOnBZwshmBHibv_fUgiuBKeIvvkHfbi7meoNNuDHLuK5dm-qz4WUNUFDhdTyAQovB4O3cYTOY_1I8O5IgMwEf6be7HLWq-_f_oP9cszyA2tTzDlBd5cdJXo_y7dN6v0s63mWUfbqfu53otvhZddw0e4a</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582586703</pqid></control><display><type>article</type><title>Local field potentials in a pre-motor region predict learned vocal sequences</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Brown, 2nd, Daril E ; Chavez, Jairo I ; Nguyen, Derek H ; Kadwory, Adam ; Voytek, Bradley ; Arneodo, Ezequiel M ; Gentner, Timothy Q ; Gilja, Vikash</creator><contributor>Theunissen, Frédéric E.</contributor><creatorcontrib>Brown, 2nd, Daril E ; Chavez, Jairo I ; Nguyen, Derek H ; Kadwory, Adam ; Voytek, Bradley ; Arneodo, Ezequiel M ; Gentner, Timothy Q ; Gilja, Vikash ; Theunissen, Frédéric E.</creatorcontrib><description>Neuronal activity within the premotor region HVC is tightly synchronized to, and crucial for, the articulate production of learned song in birds. Characterizations of this neural activity detail patterns of sequential bursting in small, carefully identified subsets of neurons in the HVC population. The dynamics of HVC are well described by these characterizations, but have not been verified beyond this scale of measurement. There is a rich history of using local field potentials (LFP) to extract information about behavior that extends beyond the contribution of individual cells. These signals have the advantage of being stable over longer periods of time, and they have been used to study and decode human speech and other complex motor behaviors. Here we characterize LFP signals presumptively from the HVC of freely behaving male zebra finches during song production to determine if population activity may yield similar insights into the mechanisms underlying complex motor-vocal behavior. Following an initial observation that structured changes in the LFP were distinct to all vocalizations during song, we show that it is possible to extract time-varying features from multiple frequency bands to decode the identity of specific vocalization elements (syllables) and to predict their temporal onsets within the motif. This demonstrates the utility of LFP for studying vocal behavior in songbirds. Surprisingly, the time frequency structure of HVC LFP is qualitatively similar to well-established oscillations found in both human and non-human mammalian motor areas. This physiological similarity, despite distinct anatomical structures, may give insight into common computational principles for learning and/or generating complex motor-vocal behaviors.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008100</identifier><identifier>PMID: 34555020</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Action Potentials - physiology ; Animals ; Behavior ; Biology and Life Sciences ; Birds ; Brain ; Brain research ; Computational neuroscience ; Electrophysiology ; Feature extraction ; Finches - physiology ; Frequencies ; Information processing ; Male ; Motor cortex ; Motor Cortex - physiology ; Neural circuitry ; Oscillations ; Physiological aspects ; Prostheses ; Psychological aspects ; Research and Analysis Methods ; Social Sciences ; Song control nuclei ; Songbirds ; Speech ; Vocalization behavior ; Vocalization, Animal - physiology ; Zebra finch</subject><ispartof>PLoS computational biology, 2021-09, Vol.17 (9), p.e1008100</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Brown et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Brown et al 2021 Brown et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-7e592789c197e6d24cd61e0ae939e8aab1a643770ff1314a3dcb7a47189f82473</citedby><cites>FETCH-LOGICAL-c661t-7e592789c197e6d24cd61e0ae939e8aab1a643770ff1314a3dcb7a47189f82473</cites><orcidid>0000-0002-4516-9841 ; 0000-0001-7600-4786 ; 0000-0001-9682-8344 ; 0000-0002-7110-1840 ; 0000-0003-2135-7191 ; 0000-0002-7125-4919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460039/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460039/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34555020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Theunissen, Frédéric E.</contributor><creatorcontrib>Brown, 2nd, Daril E</creatorcontrib><creatorcontrib>Chavez, Jairo I</creatorcontrib><creatorcontrib>Nguyen, Derek H</creatorcontrib><creatorcontrib>Kadwory, Adam</creatorcontrib><creatorcontrib>Voytek, Bradley</creatorcontrib><creatorcontrib>Arneodo, Ezequiel M</creatorcontrib><creatorcontrib>Gentner, Timothy Q</creatorcontrib><creatorcontrib>Gilja, Vikash</creatorcontrib><title>Local field potentials in a pre-motor region predict learned vocal sequences</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Neuronal activity within the premotor region HVC is tightly synchronized to, and crucial for, the articulate production of learned song in birds. Characterizations of this neural activity detail patterns of sequential bursting in small, carefully identified subsets of neurons in the HVC population. The dynamics of HVC are well described by these characterizations, but have not been verified beyond this scale of measurement. There is a rich history of using local field potentials (LFP) to extract information about behavior that extends beyond the contribution of individual cells. These signals have the advantage of being stable over longer periods of time, and they have been used to study and decode human speech and other complex motor behaviors. Here we characterize LFP signals presumptively from the HVC of freely behaving male zebra finches during song production to determine if population activity may yield similar insights into the mechanisms underlying complex motor-vocal behavior. Following an initial observation that structured changes in the LFP were distinct to all vocalizations during song, we show that it is possible to extract time-varying features from multiple frequency bands to decode the identity of specific vocalization elements (syllables) and to predict their temporal onsets within the motif. This demonstrates the utility of LFP for studying vocal behavior in songbirds. Surprisingly, the time frequency structure of HVC LFP is qualitatively similar to well-established oscillations found in both human and non-human mammalian motor areas. This physiological similarity, despite distinct anatomical structures, may give insight into common computational principles for learning and/or generating complex motor-vocal behaviors.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Behavior</subject><subject>Biology and Life Sciences</subject><subject>Birds</subject><subject>Brain</subject><subject>Brain research</subject><subject>Computational neuroscience</subject><subject>Electrophysiology</subject><subject>Feature extraction</subject><subject>Finches - physiology</subject><subject>Frequencies</subject><subject>Information processing</subject><subject>Male</subject><subject>Motor cortex</subject><subject>Motor Cortex - physiology</subject><subject>Neural circuitry</subject><subject>Oscillations</subject><subject>Physiological aspects</subject><subject>Prostheses</subject><subject>Psychological aspects</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Song control nuclei</subject><subject>Songbirds</subject><subject>Speech</subject><subject>Vocalization behavior</subject><subject>Vocalization, Animal - physiology</subject><subject>Zebra finch</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkltv1DAQhSMEoqXwDxBE4gUedrFjx3ZekKqqwEorkLg8W449CV458WJnK_j3ne2mVRf1BeVmjb9znDmaonhJyZIySd9v4i6NJiy3tvVLSojC51FxSuuaLSSr1eN765PiWc4bQnDZiKfFCeN1XZOKnBbrdbQmlJ2H4MptnGCcvAm59GNpym2CxRCnmMoEvY_jvuC8ncoAJo3gyqsbcYbfOxgt5OfFkw7F8GL-nhU_P17-uPi8WH_9tLo4Xy-sEHRaSKibSqrG0kaCcBW3TlAgBhrWgDKmpUZwJiXpOsooN8zZVhouqWo6VXHJzorXB99tiFnPQWRd1QpvIQlDYnUgXDQbvU1-MOmvjsbrm0JMvTZp8jaAdgRzcW2lABquCG2VaIzDl-BgGQf0-jCftmsHcBYjSiYcmR7vjP6X7uOVVlygdYMGb2eDFDGpPOnBZwshmBHibv_fUgiuBKeIvvkHfbi7meoNNuDHLuK5dm-qz4WUNUFDhdTyAQovB4O3cYTOY_1I8O5IgMwEf6be7HLWq-_f_oP9cszyA2tTzDlBd5cdJXo_y7dN6v0s63mWUfbqfu53otvhZddw0e4a</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Brown, 2nd, Daril E</creator><creator>Chavez, Jairo I</creator><creator>Nguyen, Derek H</creator><creator>Kadwory, Adam</creator><creator>Voytek, Bradley</creator><creator>Arneodo, Ezequiel M</creator><creator>Gentner, Timothy Q</creator><creator>Gilja, Vikash</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4516-9841</orcidid><orcidid>https://orcid.org/0000-0001-7600-4786</orcidid><orcidid>https://orcid.org/0000-0001-9682-8344</orcidid><orcidid>https://orcid.org/0000-0002-7110-1840</orcidid><orcidid>https://orcid.org/0000-0003-2135-7191</orcidid><orcidid>https://orcid.org/0000-0002-7125-4919</orcidid></search><sort><creationdate>20210901</creationdate><title>Local field potentials in a pre-motor region predict learned vocal sequences</title><author>Brown, 2nd, Daril E ; Chavez, Jairo I ; Nguyen, Derek H ; Kadwory, Adam ; Voytek, Bradley ; Arneodo, Ezequiel M ; Gentner, Timothy Q ; Gilja, Vikash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-7e592789c197e6d24cd61e0ae939e8aab1a643770ff1314a3dcb7a47189f82473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Behavior</topic><topic>Biology and Life Sciences</topic><topic>Birds</topic><topic>Brain</topic><topic>Brain research</topic><topic>Computational neuroscience</topic><topic>Electrophysiology</topic><topic>Feature extraction</topic><topic>Finches - physiology</topic><topic>Frequencies</topic><topic>Information processing</topic><topic>Male</topic><topic>Motor cortex</topic><topic>Motor Cortex - physiology</topic><topic>Neural circuitry</topic><topic>Oscillations</topic><topic>Physiological aspects</topic><topic>Prostheses</topic><topic>Psychological aspects</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Song control nuclei</topic><topic>Songbirds</topic><topic>Speech</topic><topic>Vocalization behavior</topic><topic>Vocalization, Animal - physiology</topic><topic>Zebra finch</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, 2nd, Daril E</creatorcontrib><creatorcontrib>Chavez, Jairo I</creatorcontrib><creatorcontrib>Nguyen, Derek H</creatorcontrib><creatorcontrib>Kadwory, Adam</creatorcontrib><creatorcontrib>Voytek, Bradley</creatorcontrib><creatorcontrib>Arneodo, Ezequiel M</creatorcontrib><creatorcontrib>Gentner, Timothy Q</creatorcontrib><creatorcontrib>Gilja, Vikash</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, 2nd, Daril E</au><au>Chavez, Jairo I</au><au>Nguyen, Derek H</au><au>Kadwory, Adam</au><au>Voytek, Bradley</au><au>Arneodo, Ezequiel M</au><au>Gentner, Timothy Q</au><au>Gilja, Vikash</au><au>Theunissen, Frédéric E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local field potentials in a pre-motor region predict learned vocal sequences</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>17</volume><issue>9</issue><spage>e1008100</spage><pages>e1008100-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Neuronal activity within the premotor region HVC is tightly synchronized to, and crucial for, the articulate production of learned song in birds. Characterizations of this neural activity detail patterns of sequential bursting in small, carefully identified subsets of neurons in the HVC population. The dynamics of HVC are well described by these characterizations, but have not been verified beyond this scale of measurement. There is a rich history of using local field potentials (LFP) to extract information about behavior that extends beyond the contribution of individual cells. These signals have the advantage of being stable over longer periods of time, and they have been used to study and decode human speech and other complex motor behaviors. Here we characterize LFP signals presumptively from the HVC of freely behaving male zebra finches during song production to determine if population activity may yield similar insights into the mechanisms underlying complex motor-vocal behavior. Following an initial observation that structured changes in the LFP were distinct to all vocalizations during song, we show that it is possible to extract time-varying features from multiple frequency bands to decode the identity of specific vocalization elements (syllables) and to predict their temporal onsets within the motif. This demonstrates the utility of LFP for studying vocal behavior in songbirds. Surprisingly, the time frequency structure of HVC LFP is qualitatively similar to well-established oscillations found in both human and non-human mammalian motor areas. This physiological similarity, despite distinct anatomical structures, may give insight into common computational principles for learning and/or generating complex motor-vocal behaviors.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34555020</pmid><doi>10.1371/journal.pcbi.1008100</doi><orcidid>https://orcid.org/0000-0002-4516-9841</orcidid><orcidid>https://orcid.org/0000-0001-7600-4786</orcidid><orcidid>https://orcid.org/0000-0001-9682-8344</orcidid><orcidid>https://orcid.org/0000-0002-7110-1840</orcidid><orcidid>https://orcid.org/0000-0003-2135-7191</orcidid><orcidid>https://orcid.org/0000-0002-7125-4919</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2021-09, Vol.17 (9), p.e1008100
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2582586703
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Action Potentials - physiology
Animals
Behavior
Biology and Life Sciences
Birds
Brain
Brain research
Computational neuroscience
Electrophysiology
Feature extraction
Finches - physiology
Frequencies
Information processing
Male
Motor cortex
Motor Cortex - physiology
Neural circuitry
Oscillations
Physiological aspects
Prostheses
Psychological aspects
Research and Analysis Methods
Social Sciences
Song control nuclei
Songbirds
Speech
Vocalization behavior
Vocalization, Animal - physiology
Zebra finch
title Local field potentials in a pre-motor region predict learned vocal sequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A14%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20field%20potentials%20in%20a%20pre-motor%20region%20predict%20learned%20vocal%20sequences&rft.jtitle=PLoS%20computational%20biology&rft.au=Brown,%202nd,%20Daril%20E&rft.date=2021-09-01&rft.volume=17&rft.issue=9&rft.spage=e1008100&rft.pages=e1008100-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008100&rft_dat=%3Cgale_plos_%3EA677505768%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582586703&rft_id=info:pmid/34555020&rft_galeid=A677505768&rft_doaj_id=oai_doaj_org_article_d0003db28ee94801b869ad86964ec34e&rfr_iscdi=true