Teaching a new mouse old tricks: Humanized mice as an infection model for Variola virus

Smallpox, caused by the solely human pathogen Variola virus (VARV), was declared eradicated in 1980. While known VARV stocks are secure, smallpox remains a bioterrorist threat agent. Recent U.S. Food and Drug Administration approval of the first smallpox anti-viral (tecovirimat) therapeutic was a su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2021-09, Vol.17 (9), p.e1009633-e1009633
Hauptverfasser: Hutson, Christina L, Kondas, Ashley V, Ritter, Jana M, Reed, Zachary, Ostergaard, Sharon Dietz, Morgan, Clint N, Gallardo-Romero, Nadia, Tansey, Cassandra, Mauldin, Matthew R, Salzer, Johanna S, Hughes, Christine M, Goldsmith, Cynthia S, Carroll, Darin, Olson, Victoria A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1009633
container_issue 9
container_start_page e1009633
container_title PLoS pathogens
container_volume 17
creator Hutson, Christina L
Kondas, Ashley V
Ritter, Jana M
Reed, Zachary
Ostergaard, Sharon Dietz
Morgan, Clint N
Gallardo-Romero, Nadia
Tansey, Cassandra
Mauldin, Matthew R
Salzer, Johanna S
Hughes, Christine M
Goldsmith, Cynthia S
Carroll, Darin
Olson, Victoria A
description Smallpox, caused by the solely human pathogen Variola virus (VARV), was declared eradicated in 1980. While known VARV stocks are secure, smallpox remains a bioterrorist threat agent. Recent U.S. Food and Drug Administration approval of the first smallpox anti-viral (tecovirimat) therapeutic was a successful step forward in smallpox preparedness; however, orthopoxviruses can become resistant to treatment, suggesting a multi-therapeutic approach is necessary. Animal models are required for testing medical countermeasures (MCMs) and ideally MCMs are tested directly against the pathogen of interest. Since VARV only infects humans, a representative animal model for testing therapeutics directly against VARV remains a challenge. Here we show that three different humanized mice strains are highly susceptible to VARV infection, establishing the first small animal model using VARV. In comparison, the non-humanized, immunosuppressed background mouse was not susceptible to systemic VARV infection. Following an intranasal VARV challenge that mimics the natural route for human smallpox transmission, the virus spread systemically within the humanized mouse before mortality (~ 13 days post infection), similar to the time from exposure to symptom onset for ordinary human smallpox. Our identification of a permissive/representative VARV animal model can facilitate testing of MCMs in a manner consistent with their intended use.
doi_str_mv 10.1371/journal.ppat.1009633
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2582586607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A677502963</galeid><doaj_id>oai_doaj_org_article_9e0446caa7794c65aa4b99c44e348d8c</doaj_id><sourcerecordid>A677502963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-9d8dc4c845a8ec9070baff8d4d5821abf6a114a786728f33522985e0aa14acdb3</originalsourceid><addsrcrecordid>eNqVkktv1DAUhSMEomXgHyCwxAYWM9jxMyyQqgroSBVIUGBp3bGdqUtiD3ZSHr8eD5NWHdQNyiLRzXeOfe89VfWY4AWhkry8iGMK0C02GxgWBONGUHqnOiSc07mkkt298X1QPcj5AmNGKBH3qwPKOJOY88Pq65kDc-7DGgEK7gfq45gdip1FQ_LmW36FTsYegv_tLOq9cQgygoB8aJ0ZfAxFYF2H2pjQF0g-doAufRrzw-peC112j6b3rPr89s3Z8cn89MO75fHR6dwIQYZ5Y5U1zCjGQTnTYIlX0LbKMstVTWDVCiCEgVRC1qqllNd1o7jDAKVq7IrOqqc7300Xs55mknVd5FwJgWUhljvCRrjQm-R7SL90BK__FmJaa0iDN53TjcOMCQMgZcOM4ABs1TSGMUeZssoUr9fTaeOqd9a4MCTo9kz3_wR_rtfxUpcGWcNFMXg-GaT4fXR50L3PxnUdBFcmX-4tOVVlb7igz_5Bb-9uotZQGihrieVcszXVR0JKjuttLmbV4haqPNaVpcbgWl_qe4IXe4LCDO7nsIYxZ7389PE_2Pf7LNuxJsWck2uvZ0ew3sb6qkm9jbWeYl1kT27O_Vp0lWP6B5M-8oc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582586607</pqid></control><display><type>article</type><title>Teaching a new mouse old tricks: Humanized mice as an infection model for Variola virus</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Hutson, Christina L ; Kondas, Ashley V ; Ritter, Jana M ; Reed, Zachary ; Ostergaard, Sharon Dietz ; Morgan, Clint N ; Gallardo-Romero, Nadia ; Tansey, Cassandra ; Mauldin, Matthew R ; Salzer, Johanna S ; Hughes, Christine M ; Goldsmith, Cynthia S ; Carroll, Darin ; Olson, Victoria A</creator><creatorcontrib>Hutson, Christina L ; Kondas, Ashley V ; Ritter, Jana M ; Reed, Zachary ; Ostergaard, Sharon Dietz ; Morgan, Clint N ; Gallardo-Romero, Nadia ; Tansey, Cassandra ; Mauldin, Matthew R ; Salzer, Johanna S ; Hughes, Christine M ; Goldsmith, Cynthia S ; Carroll, Darin ; Olson, Victoria A</creatorcontrib><description>Smallpox, caused by the solely human pathogen Variola virus (VARV), was declared eradicated in 1980. While known VARV stocks are secure, smallpox remains a bioterrorist threat agent. Recent U.S. Food and Drug Administration approval of the first smallpox anti-viral (tecovirimat) therapeutic was a successful step forward in smallpox preparedness; however, orthopoxviruses can become resistant to treatment, suggesting a multi-therapeutic approach is necessary. Animal models are required for testing medical countermeasures (MCMs) and ideally MCMs are tested directly against the pathogen of interest. Since VARV only infects humans, a representative animal model for testing therapeutics directly against VARV remains a challenge. Here we show that three different humanized mice strains are highly susceptible to VARV infection, establishing the first small animal model using VARV. In comparison, the non-humanized, immunosuppressed background mouse was not susceptible to systemic VARV infection. Following an intranasal VARV challenge that mimics the natural route for human smallpox transmission, the virus spread systemically within the humanized mouse before mortality (~ 13 days post infection), similar to the time from exposure to symptom onset for ordinary human smallpox. Our identification of a permissive/representative VARV animal model can facilitate testing of MCMs in a manner consistent with their intended use.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1009633</identifier><identifier>PMID: 34547055</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animal experimentation ; Animal models ; Animals ; Antiviral agents ; Biology and life sciences ; Bioterrorism ; Diagnosis ; Disease ; Disease Models, Animal ; Disease susceptibility ; Disease transmission ; FDA approval ; Health aspects ; Humans ; Immune system ; Infections ; Laboratories ; Medicine and Health Sciences ; Methods ; Mice ; Model testing ; Mortality ; Pain ; Pathogens ; Physiological aspects ; Prevention ; Regulatory approval ; Research and Analysis Methods ; Risk factors ; Smallpox ; Treatment resistance ; Variola virus ; Viral infections ; Viruses</subject><ispartof>PLoS pathogens, 2021-09, Vol.17 (9), p.e1009633-e1009633</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-9d8dc4c845a8ec9070baff8d4d5821abf6a114a786728f33522985e0aa14acdb3</citedby><cites>FETCH-LOGICAL-c661t-9d8dc4c845a8ec9070baff8d4d5821abf6a114a786728f33522985e0aa14acdb3</cites><orcidid>0000-0002-4451-5482 ; 0000-0002-0177-2454 ; 0000-0001-7998-9728 ; 0000-0001-5580-8072 ; 0000-0002-3807-2339 ; 0000-0002-4054-3419 ; 0000-0002-4174-1767 ; 0000-0001-8646-8920 ; 0000-0002-4768-162X ; 0000-0003-0949-0379 ; 0000-0001-7729-7680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8454956/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8454956/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34547055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hutson, Christina L</creatorcontrib><creatorcontrib>Kondas, Ashley V</creatorcontrib><creatorcontrib>Ritter, Jana M</creatorcontrib><creatorcontrib>Reed, Zachary</creatorcontrib><creatorcontrib>Ostergaard, Sharon Dietz</creatorcontrib><creatorcontrib>Morgan, Clint N</creatorcontrib><creatorcontrib>Gallardo-Romero, Nadia</creatorcontrib><creatorcontrib>Tansey, Cassandra</creatorcontrib><creatorcontrib>Mauldin, Matthew R</creatorcontrib><creatorcontrib>Salzer, Johanna S</creatorcontrib><creatorcontrib>Hughes, Christine M</creatorcontrib><creatorcontrib>Goldsmith, Cynthia S</creatorcontrib><creatorcontrib>Carroll, Darin</creatorcontrib><creatorcontrib>Olson, Victoria A</creatorcontrib><title>Teaching a new mouse old tricks: Humanized mice as an infection model for Variola virus</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Smallpox, caused by the solely human pathogen Variola virus (VARV), was declared eradicated in 1980. While known VARV stocks are secure, smallpox remains a bioterrorist threat agent. Recent U.S. Food and Drug Administration approval of the first smallpox anti-viral (tecovirimat) therapeutic was a successful step forward in smallpox preparedness; however, orthopoxviruses can become resistant to treatment, suggesting a multi-therapeutic approach is necessary. Animal models are required for testing medical countermeasures (MCMs) and ideally MCMs are tested directly against the pathogen of interest. Since VARV only infects humans, a representative animal model for testing therapeutics directly against VARV remains a challenge. Here we show that three different humanized mice strains are highly susceptible to VARV infection, establishing the first small animal model using VARV. In comparison, the non-humanized, immunosuppressed background mouse was not susceptible to systemic VARV infection. Following an intranasal VARV challenge that mimics the natural route for human smallpox transmission, the virus spread systemically within the humanized mouse before mortality (~ 13 days post infection), similar to the time from exposure to symptom onset for ordinary human smallpox. Our identification of a permissive/representative VARV animal model can facilitate testing of MCMs in a manner consistent with their intended use.</description><subject>Analysis</subject><subject>Animal experimentation</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antiviral agents</subject><subject>Biology and life sciences</subject><subject>Bioterrorism</subject><subject>Diagnosis</subject><subject>Disease</subject><subject>Disease Models, Animal</subject><subject>Disease susceptibility</subject><subject>Disease transmission</subject><subject>FDA approval</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Immune system</subject><subject>Infections</subject><subject>Laboratories</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Mice</subject><subject>Model testing</subject><subject>Mortality</subject><subject>Pain</subject><subject>Pathogens</subject><subject>Physiological aspects</subject><subject>Prevention</subject><subject>Regulatory approval</subject><subject>Research and Analysis Methods</subject><subject>Risk factors</subject><subject>Smallpox</subject><subject>Treatment resistance</subject><subject>Variola virus</subject><subject>Viral infections</subject><subject>Viruses</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAUhSMEomXgHyCwxAYWM9jxMyyQqgroSBVIUGBp3bGdqUtiD3ZSHr8eD5NWHdQNyiLRzXeOfe89VfWY4AWhkry8iGMK0C02GxgWBONGUHqnOiSc07mkkt298X1QPcj5AmNGKBH3qwPKOJOY88Pq65kDc-7DGgEK7gfq45gdip1FQ_LmW36FTsYegv_tLOq9cQgygoB8aJ0ZfAxFYF2H2pjQF0g-doAufRrzw-peC112j6b3rPr89s3Z8cn89MO75fHR6dwIQYZ5Y5U1zCjGQTnTYIlX0LbKMstVTWDVCiCEgVRC1qqllNd1o7jDAKVq7IrOqqc7300Xs55mknVd5FwJgWUhljvCRrjQm-R7SL90BK__FmJaa0iDN53TjcOMCQMgZcOM4ABs1TSGMUeZssoUr9fTaeOqd9a4MCTo9kz3_wR_rtfxUpcGWcNFMXg-GaT4fXR50L3PxnUdBFcmX-4tOVVlb7igz_5Bb-9uotZQGihrieVcszXVR0JKjuttLmbV4haqPNaVpcbgWl_qe4IXe4LCDO7nsIYxZ7389PE_2Pf7LNuxJsWck2uvZ0ew3sb6qkm9jbWeYl1kT27O_Vp0lWP6B5M-8oc</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Hutson, Christina L</creator><creator>Kondas, Ashley V</creator><creator>Ritter, Jana M</creator><creator>Reed, Zachary</creator><creator>Ostergaard, Sharon Dietz</creator><creator>Morgan, Clint N</creator><creator>Gallardo-Romero, Nadia</creator><creator>Tansey, Cassandra</creator><creator>Mauldin, Matthew R</creator><creator>Salzer, Johanna S</creator><creator>Hughes, Christine M</creator><creator>Goldsmith, Cynthia S</creator><creator>Carroll, Darin</creator><creator>Olson, Victoria A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4451-5482</orcidid><orcidid>https://orcid.org/0000-0002-0177-2454</orcidid><orcidid>https://orcid.org/0000-0001-7998-9728</orcidid><orcidid>https://orcid.org/0000-0001-5580-8072</orcidid><orcidid>https://orcid.org/0000-0002-3807-2339</orcidid><orcidid>https://orcid.org/0000-0002-4054-3419</orcidid><orcidid>https://orcid.org/0000-0002-4174-1767</orcidid><orcidid>https://orcid.org/0000-0001-8646-8920</orcidid><orcidid>https://orcid.org/0000-0002-4768-162X</orcidid><orcidid>https://orcid.org/0000-0003-0949-0379</orcidid><orcidid>https://orcid.org/0000-0001-7729-7680</orcidid></search><sort><creationdate>20210901</creationdate><title>Teaching a new mouse old tricks: Humanized mice as an infection model for Variola virus</title><author>Hutson, Christina L ; Kondas, Ashley V ; Ritter, Jana M ; Reed, Zachary ; Ostergaard, Sharon Dietz ; Morgan, Clint N ; Gallardo-Romero, Nadia ; Tansey, Cassandra ; Mauldin, Matthew R ; Salzer, Johanna S ; Hughes, Christine M ; Goldsmith, Cynthia S ; Carroll, Darin ; Olson, Victoria A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-9d8dc4c845a8ec9070baff8d4d5821abf6a114a786728f33522985e0aa14acdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Animal experimentation</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antiviral agents</topic><topic>Biology and life sciences</topic><topic>Bioterrorism</topic><topic>Diagnosis</topic><topic>Disease</topic><topic>Disease Models, Animal</topic><topic>Disease susceptibility</topic><topic>Disease transmission</topic><topic>FDA approval</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Immune system</topic><topic>Infections</topic><topic>Laboratories</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Mice</topic><topic>Model testing</topic><topic>Mortality</topic><topic>Pain</topic><topic>Pathogens</topic><topic>Physiological aspects</topic><topic>Prevention</topic><topic>Regulatory approval</topic><topic>Research and Analysis Methods</topic><topic>Risk factors</topic><topic>Smallpox</topic><topic>Treatment resistance</topic><topic>Variola virus</topic><topic>Viral infections</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hutson, Christina L</creatorcontrib><creatorcontrib>Kondas, Ashley V</creatorcontrib><creatorcontrib>Ritter, Jana M</creatorcontrib><creatorcontrib>Reed, Zachary</creatorcontrib><creatorcontrib>Ostergaard, Sharon Dietz</creatorcontrib><creatorcontrib>Morgan, Clint N</creatorcontrib><creatorcontrib>Gallardo-Romero, Nadia</creatorcontrib><creatorcontrib>Tansey, Cassandra</creatorcontrib><creatorcontrib>Mauldin, Matthew R</creatorcontrib><creatorcontrib>Salzer, Johanna S</creatorcontrib><creatorcontrib>Hughes, Christine M</creatorcontrib><creatorcontrib>Goldsmith, Cynthia S</creatorcontrib><creatorcontrib>Carroll, Darin</creatorcontrib><creatorcontrib>Olson, Victoria A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hutson, Christina L</au><au>Kondas, Ashley V</au><au>Ritter, Jana M</au><au>Reed, Zachary</au><au>Ostergaard, Sharon Dietz</au><au>Morgan, Clint N</au><au>Gallardo-Romero, Nadia</au><au>Tansey, Cassandra</au><au>Mauldin, Matthew R</au><au>Salzer, Johanna S</au><au>Hughes, Christine M</au><au>Goldsmith, Cynthia S</au><au>Carroll, Darin</au><au>Olson, Victoria A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Teaching a new mouse old tricks: Humanized mice as an infection model for Variola virus</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>17</volume><issue>9</issue><spage>e1009633</spage><epage>e1009633</epage><pages>e1009633-e1009633</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Smallpox, caused by the solely human pathogen Variola virus (VARV), was declared eradicated in 1980. While known VARV stocks are secure, smallpox remains a bioterrorist threat agent. Recent U.S. Food and Drug Administration approval of the first smallpox anti-viral (tecovirimat) therapeutic was a successful step forward in smallpox preparedness; however, orthopoxviruses can become resistant to treatment, suggesting a multi-therapeutic approach is necessary. Animal models are required for testing medical countermeasures (MCMs) and ideally MCMs are tested directly against the pathogen of interest. Since VARV only infects humans, a representative animal model for testing therapeutics directly against VARV remains a challenge. Here we show that three different humanized mice strains are highly susceptible to VARV infection, establishing the first small animal model using VARV. In comparison, the non-humanized, immunosuppressed background mouse was not susceptible to systemic VARV infection. Following an intranasal VARV challenge that mimics the natural route for human smallpox transmission, the virus spread systemically within the humanized mouse before mortality (~ 13 days post infection), similar to the time from exposure to symptom onset for ordinary human smallpox. Our identification of a permissive/representative VARV animal model can facilitate testing of MCMs in a manner consistent with their intended use.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34547055</pmid><doi>10.1371/journal.ppat.1009633</doi><orcidid>https://orcid.org/0000-0002-4451-5482</orcidid><orcidid>https://orcid.org/0000-0002-0177-2454</orcidid><orcidid>https://orcid.org/0000-0001-7998-9728</orcidid><orcidid>https://orcid.org/0000-0001-5580-8072</orcidid><orcidid>https://orcid.org/0000-0002-3807-2339</orcidid><orcidid>https://orcid.org/0000-0002-4054-3419</orcidid><orcidid>https://orcid.org/0000-0002-4174-1767</orcidid><orcidid>https://orcid.org/0000-0001-8646-8920</orcidid><orcidid>https://orcid.org/0000-0002-4768-162X</orcidid><orcidid>https://orcid.org/0000-0003-0949-0379</orcidid><orcidid>https://orcid.org/0000-0001-7729-7680</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2021-09, Vol.17 (9), p.e1009633-e1009633
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_2582586607
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
subjects Analysis
Animal experimentation
Animal models
Animals
Antiviral agents
Biology and life sciences
Bioterrorism
Diagnosis
Disease
Disease Models, Animal
Disease susceptibility
Disease transmission
FDA approval
Health aspects
Humans
Immune system
Infections
Laboratories
Medicine and Health Sciences
Methods
Mice
Model testing
Mortality
Pain
Pathogens
Physiological aspects
Prevention
Regulatory approval
Research and Analysis Methods
Risk factors
Smallpox
Treatment resistance
Variola virus
Viral infections
Viruses
title Teaching a new mouse old tricks: Humanized mice as an infection model for Variola virus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Teaching%20a%20new%20mouse%20old%20tricks:%20Humanized%20mice%20as%20an%20infection%20model%20for%20Variola%20virus&rft.jtitle=PLoS%20pathogens&rft.au=Hutson,%20Christina%20L&rft.date=2021-09-01&rft.volume=17&rft.issue=9&rft.spage=e1009633&rft.epage=e1009633&rft.pages=e1009633-e1009633&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1009633&rft_dat=%3Cgale_plos_%3EA677502963%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582586607&rft_id=info:pmid/34547055&rft_galeid=A677502963&rft_doaj_id=oai_doaj_org_article_9e0446caa7794c65aa4b99c44e348d8c&rfr_iscdi=true