Teaching a new mouse old tricks: Humanized mice as an infection model for Variola virus
Smallpox, caused by the solely human pathogen Variola virus (VARV), was declared eradicated in 1980. While known VARV stocks are secure, smallpox remains a bioterrorist threat agent. Recent U.S. Food and Drug Administration approval of the first smallpox anti-viral (tecovirimat) therapeutic was a su...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2021-09, Vol.17 (9), p.e1009633-e1009633 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009633 |
---|---|
container_issue | 9 |
container_start_page | e1009633 |
container_title | PLoS pathogens |
container_volume | 17 |
creator | Hutson, Christina L Kondas, Ashley V Ritter, Jana M Reed, Zachary Ostergaard, Sharon Dietz Morgan, Clint N Gallardo-Romero, Nadia Tansey, Cassandra Mauldin, Matthew R Salzer, Johanna S Hughes, Christine M Goldsmith, Cynthia S Carroll, Darin Olson, Victoria A |
description | Smallpox, caused by the solely human pathogen Variola virus (VARV), was declared eradicated in 1980. While known VARV stocks are secure, smallpox remains a bioterrorist threat agent. Recent U.S. Food and Drug Administration approval of the first smallpox anti-viral (tecovirimat) therapeutic was a successful step forward in smallpox preparedness; however, orthopoxviruses can become resistant to treatment, suggesting a multi-therapeutic approach is necessary. Animal models are required for testing medical countermeasures (MCMs) and ideally MCMs are tested directly against the pathogen of interest. Since VARV only infects humans, a representative animal model for testing therapeutics directly against VARV remains a challenge. Here we show that three different humanized mice strains are highly susceptible to VARV infection, establishing the first small animal model using VARV. In comparison, the non-humanized, immunosuppressed background mouse was not susceptible to systemic VARV infection. Following an intranasal VARV challenge that mimics the natural route for human smallpox transmission, the virus spread systemically within the humanized mouse before mortality (~ 13 days post infection), similar to the time from exposure to symptom onset for ordinary human smallpox. Our identification of a permissive/representative VARV animal model can facilitate testing of MCMs in a manner consistent with their intended use. |
doi_str_mv | 10.1371/journal.ppat.1009633 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2582586607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A677502963</galeid><doaj_id>oai_doaj_org_article_9e0446caa7794c65aa4b99c44e348d8c</doaj_id><sourcerecordid>A677502963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-9d8dc4c845a8ec9070baff8d4d5821abf6a114a786728f33522985e0aa14acdb3</originalsourceid><addsrcrecordid>eNqVkktv1DAUhSMEomXgHyCwxAYWM9jxMyyQqgroSBVIUGBp3bGdqUtiD3ZSHr8eD5NWHdQNyiLRzXeOfe89VfWY4AWhkry8iGMK0C02GxgWBONGUHqnOiSc07mkkt298X1QPcj5AmNGKBH3qwPKOJOY88Pq65kDc-7DGgEK7gfq45gdip1FQ_LmW36FTsYegv_tLOq9cQgygoB8aJ0ZfAxFYF2H2pjQF0g-doAufRrzw-peC112j6b3rPr89s3Z8cn89MO75fHR6dwIQYZ5Y5U1zCjGQTnTYIlX0LbKMstVTWDVCiCEgVRC1qqllNd1o7jDAKVq7IrOqqc7300Xs55mknVd5FwJgWUhljvCRrjQm-R7SL90BK__FmJaa0iDN53TjcOMCQMgZcOM4ABs1TSGMUeZssoUr9fTaeOqd9a4MCTo9kz3_wR_rtfxUpcGWcNFMXg-GaT4fXR50L3PxnUdBFcmX-4tOVVlb7igz_5Bb-9uotZQGihrieVcszXVR0JKjuttLmbV4haqPNaVpcbgWl_qe4IXe4LCDO7nsIYxZ7389PE_2Pf7LNuxJsWck2uvZ0ew3sb6qkm9jbWeYl1kT27O_Vp0lWP6B5M-8oc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582586607</pqid></control><display><type>article</type><title>Teaching a new mouse old tricks: Humanized mice as an infection model for Variola virus</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Hutson, Christina L ; Kondas, Ashley V ; Ritter, Jana M ; Reed, Zachary ; Ostergaard, Sharon Dietz ; Morgan, Clint N ; Gallardo-Romero, Nadia ; Tansey, Cassandra ; Mauldin, Matthew R ; Salzer, Johanna S ; Hughes, Christine M ; Goldsmith, Cynthia S ; Carroll, Darin ; Olson, Victoria A</creator><creatorcontrib>Hutson, Christina L ; Kondas, Ashley V ; Ritter, Jana M ; Reed, Zachary ; Ostergaard, Sharon Dietz ; Morgan, Clint N ; Gallardo-Romero, Nadia ; Tansey, Cassandra ; Mauldin, Matthew R ; Salzer, Johanna S ; Hughes, Christine M ; Goldsmith, Cynthia S ; Carroll, Darin ; Olson, Victoria A</creatorcontrib><description>Smallpox, caused by the solely human pathogen Variola virus (VARV), was declared eradicated in 1980. While known VARV stocks are secure, smallpox remains a bioterrorist threat agent. Recent U.S. Food and Drug Administration approval of the first smallpox anti-viral (tecovirimat) therapeutic was a successful step forward in smallpox preparedness; however, orthopoxviruses can become resistant to treatment, suggesting a multi-therapeutic approach is necessary. Animal models are required for testing medical countermeasures (MCMs) and ideally MCMs are tested directly against the pathogen of interest. Since VARV only infects humans, a representative animal model for testing therapeutics directly against VARV remains a challenge. Here we show that three different humanized mice strains are highly susceptible to VARV infection, establishing the first small animal model using VARV. In comparison, the non-humanized, immunosuppressed background mouse was not susceptible to systemic VARV infection. Following an intranasal VARV challenge that mimics the natural route for human smallpox transmission, the virus spread systemically within the humanized mouse before mortality (~ 13 days post infection), similar to the time from exposure to symptom onset for ordinary human smallpox. Our identification of a permissive/representative VARV animal model can facilitate testing of MCMs in a manner consistent with their intended use.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1009633</identifier><identifier>PMID: 34547055</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animal experimentation ; Animal models ; Animals ; Antiviral agents ; Biology and life sciences ; Bioterrorism ; Diagnosis ; Disease ; Disease Models, Animal ; Disease susceptibility ; Disease transmission ; FDA approval ; Health aspects ; Humans ; Immune system ; Infections ; Laboratories ; Medicine and Health Sciences ; Methods ; Mice ; Model testing ; Mortality ; Pain ; Pathogens ; Physiological aspects ; Prevention ; Regulatory approval ; Research and Analysis Methods ; Risk factors ; Smallpox ; Treatment resistance ; Variola virus ; Viral infections ; Viruses</subject><ispartof>PLoS pathogens, 2021-09, Vol.17 (9), p.e1009633-e1009633</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-9d8dc4c845a8ec9070baff8d4d5821abf6a114a786728f33522985e0aa14acdb3</citedby><cites>FETCH-LOGICAL-c661t-9d8dc4c845a8ec9070baff8d4d5821abf6a114a786728f33522985e0aa14acdb3</cites><orcidid>0000-0002-4451-5482 ; 0000-0002-0177-2454 ; 0000-0001-7998-9728 ; 0000-0001-5580-8072 ; 0000-0002-3807-2339 ; 0000-0002-4054-3419 ; 0000-0002-4174-1767 ; 0000-0001-8646-8920 ; 0000-0002-4768-162X ; 0000-0003-0949-0379 ; 0000-0001-7729-7680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8454956/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8454956/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34547055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hutson, Christina L</creatorcontrib><creatorcontrib>Kondas, Ashley V</creatorcontrib><creatorcontrib>Ritter, Jana M</creatorcontrib><creatorcontrib>Reed, Zachary</creatorcontrib><creatorcontrib>Ostergaard, Sharon Dietz</creatorcontrib><creatorcontrib>Morgan, Clint N</creatorcontrib><creatorcontrib>Gallardo-Romero, Nadia</creatorcontrib><creatorcontrib>Tansey, Cassandra</creatorcontrib><creatorcontrib>Mauldin, Matthew R</creatorcontrib><creatorcontrib>Salzer, Johanna S</creatorcontrib><creatorcontrib>Hughes, Christine M</creatorcontrib><creatorcontrib>Goldsmith, Cynthia S</creatorcontrib><creatorcontrib>Carroll, Darin</creatorcontrib><creatorcontrib>Olson, Victoria A</creatorcontrib><title>Teaching a new mouse old tricks: Humanized mice as an infection model for Variola virus</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Smallpox, caused by the solely human pathogen Variola virus (VARV), was declared eradicated in 1980. While known VARV stocks are secure, smallpox remains a bioterrorist threat agent. Recent U.S. Food and Drug Administration approval of the first smallpox anti-viral (tecovirimat) therapeutic was a successful step forward in smallpox preparedness; however, orthopoxviruses can become resistant to treatment, suggesting a multi-therapeutic approach is necessary. Animal models are required for testing medical countermeasures (MCMs) and ideally MCMs are tested directly against the pathogen of interest. Since VARV only infects humans, a representative animal model for testing therapeutics directly against VARV remains a challenge. Here we show that three different humanized mice strains are highly susceptible to VARV infection, establishing the first small animal model using VARV. In comparison, the non-humanized, immunosuppressed background mouse was not susceptible to systemic VARV infection. Following an intranasal VARV challenge that mimics the natural route for human smallpox transmission, the virus spread systemically within the humanized mouse before mortality (~ 13 days post infection), similar to the time from exposure to symptom onset for ordinary human smallpox. Our identification of a permissive/representative VARV animal model can facilitate testing of MCMs in a manner consistent with their intended use.</description><subject>Analysis</subject><subject>Animal experimentation</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antiviral agents</subject><subject>Biology and life sciences</subject><subject>Bioterrorism</subject><subject>Diagnosis</subject><subject>Disease</subject><subject>Disease Models, Animal</subject><subject>Disease susceptibility</subject><subject>Disease transmission</subject><subject>FDA approval</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Immune system</subject><subject>Infections</subject><subject>Laboratories</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Mice</subject><subject>Model testing</subject><subject>Mortality</subject><subject>Pain</subject><subject>Pathogens</subject><subject>Physiological aspects</subject><subject>Prevention</subject><subject>Regulatory approval</subject><subject>Research and Analysis Methods</subject><subject>Risk factors</subject><subject>Smallpox</subject><subject>Treatment resistance</subject><subject>Variola virus</subject><subject>Viral infections</subject><subject>Viruses</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAUhSMEomXgHyCwxAYWM9jxMyyQqgroSBVIUGBp3bGdqUtiD3ZSHr8eD5NWHdQNyiLRzXeOfe89VfWY4AWhkry8iGMK0C02GxgWBONGUHqnOiSc07mkkt298X1QPcj5AmNGKBH3qwPKOJOY88Pq65kDc-7DGgEK7gfq45gdip1FQ_LmW36FTsYegv_tLOq9cQgygoB8aJ0ZfAxFYF2H2pjQF0g-doAufRrzw-peC112j6b3rPr89s3Z8cn89MO75fHR6dwIQYZ5Y5U1zCjGQTnTYIlX0LbKMstVTWDVCiCEgVRC1qqllNd1o7jDAKVq7IrOqqc7300Xs55mknVd5FwJgWUhljvCRrjQm-R7SL90BK__FmJaa0iDN53TjcOMCQMgZcOM4ABs1TSGMUeZssoUr9fTaeOqd9a4MCTo9kz3_wR_rtfxUpcGWcNFMXg-GaT4fXR50L3PxnUdBFcmX-4tOVVlb7igz_5Bb-9uotZQGihrieVcszXVR0JKjuttLmbV4haqPNaVpcbgWl_qe4IXe4LCDO7nsIYxZ7389PE_2Pf7LNuxJsWck2uvZ0ew3sb6qkm9jbWeYl1kT27O_Vp0lWP6B5M-8oc</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Hutson, Christina L</creator><creator>Kondas, Ashley V</creator><creator>Ritter, Jana M</creator><creator>Reed, Zachary</creator><creator>Ostergaard, Sharon Dietz</creator><creator>Morgan, Clint N</creator><creator>Gallardo-Romero, Nadia</creator><creator>Tansey, Cassandra</creator><creator>Mauldin, Matthew R</creator><creator>Salzer, Johanna S</creator><creator>Hughes, Christine M</creator><creator>Goldsmith, Cynthia S</creator><creator>Carroll, Darin</creator><creator>Olson, Victoria A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4451-5482</orcidid><orcidid>https://orcid.org/0000-0002-0177-2454</orcidid><orcidid>https://orcid.org/0000-0001-7998-9728</orcidid><orcidid>https://orcid.org/0000-0001-5580-8072</orcidid><orcidid>https://orcid.org/0000-0002-3807-2339</orcidid><orcidid>https://orcid.org/0000-0002-4054-3419</orcidid><orcidid>https://orcid.org/0000-0002-4174-1767</orcidid><orcidid>https://orcid.org/0000-0001-8646-8920</orcidid><orcidid>https://orcid.org/0000-0002-4768-162X</orcidid><orcidid>https://orcid.org/0000-0003-0949-0379</orcidid><orcidid>https://orcid.org/0000-0001-7729-7680</orcidid></search><sort><creationdate>20210901</creationdate><title>Teaching a new mouse old tricks: Humanized mice as an infection model for Variola virus</title><author>Hutson, Christina L ; Kondas, Ashley V ; Ritter, Jana M ; Reed, Zachary ; Ostergaard, Sharon Dietz ; Morgan, Clint N ; Gallardo-Romero, Nadia ; Tansey, Cassandra ; Mauldin, Matthew R ; Salzer, Johanna S ; Hughes, Christine M ; Goldsmith, Cynthia S ; Carroll, Darin ; Olson, Victoria A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-9d8dc4c845a8ec9070baff8d4d5821abf6a114a786728f33522985e0aa14acdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Animal experimentation</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antiviral agents</topic><topic>Biology and life sciences</topic><topic>Bioterrorism</topic><topic>Diagnosis</topic><topic>Disease</topic><topic>Disease Models, Animal</topic><topic>Disease susceptibility</topic><topic>Disease transmission</topic><topic>FDA approval</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Immune system</topic><topic>Infections</topic><topic>Laboratories</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Mice</topic><topic>Model testing</topic><topic>Mortality</topic><topic>Pain</topic><topic>Pathogens</topic><topic>Physiological aspects</topic><topic>Prevention</topic><topic>Regulatory approval</topic><topic>Research and Analysis Methods</topic><topic>Risk factors</topic><topic>Smallpox</topic><topic>Treatment resistance</topic><topic>Variola virus</topic><topic>Viral infections</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hutson, Christina L</creatorcontrib><creatorcontrib>Kondas, Ashley V</creatorcontrib><creatorcontrib>Ritter, Jana M</creatorcontrib><creatorcontrib>Reed, Zachary</creatorcontrib><creatorcontrib>Ostergaard, Sharon Dietz</creatorcontrib><creatorcontrib>Morgan, Clint N</creatorcontrib><creatorcontrib>Gallardo-Romero, Nadia</creatorcontrib><creatorcontrib>Tansey, Cassandra</creatorcontrib><creatorcontrib>Mauldin, Matthew R</creatorcontrib><creatorcontrib>Salzer, Johanna S</creatorcontrib><creatorcontrib>Hughes, Christine M</creatorcontrib><creatorcontrib>Goldsmith, Cynthia S</creatorcontrib><creatorcontrib>Carroll, Darin</creatorcontrib><creatorcontrib>Olson, Victoria A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hutson, Christina L</au><au>Kondas, Ashley V</au><au>Ritter, Jana M</au><au>Reed, Zachary</au><au>Ostergaard, Sharon Dietz</au><au>Morgan, Clint N</au><au>Gallardo-Romero, Nadia</au><au>Tansey, Cassandra</au><au>Mauldin, Matthew R</au><au>Salzer, Johanna S</au><au>Hughes, Christine M</au><au>Goldsmith, Cynthia S</au><au>Carroll, Darin</au><au>Olson, Victoria A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Teaching a new mouse old tricks: Humanized mice as an infection model for Variola virus</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>17</volume><issue>9</issue><spage>e1009633</spage><epage>e1009633</epage><pages>e1009633-e1009633</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Smallpox, caused by the solely human pathogen Variola virus (VARV), was declared eradicated in 1980. While known VARV stocks are secure, smallpox remains a bioterrorist threat agent. Recent U.S. Food and Drug Administration approval of the first smallpox anti-viral (tecovirimat) therapeutic was a successful step forward in smallpox preparedness; however, orthopoxviruses can become resistant to treatment, suggesting a multi-therapeutic approach is necessary. Animal models are required for testing medical countermeasures (MCMs) and ideally MCMs are tested directly against the pathogen of interest. Since VARV only infects humans, a representative animal model for testing therapeutics directly against VARV remains a challenge. Here we show that three different humanized mice strains are highly susceptible to VARV infection, establishing the first small animal model using VARV. In comparison, the non-humanized, immunosuppressed background mouse was not susceptible to systemic VARV infection. Following an intranasal VARV challenge that mimics the natural route for human smallpox transmission, the virus spread systemically within the humanized mouse before mortality (~ 13 days post infection), similar to the time from exposure to symptom onset for ordinary human smallpox. Our identification of a permissive/representative VARV animal model can facilitate testing of MCMs in a manner consistent with their intended use.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34547055</pmid><doi>10.1371/journal.ppat.1009633</doi><orcidid>https://orcid.org/0000-0002-4451-5482</orcidid><orcidid>https://orcid.org/0000-0002-0177-2454</orcidid><orcidid>https://orcid.org/0000-0001-7998-9728</orcidid><orcidid>https://orcid.org/0000-0001-5580-8072</orcidid><orcidid>https://orcid.org/0000-0002-3807-2339</orcidid><orcidid>https://orcid.org/0000-0002-4054-3419</orcidid><orcidid>https://orcid.org/0000-0002-4174-1767</orcidid><orcidid>https://orcid.org/0000-0001-8646-8920</orcidid><orcidid>https://orcid.org/0000-0002-4768-162X</orcidid><orcidid>https://orcid.org/0000-0003-0949-0379</orcidid><orcidid>https://orcid.org/0000-0001-7729-7680</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2021-09, Vol.17 (9), p.e1009633-e1009633 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2582586607 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access |
subjects | Analysis Animal experimentation Animal models Animals Antiviral agents Biology and life sciences Bioterrorism Diagnosis Disease Disease Models, Animal Disease susceptibility Disease transmission FDA approval Health aspects Humans Immune system Infections Laboratories Medicine and Health Sciences Methods Mice Model testing Mortality Pain Pathogens Physiological aspects Prevention Regulatory approval Research and Analysis Methods Risk factors Smallpox Treatment resistance Variola virus Viral infections Viruses |
title | Teaching a new mouse old tricks: Humanized mice as an infection model for Variola virus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Teaching%20a%20new%20mouse%20old%20tricks:%20Humanized%20mice%20as%20an%20infection%20model%20for%20Variola%20virus&rft.jtitle=PLoS%20pathogens&rft.au=Hutson,%20Christina%20L&rft.date=2021-09-01&rft.volume=17&rft.issue=9&rft.spage=e1009633&rft.epage=e1009633&rft.pages=e1009633-e1009633&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1009633&rft_dat=%3Cgale_plos_%3EA677502963%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582586607&rft_id=info:pmid/34547055&rft_galeid=A677502963&rft_doaj_id=oai_doaj_org_article_9e0446caa7794c65aa4b99c44e348d8c&rfr_iscdi=true |