The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host

Host-pathogen interactions are central components of ecological networks where the MAPK signaling pathways act as central hubs of these complex interactions. We have previously shown that an insect hormone modulated MAPK signaling cascade participates as a general switch to trans -regulate different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2021-09, Vol.17 (9), p.e1009917-e1009917
Hauptverfasser: Guo, Zhaojiang, Kang, Shi, Wu, Qingjun, Wang, Shaoli, Crickmore, Neil, Zhou, Xuguo, Bravo, Alejandra, Soberón, Mario, Zhang, Youjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1009917
container_issue 9
container_start_page e1009917
container_title PLoS pathogens
container_volume 17
creator Guo, Zhaojiang
Kang, Shi
Wu, Qingjun
Wang, Shaoli
Crickmore, Neil
Zhou, Xuguo
Bravo, Alejandra
Soberón, Mario
Zhang, Youjun
description Host-pathogen interactions are central components of ecological networks where the MAPK signaling pathways act as central hubs of these complex interactions. We have previously shown that an insect hormone modulated MAPK signaling cascade participates as a general switch to trans -regulate differential expression of diverse midgut genes in the diamondback moth, Plutella xylostella (L.) to cope with the insecticidal action of Cry1Ac toxin, produced by the entomopathogenic bacterium Bacillus thuringiensis (Bt). The relationship between topology and functions of this four-tiered phosphorylation signaling cascade, however, is an uncharted territory. Here, we carried out a genome-wide characterization of all the MAPK orthologs in P . xylostella to define their phylogenetic relationships and to confirm their evolutionary conserved modules. Results from quantitative phosphoproteomic analyses, combined with functional validations studies using specific inhibitors and dsRNAs lead us to establish a MAPK “road map”, where p38 and ERK MAPK signaling pathways, in large part, mount a resistance response against Bt toxins through regulating the differential expression of multiple Cry toxin receptors and their non-receptor paralogs in P . xylostella midgut. These data not only advance our understanding of host-pathogen interactions in agricultural pests, but also inform the future development of biopesticides that could suppress Cry resistance phenotypes.
doi_str_mv 10.1371/journal.ppat.1009917
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2582586485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A677502881</galeid><doaj_id>oai_doaj_org_article_9181f4957e07491a94e3410dc99edce7</doaj_id><sourcerecordid>A677502881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-c62e2dd9a39d53339b7c92071c65e3030e7f141b23437b7f3496e52a4772bb033</originalsourceid><addsrcrecordid>eNqVkluP1CAYhhvjxl1X_4GJJN7oxYxQoJQbk3HjYbLrIbpeE0q_dph0SoXWw78XdqqxZm9MGkpfHt6v3yHLHhG8JlSQ53s3-V5362HQ45pgLCURd7IzwjldCSrY3b_2p9n9EPYYM0JJcS87pYxJLsviLAvXO0Ae2qnTo3U96nRfB6MHQK5B7zYfL1GwbQxj-xYZHU9qQI3zaNx9135M6kttbNdNIUqTj4KFPtiAbN-AubG0PdJpDfEb7VwYH2Qnje4CPJzf59mX16-uL96urj682V5srlamoOUY1xzyupaayppTSmUljMyxIKbgQDHFIBrCSJVTRkUlGspkATzXTIi8qjCl59njo-_QuaDmegWV8zI-BSt5JLZHonZ6rwZvD9r_VE5bdSM436qUpelASVKSJlZNABZMEi0ZUEZwbaSE2oCIXi_maFN1SFI_et0tTJcnvd2p1n1TJeM5JiQaPJ0NvPs6QRjVwQYDXWwJuCn9tyCY85LIiD75B709u5lqdUwgNsTFuCaZqk0hBMd5Waaw61sonTp9sMb10NioLy48W1yIzAg_xlZPIajt50__wb5fsuzIGu9C8ND8qR3BKo387yRVGnk1jzz9Bd3o8k8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582586485</pqid></control><display><type>article</type><title>The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Guo, Zhaojiang ; Kang, Shi ; Wu, Qingjun ; Wang, Shaoli ; Crickmore, Neil ; Zhou, Xuguo ; Bravo, Alejandra ; Soberón, Mario ; Zhang, Youjun</creator><creatorcontrib>Guo, Zhaojiang ; Kang, Shi ; Wu, Qingjun ; Wang, Shaoli ; Crickmore, Neil ; Zhou, Xuguo ; Bravo, Alejandra ; Soberón, Mario ; Zhang, Youjun</creatorcontrib><description>Host-pathogen interactions are central components of ecological networks where the MAPK signaling pathways act as central hubs of these complex interactions. We have previously shown that an insect hormone modulated MAPK signaling cascade participates as a general switch to trans -regulate differential expression of diverse midgut genes in the diamondback moth, Plutella xylostella (L.) to cope with the insecticidal action of Cry1Ac toxin, produced by the entomopathogenic bacterium Bacillus thuringiensis (Bt). The relationship between topology and functions of this four-tiered phosphorylation signaling cascade, however, is an uncharted territory. Here, we carried out a genome-wide characterization of all the MAPK orthologs in P . xylostella to define their phylogenetic relationships and to confirm their evolutionary conserved modules. Results from quantitative phosphoproteomic analyses, combined with functional validations studies using specific inhibitors and dsRNAs lead us to establish a MAPK “road map”, where p38 and ERK MAPK signaling pathways, in large part, mount a resistance response against Bt toxins through regulating the differential expression of multiple Cry toxin receptors and their non-receptor paralogs in P . xylostella midgut. These data not only advance our understanding of host-pathogen interactions in agricultural pests, but also inform the future development of biopesticides that could suppress Cry resistance phenotypes.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1009917</identifier><identifier>PMID: 34495986</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>ABC transporters ; Agricultural pests ; Arthropods ; Bacillus thuringiensis ; Biology and life sciences ; Biopesticides ; Butterflies &amp; moths ; Cellular signal transduction ; Cry1Ac toxin ; Diamond-back moth ; Evolutionary conservation ; Extracellular signal-regulated kinase ; Gene expression ; Genetic aspects ; Genomes ; Host-bacteria relationships ; Host-pathogen interactions ; Infections ; Insecticide resistance ; Insects ; Kinases ; MAP kinase ; Medicine and Health Sciences ; Midgut ; Mitogen-activated protein kinases ; Pathogens ; Pathways ; Pest resistance ; Pesticides ; Pests ; Phenotypes ; Phosphorylation ; Phylogenetics ; Phylogeny ; Physiological aspects ; Product development ; Proteins ; Receptors ; Signal transduction ; Signaling ; Topology ; Toxins</subject><ispartof>PLoS pathogens, 2021-09, Vol.17 (9), p.e1009917-e1009917</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Guo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Guo et al 2021 Guo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-c62e2dd9a39d53339b7c92071c65e3030e7f141b23437b7f3496e52a4772bb033</citedby><cites>FETCH-LOGICAL-c638t-c62e2dd9a39d53339b7c92071c65e3030e7f141b23437b7f3496e52a4772bb033</cites><orcidid>0000-0002-7573-7475 ; 0000-0002-2385-8224 ; 0000-0001-5170-6781 ; 0000-0003-4682-7241 ; 0000-0003-3508-6695 ; 0000-0002-8448-0763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452011/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452011/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids></links><search><creatorcontrib>Guo, Zhaojiang</creatorcontrib><creatorcontrib>Kang, Shi</creatorcontrib><creatorcontrib>Wu, Qingjun</creatorcontrib><creatorcontrib>Wang, Shaoli</creatorcontrib><creatorcontrib>Crickmore, Neil</creatorcontrib><creatorcontrib>Zhou, Xuguo</creatorcontrib><creatorcontrib>Bravo, Alejandra</creatorcontrib><creatorcontrib>Soberón, Mario</creatorcontrib><creatorcontrib>Zhang, Youjun</creatorcontrib><title>The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host</title><title>PLoS pathogens</title><description>Host-pathogen interactions are central components of ecological networks where the MAPK signaling pathways act as central hubs of these complex interactions. We have previously shown that an insect hormone modulated MAPK signaling cascade participates as a general switch to trans -regulate differential expression of diverse midgut genes in the diamondback moth, Plutella xylostella (L.) to cope with the insecticidal action of Cry1Ac toxin, produced by the entomopathogenic bacterium Bacillus thuringiensis (Bt). The relationship between topology and functions of this four-tiered phosphorylation signaling cascade, however, is an uncharted territory. Here, we carried out a genome-wide characterization of all the MAPK orthologs in P . xylostella to define their phylogenetic relationships and to confirm their evolutionary conserved modules. Results from quantitative phosphoproteomic analyses, combined with functional validations studies using specific inhibitors and dsRNAs lead us to establish a MAPK “road map”, where p38 and ERK MAPK signaling pathways, in large part, mount a resistance response against Bt toxins through regulating the differential expression of multiple Cry toxin receptors and their non-receptor paralogs in P . xylostella midgut. These data not only advance our understanding of host-pathogen interactions in agricultural pests, but also inform the future development of biopesticides that could suppress Cry resistance phenotypes.</description><subject>ABC transporters</subject><subject>Agricultural pests</subject><subject>Arthropods</subject><subject>Bacillus thuringiensis</subject><subject>Biology and life sciences</subject><subject>Biopesticides</subject><subject>Butterflies &amp; moths</subject><subject>Cellular signal transduction</subject><subject>Cry1Ac toxin</subject><subject>Diamond-back moth</subject><subject>Evolutionary conservation</subject><subject>Extracellular signal-regulated kinase</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Host-bacteria relationships</subject><subject>Host-pathogen interactions</subject><subject>Infections</subject><subject>Insecticide resistance</subject><subject>Insects</subject><subject>Kinases</subject><subject>MAP kinase</subject><subject>Medicine and Health Sciences</subject><subject>Midgut</subject><subject>Mitogen-activated protein kinases</subject><subject>Pathogens</subject><subject>Pathways</subject><subject>Pest resistance</subject><subject>Pesticides</subject><subject>Pests</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Physiological aspects</subject><subject>Product development</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Topology</subject><subject>Toxins</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkluP1CAYhhvjxl1X_4GJJN7oxYxQoJQbk3HjYbLrIbpeE0q_dph0SoXWw78XdqqxZm9MGkpfHt6v3yHLHhG8JlSQ53s3-V5362HQ45pgLCURd7IzwjldCSrY3b_2p9n9EPYYM0JJcS87pYxJLsviLAvXO0Ae2qnTo3U96nRfB6MHQK5B7zYfL1GwbQxj-xYZHU9qQI3zaNx9135M6kttbNdNIUqTj4KFPtiAbN-AubG0PdJpDfEb7VwYH2Qnje4CPJzf59mX16-uL96urj682V5srlamoOUY1xzyupaayppTSmUljMyxIKbgQDHFIBrCSJVTRkUlGspkATzXTIi8qjCl59njo-_QuaDmegWV8zI-BSt5JLZHonZ6rwZvD9r_VE5bdSM436qUpelASVKSJlZNABZMEi0ZUEZwbaSE2oCIXi_maFN1SFI_et0tTJcnvd2p1n1TJeM5JiQaPJ0NvPs6QRjVwQYDXWwJuCn9tyCY85LIiD75B709u5lqdUwgNsTFuCaZqk0hBMd5Waaw61sonTp9sMb10NioLy48W1yIzAg_xlZPIajt50__wb5fsuzIGu9C8ND8qR3BKo387yRVGnk1jzz9Bd3o8k8</recordid><startdate>20210908</startdate><enddate>20210908</enddate><creator>Guo, Zhaojiang</creator><creator>Kang, Shi</creator><creator>Wu, Qingjun</creator><creator>Wang, Shaoli</creator><creator>Crickmore, Neil</creator><creator>Zhou, Xuguo</creator><creator>Bravo, Alejandra</creator><creator>Soberón, Mario</creator><creator>Zhang, Youjun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7573-7475</orcidid><orcidid>https://orcid.org/0000-0002-2385-8224</orcidid><orcidid>https://orcid.org/0000-0001-5170-6781</orcidid><orcidid>https://orcid.org/0000-0003-4682-7241</orcidid><orcidid>https://orcid.org/0000-0003-3508-6695</orcidid><orcidid>https://orcid.org/0000-0002-8448-0763</orcidid></search><sort><creationdate>20210908</creationdate><title>The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host</title><author>Guo, Zhaojiang ; Kang, Shi ; Wu, Qingjun ; Wang, Shaoli ; Crickmore, Neil ; Zhou, Xuguo ; Bravo, Alejandra ; Soberón, Mario ; Zhang, Youjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-c62e2dd9a39d53339b7c92071c65e3030e7f141b23437b7f3496e52a4772bb033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ABC transporters</topic><topic>Agricultural pests</topic><topic>Arthropods</topic><topic>Bacillus thuringiensis</topic><topic>Biology and life sciences</topic><topic>Biopesticides</topic><topic>Butterflies &amp; moths</topic><topic>Cellular signal transduction</topic><topic>Cry1Ac toxin</topic><topic>Diamond-back moth</topic><topic>Evolutionary conservation</topic><topic>Extracellular signal-regulated kinase</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Host-bacteria relationships</topic><topic>Host-pathogen interactions</topic><topic>Infections</topic><topic>Insecticide resistance</topic><topic>Insects</topic><topic>Kinases</topic><topic>MAP kinase</topic><topic>Medicine and Health Sciences</topic><topic>Midgut</topic><topic>Mitogen-activated protein kinases</topic><topic>Pathogens</topic><topic>Pathways</topic><topic>Pest resistance</topic><topic>Pesticides</topic><topic>Pests</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Physiological aspects</topic><topic>Product development</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Topology</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Zhaojiang</creatorcontrib><creatorcontrib>Kang, Shi</creatorcontrib><creatorcontrib>Wu, Qingjun</creatorcontrib><creatorcontrib>Wang, Shaoli</creatorcontrib><creatorcontrib>Crickmore, Neil</creatorcontrib><creatorcontrib>Zhou, Xuguo</creatorcontrib><creatorcontrib>Bravo, Alejandra</creatorcontrib><creatorcontrib>Soberón, Mario</creatorcontrib><creatorcontrib>Zhang, Youjun</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Zhaojiang</au><au>Kang, Shi</au><au>Wu, Qingjun</au><au>Wang, Shaoli</au><au>Crickmore, Neil</au><au>Zhou, Xuguo</au><au>Bravo, Alejandra</au><au>Soberón, Mario</au><au>Zhang, Youjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host</atitle><jtitle>PLoS pathogens</jtitle><date>2021-09-08</date><risdate>2021</risdate><volume>17</volume><issue>9</issue><spage>e1009917</spage><epage>e1009917</epage><pages>e1009917-e1009917</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Host-pathogen interactions are central components of ecological networks where the MAPK signaling pathways act as central hubs of these complex interactions. We have previously shown that an insect hormone modulated MAPK signaling cascade participates as a general switch to trans -regulate differential expression of diverse midgut genes in the diamondback moth, Plutella xylostella (L.) to cope with the insecticidal action of Cry1Ac toxin, produced by the entomopathogenic bacterium Bacillus thuringiensis (Bt). The relationship between topology and functions of this four-tiered phosphorylation signaling cascade, however, is an uncharted territory. Here, we carried out a genome-wide characterization of all the MAPK orthologs in P . xylostella to define their phylogenetic relationships and to confirm their evolutionary conserved modules. Results from quantitative phosphoproteomic analyses, combined with functional validations studies using specific inhibitors and dsRNAs lead us to establish a MAPK “road map”, where p38 and ERK MAPK signaling pathways, in large part, mount a resistance response against Bt toxins through regulating the differential expression of multiple Cry toxin receptors and their non-receptor paralogs in P . xylostella midgut. These data not only advance our understanding of host-pathogen interactions in agricultural pests, but also inform the future development of biopesticides that could suppress Cry resistance phenotypes.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34495986</pmid><doi>10.1371/journal.ppat.1009917</doi><orcidid>https://orcid.org/0000-0002-7573-7475</orcidid><orcidid>https://orcid.org/0000-0002-2385-8224</orcidid><orcidid>https://orcid.org/0000-0001-5170-6781</orcidid><orcidid>https://orcid.org/0000-0003-4682-7241</orcidid><orcidid>https://orcid.org/0000-0003-3508-6695</orcidid><orcidid>https://orcid.org/0000-0002-8448-0763</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2021-09, Vol.17 (9), p.e1009917-e1009917
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_2582586485
source Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
subjects ABC transporters
Agricultural pests
Arthropods
Bacillus thuringiensis
Biology and life sciences
Biopesticides
Butterflies & moths
Cellular signal transduction
Cry1Ac toxin
Diamond-back moth
Evolutionary conservation
Extracellular signal-regulated kinase
Gene expression
Genetic aspects
Genomes
Host-bacteria relationships
Host-pathogen interactions
Infections
Insecticide resistance
Insects
Kinases
MAP kinase
Medicine and Health Sciences
Midgut
Mitogen-activated protein kinases
Pathogens
Pathways
Pest resistance
Pesticides
Pests
Phenotypes
Phosphorylation
Phylogenetics
Phylogeny
Physiological aspects
Product development
Proteins
Receptors
Signal transduction
Signaling
Topology
Toxins
title The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A25%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20regulation%20landscape%20of%20MAPK%20signaling%20cascade%20for%20thwarting%20Bacillus%20thuringiensis%20infection%20in%20an%20insect%20host&rft.jtitle=PLoS%20pathogens&rft.au=Guo,%20Zhaojiang&rft.date=2021-09-08&rft.volume=17&rft.issue=9&rft.spage=e1009917&rft.epage=e1009917&rft.pages=e1009917-e1009917&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1009917&rft_dat=%3Cgale_plos_%3EA677502881%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582586485&rft_id=info:pmid/34495986&rft_galeid=A677502881&rft_doaj_id=oai_doaj_org_article_9181f4957e07491a94e3410dc99edce7&rfr_iscdi=true