The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host
Host-pathogen interactions are central components of ecological networks where the MAPK signaling pathways act as central hubs of these complex interactions. We have previously shown that an insect hormone modulated MAPK signaling cascade participates as a general switch to trans -regulate different...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2021-09, Vol.17 (9), p.e1009917-e1009917 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009917 |
---|---|
container_issue | 9 |
container_start_page | e1009917 |
container_title | PLoS pathogens |
container_volume | 17 |
creator | Guo, Zhaojiang Kang, Shi Wu, Qingjun Wang, Shaoli Crickmore, Neil Zhou, Xuguo Bravo, Alejandra Soberón, Mario Zhang, Youjun |
description | Host-pathogen interactions are central components of ecological networks where the MAPK signaling pathways act as central hubs of these complex interactions. We have previously shown that an insect hormone modulated MAPK signaling cascade participates as a general switch to
trans
-regulate differential expression of diverse midgut genes in the diamondback moth,
Plutella xylostella
(L.) to cope with the insecticidal action of Cry1Ac toxin, produced by the entomopathogenic bacterium
Bacillus thuringiensis
(Bt). The relationship between topology and functions of this four-tiered phosphorylation signaling cascade, however, is an uncharted territory. Here, we carried out a genome-wide characterization of all the MAPK orthologs in
P
.
xylostella
to define their phylogenetic relationships and to confirm their evolutionary conserved modules. Results from quantitative phosphoproteomic analyses, combined with functional validations studies using specific inhibitors and dsRNAs lead us to establish a MAPK “road map”, where p38 and ERK MAPK signaling pathways, in large part, mount a resistance response against Bt toxins through regulating the differential expression of multiple Cry toxin receptors and their non-receptor paralogs in
P
.
xylostella
midgut. These data not only advance our understanding of host-pathogen interactions in agricultural pests, but also inform the future development of biopesticides that could suppress Cry resistance phenotypes. |
doi_str_mv | 10.1371/journal.ppat.1009917 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2582586485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A677502881</galeid><doaj_id>oai_doaj_org_article_9181f4957e07491a94e3410dc99edce7</doaj_id><sourcerecordid>A677502881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-c62e2dd9a39d53339b7c92071c65e3030e7f141b23437b7f3496e52a4772bb033</originalsourceid><addsrcrecordid>eNqVkluP1CAYhhvjxl1X_4GJJN7oxYxQoJQbk3HjYbLrIbpeE0q_dph0SoXWw78XdqqxZm9MGkpfHt6v3yHLHhG8JlSQ53s3-V5362HQ45pgLCURd7IzwjldCSrY3b_2p9n9EPYYM0JJcS87pYxJLsviLAvXO0Ae2qnTo3U96nRfB6MHQK5B7zYfL1GwbQxj-xYZHU9qQI3zaNx9135M6kttbNdNIUqTj4KFPtiAbN-AubG0PdJpDfEb7VwYH2Qnje4CPJzf59mX16-uL96urj682V5srlamoOUY1xzyupaayppTSmUljMyxIKbgQDHFIBrCSJVTRkUlGspkATzXTIi8qjCl59njo-_QuaDmegWV8zI-BSt5JLZHonZ6rwZvD9r_VE5bdSM436qUpelASVKSJlZNABZMEi0ZUEZwbaSE2oCIXi_maFN1SFI_et0tTJcnvd2p1n1TJeM5JiQaPJ0NvPs6QRjVwQYDXWwJuCn9tyCY85LIiD75B709u5lqdUwgNsTFuCaZqk0hBMd5Waaw61sonTp9sMb10NioLy48W1yIzAg_xlZPIajt50__wb5fsuzIGu9C8ND8qR3BKo387yRVGnk1jzz9Bd3o8k8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582586485</pqid></control><display><type>article</type><title>The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Guo, Zhaojiang ; Kang, Shi ; Wu, Qingjun ; Wang, Shaoli ; Crickmore, Neil ; Zhou, Xuguo ; Bravo, Alejandra ; Soberón, Mario ; Zhang, Youjun</creator><creatorcontrib>Guo, Zhaojiang ; Kang, Shi ; Wu, Qingjun ; Wang, Shaoli ; Crickmore, Neil ; Zhou, Xuguo ; Bravo, Alejandra ; Soberón, Mario ; Zhang, Youjun</creatorcontrib><description>Host-pathogen interactions are central components of ecological networks where the MAPK signaling pathways act as central hubs of these complex interactions. We have previously shown that an insect hormone modulated MAPK signaling cascade participates as a general switch to
trans
-regulate differential expression of diverse midgut genes in the diamondback moth,
Plutella xylostella
(L.) to cope with the insecticidal action of Cry1Ac toxin, produced by the entomopathogenic bacterium
Bacillus thuringiensis
(Bt). The relationship between topology and functions of this four-tiered phosphorylation signaling cascade, however, is an uncharted territory. Here, we carried out a genome-wide characterization of all the MAPK orthologs in
P
.
xylostella
to define their phylogenetic relationships and to confirm their evolutionary conserved modules. Results from quantitative phosphoproteomic analyses, combined with functional validations studies using specific inhibitors and dsRNAs lead us to establish a MAPK “road map”, where p38 and ERK MAPK signaling pathways, in large part, mount a resistance response against Bt toxins through regulating the differential expression of multiple Cry toxin receptors and their non-receptor paralogs in
P
.
xylostella
midgut. These data not only advance our understanding of host-pathogen interactions in agricultural pests, but also inform the future development of biopesticides that could suppress Cry resistance phenotypes.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1009917</identifier><identifier>PMID: 34495986</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>ABC transporters ; Agricultural pests ; Arthropods ; Bacillus thuringiensis ; Biology and life sciences ; Biopesticides ; Butterflies & moths ; Cellular signal transduction ; Cry1Ac toxin ; Diamond-back moth ; Evolutionary conservation ; Extracellular signal-regulated kinase ; Gene expression ; Genetic aspects ; Genomes ; Host-bacteria relationships ; Host-pathogen interactions ; Infections ; Insecticide resistance ; Insects ; Kinases ; MAP kinase ; Medicine and Health Sciences ; Midgut ; Mitogen-activated protein kinases ; Pathogens ; Pathways ; Pest resistance ; Pesticides ; Pests ; Phenotypes ; Phosphorylation ; Phylogenetics ; Phylogeny ; Physiological aspects ; Product development ; Proteins ; Receptors ; Signal transduction ; Signaling ; Topology ; Toxins</subject><ispartof>PLoS pathogens, 2021-09, Vol.17 (9), p.e1009917-e1009917</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Guo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Guo et al 2021 Guo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-c62e2dd9a39d53339b7c92071c65e3030e7f141b23437b7f3496e52a4772bb033</citedby><cites>FETCH-LOGICAL-c638t-c62e2dd9a39d53339b7c92071c65e3030e7f141b23437b7f3496e52a4772bb033</cites><orcidid>0000-0002-7573-7475 ; 0000-0002-2385-8224 ; 0000-0001-5170-6781 ; 0000-0003-4682-7241 ; 0000-0003-3508-6695 ; 0000-0002-8448-0763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452011/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452011/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids></links><search><creatorcontrib>Guo, Zhaojiang</creatorcontrib><creatorcontrib>Kang, Shi</creatorcontrib><creatorcontrib>Wu, Qingjun</creatorcontrib><creatorcontrib>Wang, Shaoli</creatorcontrib><creatorcontrib>Crickmore, Neil</creatorcontrib><creatorcontrib>Zhou, Xuguo</creatorcontrib><creatorcontrib>Bravo, Alejandra</creatorcontrib><creatorcontrib>Soberón, Mario</creatorcontrib><creatorcontrib>Zhang, Youjun</creatorcontrib><title>The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host</title><title>PLoS pathogens</title><description>Host-pathogen interactions are central components of ecological networks where the MAPK signaling pathways act as central hubs of these complex interactions. We have previously shown that an insect hormone modulated MAPK signaling cascade participates as a general switch to
trans
-regulate differential expression of diverse midgut genes in the diamondback moth,
Plutella xylostella
(L.) to cope with the insecticidal action of Cry1Ac toxin, produced by the entomopathogenic bacterium
Bacillus thuringiensis
(Bt). The relationship between topology and functions of this four-tiered phosphorylation signaling cascade, however, is an uncharted territory. Here, we carried out a genome-wide characterization of all the MAPK orthologs in
P
.
xylostella
to define their phylogenetic relationships and to confirm their evolutionary conserved modules. Results from quantitative phosphoproteomic analyses, combined with functional validations studies using specific inhibitors and dsRNAs lead us to establish a MAPK “road map”, where p38 and ERK MAPK signaling pathways, in large part, mount a resistance response against Bt toxins through regulating the differential expression of multiple Cry toxin receptors and their non-receptor paralogs in
P
.
xylostella
midgut. These data not only advance our understanding of host-pathogen interactions in agricultural pests, but also inform the future development of biopesticides that could suppress Cry resistance phenotypes.</description><subject>ABC transporters</subject><subject>Agricultural pests</subject><subject>Arthropods</subject><subject>Bacillus thuringiensis</subject><subject>Biology and life sciences</subject><subject>Biopesticides</subject><subject>Butterflies & moths</subject><subject>Cellular signal transduction</subject><subject>Cry1Ac toxin</subject><subject>Diamond-back moth</subject><subject>Evolutionary conservation</subject><subject>Extracellular signal-regulated kinase</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Host-bacteria relationships</subject><subject>Host-pathogen interactions</subject><subject>Infections</subject><subject>Insecticide resistance</subject><subject>Insects</subject><subject>Kinases</subject><subject>MAP kinase</subject><subject>Medicine and Health Sciences</subject><subject>Midgut</subject><subject>Mitogen-activated protein kinases</subject><subject>Pathogens</subject><subject>Pathways</subject><subject>Pest resistance</subject><subject>Pesticides</subject><subject>Pests</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Physiological aspects</subject><subject>Product development</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Topology</subject><subject>Toxins</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkluP1CAYhhvjxl1X_4GJJN7oxYxQoJQbk3HjYbLrIbpeE0q_dph0SoXWw78XdqqxZm9MGkpfHt6v3yHLHhG8JlSQ53s3-V5362HQ45pgLCURd7IzwjldCSrY3b_2p9n9EPYYM0JJcS87pYxJLsviLAvXO0Ae2qnTo3U96nRfB6MHQK5B7zYfL1GwbQxj-xYZHU9qQI3zaNx9135M6kttbNdNIUqTj4KFPtiAbN-AubG0PdJpDfEb7VwYH2Qnje4CPJzf59mX16-uL96urj682V5srlamoOUY1xzyupaayppTSmUljMyxIKbgQDHFIBrCSJVTRkUlGspkATzXTIi8qjCl59njo-_QuaDmegWV8zI-BSt5JLZHonZ6rwZvD9r_VE5bdSM436qUpelASVKSJlZNABZMEi0ZUEZwbaSE2oCIXi_maFN1SFI_et0tTJcnvd2p1n1TJeM5JiQaPJ0NvPs6QRjVwQYDXWwJuCn9tyCY85LIiD75B709u5lqdUwgNsTFuCaZqk0hBMd5Waaw61sonTp9sMb10NioLy48W1yIzAg_xlZPIajt50__wb5fsuzIGu9C8ND8qR3BKo387yRVGnk1jzz9Bd3o8k8</recordid><startdate>20210908</startdate><enddate>20210908</enddate><creator>Guo, Zhaojiang</creator><creator>Kang, Shi</creator><creator>Wu, Qingjun</creator><creator>Wang, Shaoli</creator><creator>Crickmore, Neil</creator><creator>Zhou, Xuguo</creator><creator>Bravo, Alejandra</creator><creator>Soberón, Mario</creator><creator>Zhang, Youjun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7573-7475</orcidid><orcidid>https://orcid.org/0000-0002-2385-8224</orcidid><orcidid>https://orcid.org/0000-0001-5170-6781</orcidid><orcidid>https://orcid.org/0000-0003-4682-7241</orcidid><orcidid>https://orcid.org/0000-0003-3508-6695</orcidid><orcidid>https://orcid.org/0000-0002-8448-0763</orcidid></search><sort><creationdate>20210908</creationdate><title>The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host</title><author>Guo, Zhaojiang ; Kang, Shi ; Wu, Qingjun ; Wang, Shaoli ; Crickmore, Neil ; Zhou, Xuguo ; Bravo, Alejandra ; Soberón, Mario ; Zhang, Youjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-c62e2dd9a39d53339b7c92071c65e3030e7f141b23437b7f3496e52a4772bb033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ABC transporters</topic><topic>Agricultural pests</topic><topic>Arthropods</topic><topic>Bacillus thuringiensis</topic><topic>Biology and life sciences</topic><topic>Biopesticides</topic><topic>Butterflies & moths</topic><topic>Cellular signal transduction</topic><topic>Cry1Ac toxin</topic><topic>Diamond-back moth</topic><topic>Evolutionary conservation</topic><topic>Extracellular signal-regulated kinase</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Host-bacteria relationships</topic><topic>Host-pathogen interactions</topic><topic>Infections</topic><topic>Insecticide resistance</topic><topic>Insects</topic><topic>Kinases</topic><topic>MAP kinase</topic><topic>Medicine and Health Sciences</topic><topic>Midgut</topic><topic>Mitogen-activated protein kinases</topic><topic>Pathogens</topic><topic>Pathways</topic><topic>Pest resistance</topic><topic>Pesticides</topic><topic>Pests</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Physiological aspects</topic><topic>Product development</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Topology</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Zhaojiang</creatorcontrib><creatorcontrib>Kang, Shi</creatorcontrib><creatorcontrib>Wu, Qingjun</creatorcontrib><creatorcontrib>Wang, Shaoli</creatorcontrib><creatorcontrib>Crickmore, Neil</creatorcontrib><creatorcontrib>Zhou, Xuguo</creatorcontrib><creatorcontrib>Bravo, Alejandra</creatorcontrib><creatorcontrib>Soberón, Mario</creatorcontrib><creatorcontrib>Zhang, Youjun</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Zhaojiang</au><au>Kang, Shi</au><au>Wu, Qingjun</au><au>Wang, Shaoli</au><au>Crickmore, Neil</au><au>Zhou, Xuguo</au><au>Bravo, Alejandra</au><au>Soberón, Mario</au><au>Zhang, Youjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host</atitle><jtitle>PLoS pathogens</jtitle><date>2021-09-08</date><risdate>2021</risdate><volume>17</volume><issue>9</issue><spage>e1009917</spage><epage>e1009917</epage><pages>e1009917-e1009917</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Host-pathogen interactions are central components of ecological networks where the MAPK signaling pathways act as central hubs of these complex interactions. We have previously shown that an insect hormone modulated MAPK signaling cascade participates as a general switch to
trans
-regulate differential expression of diverse midgut genes in the diamondback moth,
Plutella xylostella
(L.) to cope with the insecticidal action of Cry1Ac toxin, produced by the entomopathogenic bacterium
Bacillus thuringiensis
(Bt). The relationship between topology and functions of this four-tiered phosphorylation signaling cascade, however, is an uncharted territory. Here, we carried out a genome-wide characterization of all the MAPK orthologs in
P
.
xylostella
to define their phylogenetic relationships and to confirm their evolutionary conserved modules. Results from quantitative phosphoproteomic analyses, combined with functional validations studies using specific inhibitors and dsRNAs lead us to establish a MAPK “road map”, where p38 and ERK MAPK signaling pathways, in large part, mount a resistance response against Bt toxins through regulating the differential expression of multiple Cry toxin receptors and their non-receptor paralogs in
P
.
xylostella
midgut. These data not only advance our understanding of host-pathogen interactions in agricultural pests, but also inform the future development of biopesticides that could suppress Cry resistance phenotypes.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34495986</pmid><doi>10.1371/journal.ppat.1009917</doi><orcidid>https://orcid.org/0000-0002-7573-7475</orcidid><orcidid>https://orcid.org/0000-0002-2385-8224</orcidid><orcidid>https://orcid.org/0000-0001-5170-6781</orcidid><orcidid>https://orcid.org/0000-0003-4682-7241</orcidid><orcidid>https://orcid.org/0000-0003-3508-6695</orcidid><orcidid>https://orcid.org/0000-0002-8448-0763</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2021-09, Vol.17 (9), p.e1009917-e1009917 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2582586485 |
source | Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access |
subjects | ABC transporters Agricultural pests Arthropods Bacillus thuringiensis Biology and life sciences Biopesticides Butterflies & moths Cellular signal transduction Cry1Ac toxin Diamond-back moth Evolutionary conservation Extracellular signal-regulated kinase Gene expression Genetic aspects Genomes Host-bacteria relationships Host-pathogen interactions Infections Insecticide resistance Insects Kinases MAP kinase Medicine and Health Sciences Midgut Mitogen-activated protein kinases Pathogens Pathways Pest resistance Pesticides Pests Phenotypes Phosphorylation Phylogenetics Phylogeny Physiological aspects Product development Proteins Receptors Signal transduction Signaling Topology Toxins |
title | The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A25%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20regulation%20landscape%20of%20MAPK%20signaling%20cascade%20for%20thwarting%20Bacillus%20thuringiensis%20infection%20in%20an%20insect%20host&rft.jtitle=PLoS%20pathogens&rft.au=Guo,%20Zhaojiang&rft.date=2021-09-08&rft.volume=17&rft.issue=9&rft.spage=e1009917&rft.epage=e1009917&rft.pages=e1009917-e1009917&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1009917&rft_dat=%3Cgale_plos_%3EA677502881%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582586485&rft_id=info:pmid/34495986&rft_galeid=A677502881&rft_doaj_id=oai_doaj_org_article_9181f4957e07491a94e3410dc99edce7&rfr_iscdi=true |