Probing T-cell response by sequence-based probabilistic modeling
With the increasing ability to use high-throughput next-generation sequencing to quantify the diversity of the human T cell receptor (TCR) repertoire, the ability to use TCR sequences to infer antigen-specificity could greatly aid potential diagnostics and therapeutics. Here, we use a machine-learni...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2021-09, Vol.17 (9), p.e1009297-e1009297 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009297 |
---|---|
container_issue | 9 |
container_start_page | e1009297 |
container_title | PLoS computational biology |
container_volume | 17 |
creator | Bravi, Barbara Balachandran, Vinod P Greenbaum, Benjamin D Walczak, Aleksandra M Mora, Thierry Monasson, Rémi Cocco, Simona |
description | With the increasing ability to use high-throughput next-generation sequencing to quantify the diversity of the human T cell receptor (TCR) repertoire, the ability to use TCR sequences to infer antigen-specificity could greatly aid potential diagnostics and therapeutics. Here, we use a machine-learning approach known as Restricted Boltzmann Machine to develop a sequence-based inference approach to identify antigen-specific TCRs. Our approach combines probabilistic models of TCR sequences with clone abundance information to extract TCR sequence motifs central to an antigen-specific response. We use this model to identify patient personalized TCR motifs that respond to individual tumor and infectious disease antigens, and to accurately discriminate specific from non-specific responses. Furthermore, the hidden structure of the model results in an interpretable representation space where TCRs responding to the same antigen cluster, correctly discriminating the response of TCR to different viral epitopes. The model can be used to identify condition specific responding TCRs. We focus on the examples of TCRs reactive to candidate neoantigens and selected epitopes in experiments of stimulated TCR clone expansion. |
doi_str_mv | 10.1371/journal.pcbi.1009297 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2582586429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A677502970</galeid><doaj_id>oai_doaj_org_article_1b09e79bd3cc42a9a6d184af909b44d9</doaj_id><sourcerecordid>A677502970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-39d84af852ba54a27864fd01eb69ef04ee76ae4723b1c85324e2a141b8f9fdbf3</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4kIPWez4K74gVhXQlVaAoJwtf0y2XmXjrZ2t6L_HYdOqW_WCHMnW5Hlfz4ynKF5jNMNE4A_rsIu97mZba_wMIyRrKZ4Ux5gxUgnCmqf3zkfFi5TWCOWj5M-LI0KpIFyK4-LTjxiM71flRWWh68oIaRv6BKW5KRNc7aC3UBmdwJXbTGrjO58Gb8tNcNBl4cviWau7BK-m_aT4_eXzxdl5tfz-dXE2X1aWSzZURLqG6rZhtdGM6lo0nLYOYTBcQosogOAaqKiJwbZhpKZQa0yxaVrZOtOSk-Lt3nfbhaSm4pOqWZM_TmuZicWecEGv1Tb6jY43Kmiv_gVCXCkdc-odKGyQBCGNI9bSWkvNHR7Tk0gaSt3o9XG6bWc24Cz0Q9Tdgenhn95fqlW4Vg0VHCGcDU73BpcPZOfzpRpjiBCGqWTXI_t-uiyG3PE0qI1P42voHsJurJFLIjgVY17vHqCPd2KiVjoX6_s25BztaKrmXAiG8qigTM0eofJysPE29ND6HD8QnB4IMjPAn2Gldympxa-f_8F-O2TpnrUxpBShvWsYRmqc9dsi1Tjrapr1LHtz_43uRLfDTf4C1iz4tA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582586429</pqid></control><display><type>article</type><title>Probing T-cell response by sequence-based probabilistic modeling</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bravi, Barbara ; Balachandran, Vinod P ; Greenbaum, Benjamin D ; Walczak, Aleksandra M ; Mora, Thierry ; Monasson, Rémi ; Cocco, Simona</creator><contributor>Antia, Rustom</contributor><creatorcontrib>Bravi, Barbara ; Balachandran, Vinod P ; Greenbaum, Benjamin D ; Walczak, Aleksandra M ; Mora, Thierry ; Monasson, Rémi ; Cocco, Simona ; Antia, Rustom</creatorcontrib><description>With the increasing ability to use high-throughput next-generation sequencing to quantify the diversity of the human T cell receptor (TCR) repertoire, the ability to use TCR sequences to infer antigen-specificity could greatly aid potential diagnostics and therapeutics. Here, we use a machine-learning approach known as Restricted Boltzmann Machine to develop a sequence-based inference approach to identify antigen-specific TCRs. Our approach combines probabilistic models of TCR sequences with clone abundance information to extract TCR sequence motifs central to an antigen-specific response. We use this model to identify patient personalized TCR motifs that respond to individual tumor and infectious disease antigens, and to accurately discriminate specific from non-specific responses. Furthermore, the hidden structure of the model results in an interpretable representation space where TCRs responding to the same antigen cluster, correctly discriminating the response of TCR to different viral epitopes. The model can be used to identify condition specific responding TCRs. We focus on the examples of TCRs reactive to candidate neoantigens and selected epitopes in experiments of stimulated TCR clone expansion.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009297</identifier><identifier>PMID: 34473697</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acids ; Antigen (tumor-associated) ; Antigens ; Biology and Life Sciences ; Cancer ; Cancer Survivors ; Carcinoma, Pancreatic Ductal - immunology ; Cloning ; Cluster Analysis ; Computational Biology - methods ; Cytokines ; Datasets ; Datasets as Topic ; Epitopes ; Humans ; Immunotherapy ; Infectious diseases ; Information processing ; Learning algorithms ; Learning models (Stochastic processes) ; Life Sciences ; Lymphocytes ; Lymphocytes T ; Machine learning ; Mathematical models ; Medicine and Health Sciences ; Models, Statistical ; Mutation ; Neoantigens ; Next-generation sequencing ; Pancreatic Neoplasms - immunology ; Patients ; Peptides ; Physiological aspects ; Probabilistic models ; Receptors, Antigen, T-Cell - immunology ; Research and Analysis Methods ; T cell receptors ; T cells ; T-cell receptor ; T-Lymphocytes - immunology ; Tumors</subject><ispartof>PLoS computational biology, 2021-09, Vol.17 (9), p.e1009297-e1009297</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Bravi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2021 Bravi et al 2021 Bravi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-39d84af852ba54a27864fd01eb69ef04ee76ae4723b1c85324e2a141b8f9fdbf3</citedby><cites>FETCH-LOGICAL-c695t-39d84af852ba54a27864fd01eb69ef04ee76ae4723b1c85324e2a141b8f9fdbf3</cites><orcidid>0000-0002-1852-7789 ; 0000-0002-4459-0204 ; 0000-0002-5456-9361 ; 0000-0002-2686-5702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8476001/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8476001/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34473697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-03351495$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Antia, Rustom</contributor><creatorcontrib>Bravi, Barbara</creatorcontrib><creatorcontrib>Balachandran, Vinod P</creatorcontrib><creatorcontrib>Greenbaum, Benjamin D</creatorcontrib><creatorcontrib>Walczak, Aleksandra M</creatorcontrib><creatorcontrib>Mora, Thierry</creatorcontrib><creatorcontrib>Monasson, Rémi</creatorcontrib><creatorcontrib>Cocco, Simona</creatorcontrib><title>Probing T-cell response by sequence-based probabilistic modeling</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>With the increasing ability to use high-throughput next-generation sequencing to quantify the diversity of the human T cell receptor (TCR) repertoire, the ability to use TCR sequences to infer antigen-specificity could greatly aid potential diagnostics and therapeutics. Here, we use a machine-learning approach known as Restricted Boltzmann Machine to develop a sequence-based inference approach to identify antigen-specific TCRs. Our approach combines probabilistic models of TCR sequences with clone abundance information to extract TCR sequence motifs central to an antigen-specific response. We use this model to identify patient personalized TCR motifs that respond to individual tumor and infectious disease antigens, and to accurately discriminate specific from non-specific responses. Furthermore, the hidden structure of the model results in an interpretable representation space where TCRs responding to the same antigen cluster, correctly discriminating the response of TCR to different viral epitopes. The model can be used to identify condition specific responding TCRs. We focus on the examples of TCRs reactive to candidate neoantigens and selected epitopes in experiments of stimulated TCR clone expansion.</description><subject>Amino acids</subject><subject>Antigen (tumor-associated)</subject><subject>Antigens</subject><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>Cancer Survivors</subject><subject>Carcinoma, Pancreatic Ductal - immunology</subject><subject>Cloning</subject><subject>Cluster Analysis</subject><subject>Computational Biology - methods</subject><subject>Cytokines</subject><subject>Datasets</subject><subject>Datasets as Topic</subject><subject>Epitopes</subject><subject>Humans</subject><subject>Immunotherapy</subject><subject>Infectious diseases</subject><subject>Information processing</subject><subject>Learning algorithms</subject><subject>Learning models (Stochastic processes)</subject><subject>Life Sciences</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Models, Statistical</subject><subject>Mutation</subject><subject>Neoantigens</subject><subject>Next-generation sequencing</subject><subject>Pancreatic Neoplasms - immunology</subject><subject>Patients</subject><subject>Peptides</subject><subject>Physiological aspects</subject><subject>Probabilistic models</subject><subject>Receptors, Antigen, T-Cell - immunology</subject><subject>Research and Analysis Methods</subject><subject>T cell receptors</subject><subject>T cells</subject><subject>T-cell receptor</subject><subject>T-Lymphocytes - immunology</subject><subject>Tumors</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4kIPWez4K74gVhXQlVaAoJwtf0y2XmXjrZ2t6L_HYdOqW_WCHMnW5Hlfz4ynKF5jNMNE4A_rsIu97mZba_wMIyRrKZ4Ux5gxUgnCmqf3zkfFi5TWCOWj5M-LI0KpIFyK4-LTjxiM71flRWWh68oIaRv6BKW5KRNc7aC3UBmdwJXbTGrjO58Gb8tNcNBl4cviWau7BK-m_aT4_eXzxdl5tfz-dXE2X1aWSzZURLqG6rZhtdGM6lo0nLYOYTBcQosogOAaqKiJwbZhpKZQa0yxaVrZOtOSk-Lt3nfbhaSm4pOqWZM_TmuZicWecEGv1Tb6jY43Kmiv_gVCXCkdc-odKGyQBCGNI9bSWkvNHR7Tk0gaSt3o9XG6bWc24Cz0Q9Tdgenhn95fqlW4Vg0VHCGcDU73BpcPZOfzpRpjiBCGqWTXI_t-uiyG3PE0qI1P42voHsJurJFLIjgVY17vHqCPd2KiVjoX6_s25BztaKrmXAiG8qigTM0eofJysPE29ND6HD8QnB4IMjPAn2Gldympxa-f_8F-O2TpnrUxpBShvWsYRmqc9dsi1Tjrapr1LHtz_43uRLfDTf4C1iz4tA</recordid><startdate>20210902</startdate><enddate>20210902</enddate><creator>Bravi, Barbara</creator><creator>Balachandran, Vinod P</creator><creator>Greenbaum, Benjamin D</creator><creator>Walczak, Aleksandra M</creator><creator>Mora, Thierry</creator><creator>Monasson, Rémi</creator><creator>Cocco, Simona</creator><general>Public Library of Science</general><general>PLOS</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1852-7789</orcidid><orcidid>https://orcid.org/0000-0002-4459-0204</orcidid><orcidid>https://orcid.org/0000-0002-5456-9361</orcidid><orcidid>https://orcid.org/0000-0002-2686-5702</orcidid></search><sort><creationdate>20210902</creationdate><title>Probing T-cell response by sequence-based probabilistic modeling</title><author>Bravi, Barbara ; Balachandran, Vinod P ; Greenbaum, Benjamin D ; Walczak, Aleksandra M ; Mora, Thierry ; Monasson, Rémi ; Cocco, Simona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-39d84af852ba54a27864fd01eb69ef04ee76ae4723b1c85324e2a141b8f9fdbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acids</topic><topic>Antigen (tumor-associated)</topic><topic>Antigens</topic><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>Cancer Survivors</topic><topic>Carcinoma, Pancreatic Ductal - immunology</topic><topic>Cloning</topic><topic>Cluster Analysis</topic><topic>Computational Biology - methods</topic><topic>Cytokines</topic><topic>Datasets</topic><topic>Datasets as Topic</topic><topic>Epitopes</topic><topic>Humans</topic><topic>Immunotherapy</topic><topic>Infectious diseases</topic><topic>Information processing</topic><topic>Learning algorithms</topic><topic>Learning models (Stochastic processes)</topic><topic>Life Sciences</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Models, Statistical</topic><topic>Mutation</topic><topic>Neoantigens</topic><topic>Next-generation sequencing</topic><topic>Pancreatic Neoplasms - immunology</topic><topic>Patients</topic><topic>Peptides</topic><topic>Physiological aspects</topic><topic>Probabilistic models</topic><topic>Receptors, Antigen, T-Cell - immunology</topic><topic>Research and Analysis Methods</topic><topic>T cell receptors</topic><topic>T cells</topic><topic>T-cell receptor</topic><topic>T-Lymphocytes - immunology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bravi, Barbara</creatorcontrib><creatorcontrib>Balachandran, Vinod P</creatorcontrib><creatorcontrib>Greenbaum, Benjamin D</creatorcontrib><creatorcontrib>Walczak, Aleksandra M</creatorcontrib><creatorcontrib>Mora, Thierry</creatorcontrib><creatorcontrib>Monasson, Rémi</creatorcontrib><creatorcontrib>Cocco, Simona</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bravi, Barbara</au><au>Balachandran, Vinod P</au><au>Greenbaum, Benjamin D</au><au>Walczak, Aleksandra M</au><au>Mora, Thierry</au><au>Monasson, Rémi</au><au>Cocco, Simona</au><au>Antia, Rustom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing T-cell response by sequence-based probabilistic modeling</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-09-02</date><risdate>2021</risdate><volume>17</volume><issue>9</issue><spage>e1009297</spage><epage>e1009297</epage><pages>e1009297-e1009297</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>With the increasing ability to use high-throughput next-generation sequencing to quantify the diversity of the human T cell receptor (TCR) repertoire, the ability to use TCR sequences to infer antigen-specificity could greatly aid potential diagnostics and therapeutics. Here, we use a machine-learning approach known as Restricted Boltzmann Machine to develop a sequence-based inference approach to identify antigen-specific TCRs. Our approach combines probabilistic models of TCR sequences with clone abundance information to extract TCR sequence motifs central to an antigen-specific response. We use this model to identify patient personalized TCR motifs that respond to individual tumor and infectious disease antigens, and to accurately discriminate specific from non-specific responses. Furthermore, the hidden structure of the model results in an interpretable representation space where TCRs responding to the same antigen cluster, correctly discriminating the response of TCR to different viral epitopes. The model can be used to identify condition specific responding TCRs. We focus on the examples of TCRs reactive to candidate neoantigens and selected epitopes in experiments of stimulated TCR clone expansion.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34473697</pmid><doi>10.1371/journal.pcbi.1009297</doi><orcidid>https://orcid.org/0000-0002-1852-7789</orcidid><orcidid>https://orcid.org/0000-0002-4459-0204</orcidid><orcidid>https://orcid.org/0000-0002-5456-9361</orcidid><orcidid>https://orcid.org/0000-0002-2686-5702</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2021-09, Vol.17 (9), p.e1009297-e1009297 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2582586429 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Amino acids Antigen (tumor-associated) Antigens Biology and Life Sciences Cancer Cancer Survivors Carcinoma, Pancreatic Ductal - immunology Cloning Cluster Analysis Computational Biology - methods Cytokines Datasets Datasets as Topic Epitopes Humans Immunotherapy Infectious diseases Information processing Learning algorithms Learning models (Stochastic processes) Life Sciences Lymphocytes Lymphocytes T Machine learning Mathematical models Medicine and Health Sciences Models, Statistical Mutation Neoantigens Next-generation sequencing Pancreatic Neoplasms - immunology Patients Peptides Physiological aspects Probabilistic models Receptors, Antigen, T-Cell - immunology Research and Analysis Methods T cell receptors T cells T-cell receptor T-Lymphocytes - immunology Tumors |
title | Probing T-cell response by sequence-based probabilistic modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20T-cell%20response%20by%20sequence-based%20probabilistic%20modeling&rft.jtitle=PLoS%20computational%20biology&rft.au=Bravi,%20Barbara&rft.date=2021-09-02&rft.volume=17&rft.issue=9&rft.spage=e1009297&rft.epage=e1009297&rft.pages=e1009297-e1009297&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009297&rft_dat=%3Cgale_plos_%3EA677502970%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582586429&rft_id=info:pmid/34473697&rft_galeid=A677502970&rft_doaj_id=oai_doaj_org_article_1b09e79bd3cc42a9a6d184af909b44d9&rfr_iscdi=true |