Probing T-cell response by sequence-based probabilistic modeling

With the increasing ability to use high-throughput next-generation sequencing to quantify the diversity of the human T cell receptor (TCR) repertoire, the ability to use TCR sequences to infer antigen-specificity could greatly aid potential diagnostics and therapeutics. Here, we use a machine-learni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2021-09, Vol.17 (9), p.e1009297-e1009297
Hauptverfasser: Bravi, Barbara, Balachandran, Vinod P, Greenbaum, Benjamin D, Walczak, Aleksandra M, Mora, Thierry, Monasson, Rémi, Cocco, Simona
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1009297
container_issue 9
container_start_page e1009297
container_title PLoS computational biology
container_volume 17
creator Bravi, Barbara
Balachandran, Vinod P
Greenbaum, Benjamin D
Walczak, Aleksandra M
Mora, Thierry
Monasson, Rémi
Cocco, Simona
description With the increasing ability to use high-throughput next-generation sequencing to quantify the diversity of the human T cell receptor (TCR) repertoire, the ability to use TCR sequences to infer antigen-specificity could greatly aid potential diagnostics and therapeutics. Here, we use a machine-learning approach known as Restricted Boltzmann Machine to develop a sequence-based inference approach to identify antigen-specific TCRs. Our approach combines probabilistic models of TCR sequences with clone abundance information to extract TCR sequence motifs central to an antigen-specific response. We use this model to identify patient personalized TCR motifs that respond to individual tumor and infectious disease antigens, and to accurately discriminate specific from non-specific responses. Furthermore, the hidden structure of the model results in an interpretable representation space where TCRs responding to the same antigen cluster, correctly discriminating the response of TCR to different viral epitopes. The model can be used to identify condition specific responding TCRs. We focus on the examples of TCRs reactive to candidate neoantigens and selected epitopes in experiments of stimulated TCR clone expansion.
doi_str_mv 10.1371/journal.pcbi.1009297
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2582586429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A677502970</galeid><doaj_id>oai_doaj_org_article_1b09e79bd3cc42a9a6d184af909b44d9</doaj_id><sourcerecordid>A677502970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-39d84af852ba54a27864fd01eb69ef04ee76ae4723b1c85324e2a141b8f9fdbf3</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4kIPWez4K74gVhXQlVaAoJwtf0y2XmXjrZ2t6L_HYdOqW_WCHMnW5Hlfz4ynKF5jNMNE4A_rsIu97mZba_wMIyRrKZ4Ux5gxUgnCmqf3zkfFi5TWCOWj5M-LI0KpIFyK4-LTjxiM71flRWWh68oIaRv6BKW5KRNc7aC3UBmdwJXbTGrjO58Gb8tNcNBl4cviWau7BK-m_aT4_eXzxdl5tfz-dXE2X1aWSzZURLqG6rZhtdGM6lo0nLYOYTBcQosogOAaqKiJwbZhpKZQa0yxaVrZOtOSk-Lt3nfbhaSm4pOqWZM_TmuZicWecEGv1Tb6jY43Kmiv_gVCXCkdc-odKGyQBCGNI9bSWkvNHR7Tk0gaSt3o9XG6bWc24Cz0Q9Tdgenhn95fqlW4Vg0VHCGcDU73BpcPZOfzpRpjiBCGqWTXI_t-uiyG3PE0qI1P42voHsJurJFLIjgVY17vHqCPd2KiVjoX6_s25BztaKrmXAiG8qigTM0eofJysPE29ND6HD8QnB4IMjPAn2Gldympxa-f_8F-O2TpnrUxpBShvWsYRmqc9dsi1Tjrapr1LHtz_43uRLfDTf4C1iz4tA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582586429</pqid></control><display><type>article</type><title>Probing T-cell response by sequence-based probabilistic modeling</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bravi, Barbara ; Balachandran, Vinod P ; Greenbaum, Benjamin D ; Walczak, Aleksandra M ; Mora, Thierry ; Monasson, Rémi ; Cocco, Simona</creator><contributor>Antia, Rustom</contributor><creatorcontrib>Bravi, Barbara ; Balachandran, Vinod P ; Greenbaum, Benjamin D ; Walczak, Aleksandra M ; Mora, Thierry ; Monasson, Rémi ; Cocco, Simona ; Antia, Rustom</creatorcontrib><description>With the increasing ability to use high-throughput next-generation sequencing to quantify the diversity of the human T cell receptor (TCR) repertoire, the ability to use TCR sequences to infer antigen-specificity could greatly aid potential diagnostics and therapeutics. Here, we use a machine-learning approach known as Restricted Boltzmann Machine to develop a sequence-based inference approach to identify antigen-specific TCRs. Our approach combines probabilistic models of TCR sequences with clone abundance information to extract TCR sequence motifs central to an antigen-specific response. We use this model to identify patient personalized TCR motifs that respond to individual tumor and infectious disease antigens, and to accurately discriminate specific from non-specific responses. Furthermore, the hidden structure of the model results in an interpretable representation space where TCRs responding to the same antigen cluster, correctly discriminating the response of TCR to different viral epitopes. The model can be used to identify condition specific responding TCRs. We focus on the examples of TCRs reactive to candidate neoantigens and selected epitopes in experiments of stimulated TCR clone expansion.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009297</identifier><identifier>PMID: 34473697</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acids ; Antigen (tumor-associated) ; Antigens ; Biology and Life Sciences ; Cancer ; Cancer Survivors ; Carcinoma, Pancreatic Ductal - immunology ; Cloning ; Cluster Analysis ; Computational Biology - methods ; Cytokines ; Datasets ; Datasets as Topic ; Epitopes ; Humans ; Immunotherapy ; Infectious diseases ; Information processing ; Learning algorithms ; Learning models (Stochastic processes) ; Life Sciences ; Lymphocytes ; Lymphocytes T ; Machine learning ; Mathematical models ; Medicine and Health Sciences ; Models, Statistical ; Mutation ; Neoantigens ; Next-generation sequencing ; Pancreatic Neoplasms - immunology ; Patients ; Peptides ; Physiological aspects ; Probabilistic models ; Receptors, Antigen, T-Cell - immunology ; Research and Analysis Methods ; T cell receptors ; T cells ; T-cell receptor ; T-Lymphocytes - immunology ; Tumors</subject><ispartof>PLoS computational biology, 2021-09, Vol.17 (9), p.e1009297-e1009297</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Bravi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2021 Bravi et al 2021 Bravi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-39d84af852ba54a27864fd01eb69ef04ee76ae4723b1c85324e2a141b8f9fdbf3</citedby><cites>FETCH-LOGICAL-c695t-39d84af852ba54a27864fd01eb69ef04ee76ae4723b1c85324e2a141b8f9fdbf3</cites><orcidid>0000-0002-1852-7789 ; 0000-0002-4459-0204 ; 0000-0002-5456-9361 ; 0000-0002-2686-5702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8476001/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8476001/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34473697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-03351495$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Antia, Rustom</contributor><creatorcontrib>Bravi, Barbara</creatorcontrib><creatorcontrib>Balachandran, Vinod P</creatorcontrib><creatorcontrib>Greenbaum, Benjamin D</creatorcontrib><creatorcontrib>Walczak, Aleksandra M</creatorcontrib><creatorcontrib>Mora, Thierry</creatorcontrib><creatorcontrib>Monasson, Rémi</creatorcontrib><creatorcontrib>Cocco, Simona</creatorcontrib><title>Probing T-cell response by sequence-based probabilistic modeling</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>With the increasing ability to use high-throughput next-generation sequencing to quantify the diversity of the human T cell receptor (TCR) repertoire, the ability to use TCR sequences to infer antigen-specificity could greatly aid potential diagnostics and therapeutics. Here, we use a machine-learning approach known as Restricted Boltzmann Machine to develop a sequence-based inference approach to identify antigen-specific TCRs. Our approach combines probabilistic models of TCR sequences with clone abundance information to extract TCR sequence motifs central to an antigen-specific response. We use this model to identify patient personalized TCR motifs that respond to individual tumor and infectious disease antigens, and to accurately discriminate specific from non-specific responses. Furthermore, the hidden structure of the model results in an interpretable representation space where TCRs responding to the same antigen cluster, correctly discriminating the response of TCR to different viral epitopes. The model can be used to identify condition specific responding TCRs. We focus on the examples of TCRs reactive to candidate neoantigens and selected epitopes in experiments of stimulated TCR clone expansion.</description><subject>Amino acids</subject><subject>Antigen (tumor-associated)</subject><subject>Antigens</subject><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>Cancer Survivors</subject><subject>Carcinoma, Pancreatic Ductal - immunology</subject><subject>Cloning</subject><subject>Cluster Analysis</subject><subject>Computational Biology - methods</subject><subject>Cytokines</subject><subject>Datasets</subject><subject>Datasets as Topic</subject><subject>Epitopes</subject><subject>Humans</subject><subject>Immunotherapy</subject><subject>Infectious diseases</subject><subject>Information processing</subject><subject>Learning algorithms</subject><subject>Learning models (Stochastic processes)</subject><subject>Life Sciences</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Models, Statistical</subject><subject>Mutation</subject><subject>Neoantigens</subject><subject>Next-generation sequencing</subject><subject>Pancreatic Neoplasms - immunology</subject><subject>Patients</subject><subject>Peptides</subject><subject>Physiological aspects</subject><subject>Probabilistic models</subject><subject>Receptors, Antigen, T-Cell - immunology</subject><subject>Research and Analysis Methods</subject><subject>T cell receptors</subject><subject>T cells</subject><subject>T-cell receptor</subject><subject>T-Lymphocytes - immunology</subject><subject>Tumors</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4kIPWez4K74gVhXQlVaAoJwtf0y2XmXjrZ2t6L_HYdOqW_WCHMnW5Hlfz4ynKF5jNMNE4A_rsIu97mZba_wMIyRrKZ4Ux5gxUgnCmqf3zkfFi5TWCOWj5M-LI0KpIFyK4-LTjxiM71flRWWh68oIaRv6BKW5KRNc7aC3UBmdwJXbTGrjO58Gb8tNcNBl4cviWau7BK-m_aT4_eXzxdl5tfz-dXE2X1aWSzZURLqG6rZhtdGM6lo0nLYOYTBcQosogOAaqKiJwbZhpKZQa0yxaVrZOtOSk-Lt3nfbhaSm4pOqWZM_TmuZicWecEGv1Tb6jY43Kmiv_gVCXCkdc-odKGyQBCGNI9bSWkvNHR7Tk0gaSt3o9XG6bWc24Cz0Q9Tdgenhn95fqlW4Vg0VHCGcDU73BpcPZOfzpRpjiBCGqWTXI_t-uiyG3PE0qI1P42voHsJurJFLIjgVY17vHqCPd2KiVjoX6_s25BztaKrmXAiG8qigTM0eofJysPE29ND6HD8QnB4IMjPAn2Gldympxa-f_8F-O2TpnrUxpBShvWsYRmqc9dsi1Tjrapr1LHtz_43uRLfDTf4C1iz4tA</recordid><startdate>20210902</startdate><enddate>20210902</enddate><creator>Bravi, Barbara</creator><creator>Balachandran, Vinod P</creator><creator>Greenbaum, Benjamin D</creator><creator>Walczak, Aleksandra M</creator><creator>Mora, Thierry</creator><creator>Monasson, Rémi</creator><creator>Cocco, Simona</creator><general>Public Library of Science</general><general>PLOS</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1852-7789</orcidid><orcidid>https://orcid.org/0000-0002-4459-0204</orcidid><orcidid>https://orcid.org/0000-0002-5456-9361</orcidid><orcidid>https://orcid.org/0000-0002-2686-5702</orcidid></search><sort><creationdate>20210902</creationdate><title>Probing T-cell response by sequence-based probabilistic modeling</title><author>Bravi, Barbara ; Balachandran, Vinod P ; Greenbaum, Benjamin D ; Walczak, Aleksandra M ; Mora, Thierry ; Monasson, Rémi ; Cocco, Simona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-39d84af852ba54a27864fd01eb69ef04ee76ae4723b1c85324e2a141b8f9fdbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acids</topic><topic>Antigen (tumor-associated)</topic><topic>Antigens</topic><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>Cancer Survivors</topic><topic>Carcinoma, Pancreatic Ductal - immunology</topic><topic>Cloning</topic><topic>Cluster Analysis</topic><topic>Computational Biology - methods</topic><topic>Cytokines</topic><topic>Datasets</topic><topic>Datasets as Topic</topic><topic>Epitopes</topic><topic>Humans</topic><topic>Immunotherapy</topic><topic>Infectious diseases</topic><topic>Information processing</topic><topic>Learning algorithms</topic><topic>Learning models (Stochastic processes)</topic><topic>Life Sciences</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Models, Statistical</topic><topic>Mutation</topic><topic>Neoantigens</topic><topic>Next-generation sequencing</topic><topic>Pancreatic Neoplasms - immunology</topic><topic>Patients</topic><topic>Peptides</topic><topic>Physiological aspects</topic><topic>Probabilistic models</topic><topic>Receptors, Antigen, T-Cell - immunology</topic><topic>Research and Analysis Methods</topic><topic>T cell receptors</topic><topic>T cells</topic><topic>T-cell receptor</topic><topic>T-Lymphocytes - immunology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bravi, Barbara</creatorcontrib><creatorcontrib>Balachandran, Vinod P</creatorcontrib><creatorcontrib>Greenbaum, Benjamin D</creatorcontrib><creatorcontrib>Walczak, Aleksandra M</creatorcontrib><creatorcontrib>Mora, Thierry</creatorcontrib><creatorcontrib>Monasson, Rémi</creatorcontrib><creatorcontrib>Cocco, Simona</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bravi, Barbara</au><au>Balachandran, Vinod P</au><au>Greenbaum, Benjamin D</au><au>Walczak, Aleksandra M</au><au>Mora, Thierry</au><au>Monasson, Rémi</au><au>Cocco, Simona</au><au>Antia, Rustom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing T-cell response by sequence-based probabilistic modeling</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-09-02</date><risdate>2021</risdate><volume>17</volume><issue>9</issue><spage>e1009297</spage><epage>e1009297</epage><pages>e1009297-e1009297</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>With the increasing ability to use high-throughput next-generation sequencing to quantify the diversity of the human T cell receptor (TCR) repertoire, the ability to use TCR sequences to infer antigen-specificity could greatly aid potential diagnostics and therapeutics. Here, we use a machine-learning approach known as Restricted Boltzmann Machine to develop a sequence-based inference approach to identify antigen-specific TCRs. Our approach combines probabilistic models of TCR sequences with clone abundance information to extract TCR sequence motifs central to an antigen-specific response. We use this model to identify patient personalized TCR motifs that respond to individual tumor and infectious disease antigens, and to accurately discriminate specific from non-specific responses. Furthermore, the hidden structure of the model results in an interpretable representation space where TCRs responding to the same antigen cluster, correctly discriminating the response of TCR to different viral epitopes. The model can be used to identify condition specific responding TCRs. We focus on the examples of TCRs reactive to candidate neoantigens and selected epitopes in experiments of stimulated TCR clone expansion.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34473697</pmid><doi>10.1371/journal.pcbi.1009297</doi><orcidid>https://orcid.org/0000-0002-1852-7789</orcidid><orcidid>https://orcid.org/0000-0002-4459-0204</orcidid><orcidid>https://orcid.org/0000-0002-5456-9361</orcidid><orcidid>https://orcid.org/0000-0002-2686-5702</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2021-09, Vol.17 (9), p.e1009297-e1009297
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2582586429
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Amino acids
Antigen (tumor-associated)
Antigens
Biology and Life Sciences
Cancer
Cancer Survivors
Carcinoma, Pancreatic Ductal - immunology
Cloning
Cluster Analysis
Computational Biology - methods
Cytokines
Datasets
Datasets as Topic
Epitopes
Humans
Immunotherapy
Infectious diseases
Information processing
Learning algorithms
Learning models (Stochastic processes)
Life Sciences
Lymphocytes
Lymphocytes T
Machine learning
Mathematical models
Medicine and Health Sciences
Models, Statistical
Mutation
Neoantigens
Next-generation sequencing
Pancreatic Neoplasms - immunology
Patients
Peptides
Physiological aspects
Probabilistic models
Receptors, Antigen, T-Cell - immunology
Research and Analysis Methods
T cell receptors
T cells
T-cell receptor
T-Lymphocytes - immunology
Tumors
title Probing T-cell response by sequence-based probabilistic modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20T-cell%20response%20by%20sequence-based%20probabilistic%20modeling&rft.jtitle=PLoS%20computational%20biology&rft.au=Bravi,%20Barbara&rft.date=2021-09-02&rft.volume=17&rft.issue=9&rft.spage=e1009297&rft.epage=e1009297&rft.pages=e1009297-e1009297&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009297&rft_dat=%3Cgale_plos_%3EA677502970%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582586429&rft_id=info:pmid/34473697&rft_galeid=A677502970&rft_doaj_id=oai_doaj_org_article_1b09e79bd3cc42a9a6d184af909b44d9&rfr_iscdi=true