Networks of Causal Linkage Between Eigenmodes Characterize Behavioral Dynamics of Caenorhabditis elegans

Behavioral phenotyping of model organisms has played an important role in unravelling the complexities of animal behavior. Techniques for classifying behavior often rely on easily identified changes in posture and motion. However, such approaches are likely to miss complex behaviors that cannot be r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2021-09, Vol.17 (9), p.e1009329-e1009329
Hauptverfasser: Saberski, Erik, Bock, Antonia K, Goodridge, Rachel, Agarwal, Vitul, Lorimer, Tom, Rifkin, Scott A, Sugihara, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1009329
container_issue 9
container_start_page e1009329
container_title PLoS computational biology
container_volume 17
creator Saberski, Erik
Bock, Antonia K
Goodridge, Rachel
Agarwal, Vitul
Lorimer, Tom
Rifkin, Scott A
Sugihara, George
description Behavioral phenotyping of model organisms has played an important role in unravelling the complexities of animal behavior. Techniques for classifying behavior often rely on easily identified changes in posture and motion. However, such approaches are likely to miss complex behaviors that cannot be readily distinguished by eye (e.g., behaviors produced by high dimensional dynamics). To explore this issue, we focus on the model organism Caenorhabditis elegans, where behaviors have been extensively recorded and classified. Using a dynamical systems lens, we identify high dimensional, nonlinear causal relationships between four basic shapes that describe worm motion (eigenmodes, also called "eigenworms"). We find relationships between all pairs of eigenmodes, but the timescales of the interactions vary between pairs and across individuals. Using these varying timescales, we create "interaction profiles" to represent an individual's behavioral dynamics. As desired, these profiles are able to distinguish well-known behavioral states: i.e., the profiles for foraging individuals are distinct from those of individuals exhibiting an escape response. More importantly, we find that interaction profiles can distinguish high dimensional behaviors among divergent mutant strains that were previously classified as phenotypically similar. Specifically, we find it is able to detect phenotypic behavioral differences not previously identified in strains related to dysfunction of hermaphrodite-specific neurons.
doi_str_mv 10.1371/journal.pcbi.1009329
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2582586402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A677502911</galeid><doaj_id>oai_doaj_org_article_762ed93f3c0f41f2ba7bab9ccf7cbcc7</doaj_id><sourcerecordid>A677502911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-23d1d631b77b639160a838cffc51c28acfbce555a5e019ab2837f665710249673</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXew4tpNLpbIUWKkqEh9na-KMs26z9mJnC-XX47Bp1UW9oFiK5XnedzzjybLnlMwpk_Tthd8GB_18oxs7p4TUrKgfZIeUczaTjFcP7-wPsicxXhCStrV4nB2wkhNRSnmYrc5x-OnDZcy9yRewjdDnZ9ZdQof5uxRCdPmp7dCtfYsxX6wggB4w2N9jfAVX1ockeX_tYG315ILOhxU0rR1szLHHDlx8mj0y0Ed8Nv2Psu8fTr8tPs3OPn9cLk7OZloIOswK1tJWMNpI2QhWU0GgYpU2RnOqiwq0aTRyzoEjoTU0RcWkEYJLSoqyFpIdZS93vpveRzU1KaqCV2mJkhSJWO6I1sOF2gS7hnCtPFj198CHTkEYrO5RSVFgWzPDNDElNUUDsoGm1tpI3Wg9Zjuesm2bNbYa3ZDasWe6H3F2pTp_paqyLpmoksHrySD4H1uMg1rbqLHvwaHfjveWtKYVKWhCX_2D3l_dRHWQCrDO-JRXj6bqREjJSVHT0Wt-D5W-FtMzeofGpvM9wZs9QWIG_DV0aWKiWn798h_s-T5b7lgdfIwBzW3vKFHjnN8UqcY5V9OcJ9mLu32_Fd0MNvsDCv_5gg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582586402</pqid></control><display><type>article</type><title>Networks of Causal Linkage Between Eigenmodes Characterize Behavioral Dynamics of Caenorhabditis elegans</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Saberski, Erik ; Bock, Antonia K ; Goodridge, Rachel ; Agarwal, Vitul ; Lorimer, Tom ; Rifkin, Scott A ; Sugihara, George</creator><creatorcontrib>Saberski, Erik ; Bock, Antonia K ; Goodridge, Rachel ; Agarwal, Vitul ; Lorimer, Tom ; Rifkin, Scott A ; Sugihara, George</creatorcontrib><description>Behavioral phenotyping of model organisms has played an important role in unravelling the complexities of animal behavior. Techniques for classifying behavior often rely on easily identified changes in posture and motion. However, such approaches are likely to miss complex behaviors that cannot be readily distinguished by eye (e.g., behaviors produced by high dimensional dynamics). To explore this issue, we focus on the model organism Caenorhabditis elegans, where behaviors have been extensively recorded and classified. Using a dynamical systems lens, we identify high dimensional, nonlinear causal relationships between four basic shapes that describe worm motion (eigenmodes, also called "eigenworms"). We find relationships between all pairs of eigenmodes, but the timescales of the interactions vary between pairs and across individuals. Using these varying timescales, we create "interaction profiles" to represent an individual's behavioral dynamics. As desired, these profiles are able to distinguish well-known behavioral states: i.e., the profiles for foraging individuals are distinct from those of individuals exhibiting an escape response. More importantly, we find that interaction profiles can distinguish high dimensional behaviors among divergent mutant strains that were previously classified as phenotypically similar. Specifically, we find it is able to detect phenotypic behavioral differences not previously identified in strains related to dysfunction of hermaphrodite-specific neurons.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009329</identifier><identifier>PMID: 34506477</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal behavior ; Animals ; Behavior ; Behavior, Animal - physiology ; Biological research ; Biology and Life Sciences ; Biology, Experimental ; Caenorhabditis elegans ; Caenorhabditis elegans - physiology ; Causal inference ; Computer and Information Sciences ; Foraging behavior ; Genetic aspects ; Hermaphrodites ; Human mechanics ; Influence ; Models, Biological ; Mutation ; Nematodes ; Phenotype ; Phenotyping ; Physical Sciences ; Physiological aspects ; Posture ; Psychological aspects ; Research and Analysis Methods ; Social Sciences ; Strains (organisms) ; Time series ; Variables ; Worms</subject><ispartof>PLoS computational biology, 2021-09, Vol.17 (9), p.e1009329-e1009329</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Saberski et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Saberski et al 2021 Saberski et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-23d1d631b77b639160a838cffc51c28acfbce555a5e019ab2837f665710249673</citedby><cites>FETCH-LOGICAL-c661t-23d1d631b77b639160a838cffc51c28acfbce555a5e019ab2837f665710249673</cites><orcidid>0000-0002-6475-6187 ; 0000-0001-8476-3256 ; 0000-0002-1523-9044 ; 0000-0002-2863-6946 ; 0000-0003-0382-7700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494368/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494368/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34506477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saberski, Erik</creatorcontrib><creatorcontrib>Bock, Antonia K</creatorcontrib><creatorcontrib>Goodridge, Rachel</creatorcontrib><creatorcontrib>Agarwal, Vitul</creatorcontrib><creatorcontrib>Lorimer, Tom</creatorcontrib><creatorcontrib>Rifkin, Scott A</creatorcontrib><creatorcontrib>Sugihara, George</creatorcontrib><title>Networks of Causal Linkage Between Eigenmodes Characterize Behavioral Dynamics of Caenorhabditis elegans</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Behavioral phenotyping of model organisms has played an important role in unravelling the complexities of animal behavior. Techniques for classifying behavior often rely on easily identified changes in posture and motion. However, such approaches are likely to miss complex behaviors that cannot be readily distinguished by eye (e.g., behaviors produced by high dimensional dynamics). To explore this issue, we focus on the model organism Caenorhabditis elegans, where behaviors have been extensively recorded and classified. Using a dynamical systems lens, we identify high dimensional, nonlinear causal relationships between four basic shapes that describe worm motion (eigenmodes, also called "eigenworms"). We find relationships between all pairs of eigenmodes, but the timescales of the interactions vary between pairs and across individuals. Using these varying timescales, we create "interaction profiles" to represent an individual's behavioral dynamics. As desired, these profiles are able to distinguish well-known behavioral states: i.e., the profiles for foraging individuals are distinct from those of individuals exhibiting an escape response. More importantly, we find that interaction profiles can distinguish high dimensional behaviors among divergent mutant strains that were previously classified as phenotypically similar. Specifically, we find it is able to detect phenotypic behavioral differences not previously identified in strains related to dysfunction of hermaphrodite-specific neurons.</description><subject>Animal behavior</subject><subject>Animals</subject><subject>Behavior</subject><subject>Behavior, Animal - physiology</subject><subject>Biological research</subject><subject>Biology and Life Sciences</subject><subject>Biology, Experimental</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - physiology</subject><subject>Causal inference</subject><subject>Computer and Information Sciences</subject><subject>Foraging behavior</subject><subject>Genetic aspects</subject><subject>Hermaphrodites</subject><subject>Human mechanics</subject><subject>Influence</subject><subject>Models, Biological</subject><subject>Mutation</subject><subject>Nematodes</subject><subject>Phenotype</subject><subject>Phenotyping</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Posture</subject><subject>Psychological aspects</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Strains (organisms)</subject><subject>Time series</subject><subject>Variables</subject><subject>Worms</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXew4tpNLpbIUWKkqEh9na-KMs26z9mJnC-XX47Bp1UW9oFiK5XnedzzjybLnlMwpk_Tthd8GB_18oxs7p4TUrKgfZIeUczaTjFcP7-wPsicxXhCStrV4nB2wkhNRSnmYrc5x-OnDZcy9yRewjdDnZ9ZdQof5uxRCdPmp7dCtfYsxX6wggB4w2N9jfAVX1ockeX_tYG315ILOhxU0rR1szLHHDlx8mj0y0Ed8Nv2Psu8fTr8tPs3OPn9cLk7OZloIOswK1tJWMNpI2QhWU0GgYpU2RnOqiwq0aTRyzoEjoTU0RcWkEYJLSoqyFpIdZS93vpveRzU1KaqCV2mJkhSJWO6I1sOF2gS7hnCtPFj198CHTkEYrO5RSVFgWzPDNDElNUUDsoGm1tpI3Wg9Zjuesm2bNbYa3ZDasWe6H3F2pTp_paqyLpmoksHrySD4H1uMg1rbqLHvwaHfjveWtKYVKWhCX_2D3l_dRHWQCrDO-JRXj6bqREjJSVHT0Wt-D5W-FtMzeofGpvM9wZs9QWIG_DV0aWKiWn798h_s-T5b7lgdfIwBzW3vKFHjnN8UqcY5V9OcJ9mLu32_Fd0MNvsDCv_5gg</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Saberski, Erik</creator><creator>Bock, Antonia K</creator><creator>Goodridge, Rachel</creator><creator>Agarwal, Vitul</creator><creator>Lorimer, Tom</creator><creator>Rifkin, Scott A</creator><creator>Sugihara, George</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6475-6187</orcidid><orcidid>https://orcid.org/0000-0001-8476-3256</orcidid><orcidid>https://orcid.org/0000-0002-1523-9044</orcidid><orcidid>https://orcid.org/0000-0002-2863-6946</orcidid><orcidid>https://orcid.org/0000-0003-0382-7700</orcidid></search><sort><creationdate>20210901</creationdate><title>Networks of Causal Linkage Between Eigenmodes Characterize Behavioral Dynamics of Caenorhabditis elegans</title><author>Saberski, Erik ; Bock, Antonia K ; Goodridge, Rachel ; Agarwal, Vitul ; Lorimer, Tom ; Rifkin, Scott A ; Sugihara, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-23d1d631b77b639160a838cffc51c28acfbce555a5e019ab2837f665710249673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal behavior</topic><topic>Animals</topic><topic>Behavior</topic><topic>Behavior, Animal - physiology</topic><topic>Biological research</topic><topic>Biology and Life Sciences</topic><topic>Biology, Experimental</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - physiology</topic><topic>Causal inference</topic><topic>Computer and Information Sciences</topic><topic>Foraging behavior</topic><topic>Genetic aspects</topic><topic>Hermaphrodites</topic><topic>Human mechanics</topic><topic>Influence</topic><topic>Models, Biological</topic><topic>Mutation</topic><topic>Nematodes</topic><topic>Phenotype</topic><topic>Phenotyping</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Posture</topic><topic>Psychological aspects</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Strains (organisms)</topic><topic>Time series</topic><topic>Variables</topic><topic>Worms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saberski, Erik</creatorcontrib><creatorcontrib>Bock, Antonia K</creatorcontrib><creatorcontrib>Goodridge, Rachel</creatorcontrib><creatorcontrib>Agarwal, Vitul</creatorcontrib><creatorcontrib>Lorimer, Tom</creatorcontrib><creatorcontrib>Rifkin, Scott A</creatorcontrib><creatorcontrib>Sugihara, George</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saberski, Erik</au><au>Bock, Antonia K</au><au>Goodridge, Rachel</au><au>Agarwal, Vitul</au><au>Lorimer, Tom</au><au>Rifkin, Scott A</au><au>Sugihara, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Networks of Causal Linkage Between Eigenmodes Characterize Behavioral Dynamics of Caenorhabditis elegans</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>17</volume><issue>9</issue><spage>e1009329</spage><epage>e1009329</epage><pages>e1009329-e1009329</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Behavioral phenotyping of model organisms has played an important role in unravelling the complexities of animal behavior. Techniques for classifying behavior often rely on easily identified changes in posture and motion. However, such approaches are likely to miss complex behaviors that cannot be readily distinguished by eye (e.g., behaviors produced by high dimensional dynamics). To explore this issue, we focus on the model organism Caenorhabditis elegans, where behaviors have been extensively recorded and classified. Using a dynamical systems lens, we identify high dimensional, nonlinear causal relationships between four basic shapes that describe worm motion (eigenmodes, also called "eigenworms"). We find relationships between all pairs of eigenmodes, but the timescales of the interactions vary between pairs and across individuals. Using these varying timescales, we create "interaction profiles" to represent an individual's behavioral dynamics. As desired, these profiles are able to distinguish well-known behavioral states: i.e., the profiles for foraging individuals are distinct from those of individuals exhibiting an escape response. More importantly, we find that interaction profiles can distinguish high dimensional behaviors among divergent mutant strains that were previously classified as phenotypically similar. Specifically, we find it is able to detect phenotypic behavioral differences not previously identified in strains related to dysfunction of hermaphrodite-specific neurons.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34506477</pmid><doi>10.1371/journal.pcbi.1009329</doi><orcidid>https://orcid.org/0000-0002-6475-6187</orcidid><orcidid>https://orcid.org/0000-0001-8476-3256</orcidid><orcidid>https://orcid.org/0000-0002-1523-9044</orcidid><orcidid>https://orcid.org/0000-0002-2863-6946</orcidid><orcidid>https://orcid.org/0000-0003-0382-7700</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2021-09, Vol.17 (9), p.e1009329-e1009329
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2582586402
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Public Library of Science (PLoS)
subjects Animal behavior
Animals
Behavior
Behavior, Animal - physiology
Biological research
Biology and Life Sciences
Biology, Experimental
Caenorhabditis elegans
Caenorhabditis elegans - physiology
Causal inference
Computer and Information Sciences
Foraging behavior
Genetic aspects
Hermaphrodites
Human mechanics
Influence
Models, Biological
Mutation
Nematodes
Phenotype
Phenotyping
Physical Sciences
Physiological aspects
Posture
Psychological aspects
Research and Analysis Methods
Social Sciences
Strains (organisms)
Time series
Variables
Worms
title Networks of Causal Linkage Between Eigenmodes Characterize Behavioral Dynamics of Caenorhabditis elegans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Networks%20of%20Causal%20Linkage%20Between%20Eigenmodes%20Characterize%20Behavioral%20Dynamics%20of%20Caenorhabditis%20elegans&rft.jtitle=PLoS%20computational%20biology&rft.au=Saberski,%20Erik&rft.date=2021-09-01&rft.volume=17&rft.issue=9&rft.spage=e1009329&rft.epage=e1009329&rft.pages=e1009329-e1009329&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009329&rft_dat=%3Cgale_plos_%3EA677502911%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582586402&rft_id=info:pmid/34506477&rft_galeid=A677502911&rft_doaj_id=oai_doaj_org_article_762ed93f3c0f41f2ba7bab9ccf7cbcc7&rfr_iscdi=true