Leveraging vibration of effects analysis for robust discovery in observational biomedical data science

Hypothesis generation in observational, biomedical data science often starts with computing an association or identifying the statistical relationship between a dependent and an independent variable. However, the outcome of this process depends fundamentally on modeling strategy, with differing stra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2021-09, Vol.19 (9), p.e3001398-e3001398
Hauptverfasser: Tierney, Braden T, Anderson, Elizabeth, Tan, Yingxuan, Claypool, Kajal, Tangirala, Sivateja, Kostic, Aleksandar D, Manrai, Arjun K, Patel, Chirag J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e3001398
container_issue 9
container_start_page e3001398
container_title PLoS biology
container_volume 19
creator Tierney, Braden T
Anderson, Elizabeth
Tan, Yingxuan
Claypool, Kajal
Tangirala, Sivateja
Kostic, Aleksandar D
Manrai, Arjun K
Patel, Chirag J
description Hypothesis generation in observational, biomedical data science often starts with computing an association or identifying the statistical relationship between a dependent and an independent variable. However, the outcome of this process depends fundamentally on modeling strategy, with differing strategies generating what can be called “vibration of effects” (VoE). VoE is defined by variation in associations that often lead to contradictory results. Here, we present a computational tool capable of modeling VoE in biomedical data by fitting millions of different models and comparing their output. We execute a VoE analysis on a series of widely reported associations (e.g., carrot intake associated with eyesight) with an extended additional focus on lifestyle exposures (e.g., physical activity) and components of the Framingham Risk Score for cardiovascular health (e.g., blood pressure). We leveraged our tool for potential confounder identification, investigating what adjusting variables are responsible for conflicting models. We propose modeling VoE as a critical step in navigating discovery in observational data, discerning robust associations, and cataloging adjusting variables that impact model output.
doi_str_mv 10.1371/journal.pbio.3001398
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2582586262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A677985560</galeid><doaj_id>oai_doaj_org_article_7a473add305f4aa796f527371dfa9008</doaj_id><sourcerecordid>A677985560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c672t-a7c2bbf53f5cd828e4035592de312d40ebd5ec55da2023a02c7784be2aedddd83</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7jr6DwQL3ujFjGnSNOmNsCx-DAwu-HUbTpOTmqHTjEk7OP_edKeKI3uhSSAhec57cl44Wfa0IKuCieLV1o-hh261b5xfMUIKVst72WXBS74UUvL7f5wvskcxbgmhtKbyYXbBSs45ocVlZjd4wACt69v84JoAg_N97m2O1qIeYg4pxzG6mFsf8uCbMQ65cVH7FHbMXWKbiOFwGwddnj6zQ-N0OhoYII_aYa_xcfbAQhfxybwvsi9v33y-fr_c3LxbX19tlroSdFiC0LRpLGeWayOpxJIwzmtqkBXUlAQbw1FzboASyoBQLYQsG6SAJg3JFtmzk-6-81HNFkVFuUyrohVNxPpEGA9btQ9uB-GoPDh1e-FDqyAMTneoBJSCgTGMcFsCiLqynIrkvbFQEzJlez1nG5tUtcZ-CNCdiZ6_9O6bav1BSV6QKkktshezQPDfR4yD2iVrseugRz9O_xZVVUpelgl9_hd6d3Uz1UIqwPXWp7x6ElVXlRC15LwiiVrdQaVpcOe079G6dH8W8PIsIDED_hhaGGNU608f_4P98O_szddztjyxOvgYA9rfPhdETR3xyxA1dYSaO4L9BC0__hA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582586262</pqid></control><display><type>article</type><title>Leveraging vibration of effects analysis for robust discovery in observational biomedical data science</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Tierney, Braden T ; Anderson, Elizabeth ; Tan, Yingxuan ; Claypool, Kajal ; Tangirala, Sivateja ; Kostic, Aleksandar D ; Manrai, Arjun K ; Patel, Chirag J</creator><contributor>Munafò, Marcus</contributor><creatorcontrib>Tierney, Braden T ; Anderson, Elizabeth ; Tan, Yingxuan ; Claypool, Kajal ; Tangirala, Sivateja ; Kostic, Aleksandar D ; Manrai, Arjun K ; Patel, Chirag J ; Munafò, Marcus</creatorcontrib><description>Hypothesis generation in observational, biomedical data science often starts with computing an association or identifying the statistical relationship between a dependent and an independent variable. However, the outcome of this process depends fundamentally on modeling strategy, with differing strategies generating what can be called “vibration of effects” (VoE). VoE is defined by variation in associations that often lead to contradictory results. Here, we present a computational tool capable of modeling VoE in biomedical data by fitting millions of different models and comparing their output. We execute a VoE analysis on a series of widely reported associations (e.g., carrot intake associated with eyesight) with an extended additional focus on lifestyle exposures (e.g., physical activity) and components of the Framingham Risk Score for cardiovascular health (e.g., blood pressure). We leveraged our tool for potential confounder identification, investigating what adjusting variables are responsible for conflicting models. We propose modeling VoE as a critical step in navigating discovery in observational data, discerning robust associations, and cataloging adjusting variables that impact model output.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3001398</identifier><identifier>PMID: 34555021</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Automation ; Biology and Life Sciences ; Biomedical data ; Blood pressure ; Cardiovascular diseases ; Computer applications ; Coronaviruses ; COVID-19 ; Data collection ; Data science ; Disease ; Electronic data processing ; Exercise ; Genotype &amp; phenotype ; Health risks ; Hypotheses ; Independent variables ; Medical research ; Medicine and Health Sciences ; Meta ; Methods ; Physical activity ; Physical Sciences ; Robustness ; Software ; Variables ; Vibration ; Vibration analysis ; Vitamin D</subject><ispartof>PLoS biology, 2021-09, Vol.19 (9), p.e3001398-e3001398</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Tierney et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Tierney et al 2021 Tierney et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c672t-a7c2bbf53f5cd828e4035592de312d40ebd5ec55da2023a02c7784be2aedddd83</citedby><cites>FETCH-LOGICAL-c672t-a7c2bbf53f5cd828e4035592de312d40ebd5ec55da2023a02c7784be2aedddd83</cites><orcidid>0000-0002-8756-8525 ; 0000-0002-0837-4360 ; 0000-0003-0305-471X ; 0000-0001-6674-3219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510627/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510627/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Munafò, Marcus</contributor><creatorcontrib>Tierney, Braden T</creatorcontrib><creatorcontrib>Anderson, Elizabeth</creatorcontrib><creatorcontrib>Tan, Yingxuan</creatorcontrib><creatorcontrib>Claypool, Kajal</creatorcontrib><creatorcontrib>Tangirala, Sivateja</creatorcontrib><creatorcontrib>Kostic, Aleksandar D</creatorcontrib><creatorcontrib>Manrai, Arjun K</creatorcontrib><creatorcontrib>Patel, Chirag J</creatorcontrib><title>Leveraging vibration of effects analysis for robust discovery in observational biomedical data science</title><title>PLoS biology</title><description>Hypothesis generation in observational, biomedical data science often starts with computing an association or identifying the statistical relationship between a dependent and an independent variable. However, the outcome of this process depends fundamentally on modeling strategy, with differing strategies generating what can be called “vibration of effects” (VoE). VoE is defined by variation in associations that often lead to contradictory results. Here, we present a computational tool capable of modeling VoE in biomedical data by fitting millions of different models and comparing their output. We execute a VoE analysis on a series of widely reported associations (e.g., carrot intake associated with eyesight) with an extended additional focus on lifestyle exposures (e.g., physical activity) and components of the Framingham Risk Score for cardiovascular health (e.g., blood pressure). We leveraged our tool for potential confounder identification, investigating what adjusting variables are responsible for conflicting models. We propose modeling VoE as a critical step in navigating discovery in observational data, discerning robust associations, and cataloging adjusting variables that impact model output.</description><subject>Automation</subject><subject>Biology and Life Sciences</subject><subject>Biomedical data</subject><subject>Blood pressure</subject><subject>Cardiovascular diseases</subject><subject>Computer applications</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Data collection</subject><subject>Data science</subject><subject>Disease</subject><subject>Electronic data processing</subject><subject>Exercise</subject><subject>Genotype &amp; phenotype</subject><subject>Health risks</subject><subject>Hypotheses</subject><subject>Independent variables</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Meta</subject><subject>Methods</subject><subject>Physical activity</subject><subject>Physical Sciences</subject><subject>Robustness</subject><subject>Software</subject><subject>Variables</subject><subject>Vibration</subject><subject>Vibration analysis</subject><subject>Vitamin D</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7jr6DwQL3ujFjGnSNOmNsCx-DAwu-HUbTpOTmqHTjEk7OP_edKeKI3uhSSAhec57cl44Wfa0IKuCieLV1o-hh261b5xfMUIKVst72WXBS74UUvL7f5wvskcxbgmhtKbyYXbBSs45ocVlZjd4wACt69v84JoAg_N97m2O1qIeYg4pxzG6mFsf8uCbMQ65cVH7FHbMXWKbiOFwGwddnj6zQ-N0OhoYII_aYa_xcfbAQhfxybwvsi9v33y-fr_c3LxbX19tlroSdFiC0LRpLGeWayOpxJIwzmtqkBXUlAQbw1FzboASyoBQLYQsG6SAJg3JFtmzk-6-81HNFkVFuUyrohVNxPpEGA9btQ9uB-GoPDh1e-FDqyAMTneoBJSCgTGMcFsCiLqynIrkvbFQEzJlez1nG5tUtcZ-CNCdiZ6_9O6bav1BSV6QKkktshezQPDfR4yD2iVrseugRz9O_xZVVUpelgl9_hd6d3Uz1UIqwPXWp7x6ElVXlRC15LwiiVrdQaVpcOe079G6dH8W8PIsIDED_hhaGGNU608f_4P98O_szddztjyxOvgYA9rfPhdETR3xyxA1dYSaO4L9BC0__hA</recordid><startdate>20210923</startdate><enddate>20210923</enddate><creator>Tierney, Braden T</creator><creator>Anderson, Elizabeth</creator><creator>Tan, Yingxuan</creator><creator>Claypool, Kajal</creator><creator>Tangirala, Sivateja</creator><creator>Kostic, Aleksandar D</creator><creator>Manrai, Arjun K</creator><creator>Patel, Chirag J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-8756-8525</orcidid><orcidid>https://orcid.org/0000-0002-0837-4360</orcidid><orcidid>https://orcid.org/0000-0003-0305-471X</orcidid><orcidid>https://orcid.org/0000-0001-6674-3219</orcidid></search><sort><creationdate>20210923</creationdate><title>Leveraging vibration of effects analysis for robust discovery in observational biomedical data science</title><author>Tierney, Braden T ; Anderson, Elizabeth ; Tan, Yingxuan ; Claypool, Kajal ; Tangirala, Sivateja ; Kostic, Aleksandar D ; Manrai, Arjun K ; Patel, Chirag J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c672t-a7c2bbf53f5cd828e4035592de312d40ebd5ec55da2023a02c7784be2aedddd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automation</topic><topic>Biology and Life Sciences</topic><topic>Biomedical data</topic><topic>Blood pressure</topic><topic>Cardiovascular diseases</topic><topic>Computer applications</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Data collection</topic><topic>Data science</topic><topic>Disease</topic><topic>Electronic data processing</topic><topic>Exercise</topic><topic>Genotype &amp; phenotype</topic><topic>Health risks</topic><topic>Hypotheses</topic><topic>Independent variables</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Meta</topic><topic>Methods</topic><topic>Physical activity</topic><topic>Physical Sciences</topic><topic>Robustness</topic><topic>Software</topic><topic>Variables</topic><topic>Vibration</topic><topic>Vibration analysis</topic><topic>Vitamin D</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tierney, Braden T</creatorcontrib><creatorcontrib>Anderson, Elizabeth</creatorcontrib><creatorcontrib>Tan, Yingxuan</creatorcontrib><creatorcontrib>Claypool, Kajal</creatorcontrib><creatorcontrib>Tangirala, Sivateja</creatorcontrib><creatorcontrib>Kostic, Aleksandar D</creatorcontrib><creatorcontrib>Manrai, Arjun K</creatorcontrib><creatorcontrib>Patel, Chirag J</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tierney, Braden T</au><au>Anderson, Elizabeth</au><au>Tan, Yingxuan</au><au>Claypool, Kajal</au><au>Tangirala, Sivateja</au><au>Kostic, Aleksandar D</au><au>Manrai, Arjun K</au><au>Patel, Chirag J</au><au>Munafò, Marcus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging vibration of effects analysis for robust discovery in observational biomedical data science</atitle><jtitle>PLoS biology</jtitle><date>2021-09-23</date><risdate>2021</risdate><volume>19</volume><issue>9</issue><spage>e3001398</spage><epage>e3001398</epage><pages>e3001398-e3001398</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Hypothesis generation in observational, biomedical data science often starts with computing an association or identifying the statistical relationship between a dependent and an independent variable. However, the outcome of this process depends fundamentally on modeling strategy, with differing strategies generating what can be called “vibration of effects” (VoE). VoE is defined by variation in associations that often lead to contradictory results. Here, we present a computational tool capable of modeling VoE in biomedical data by fitting millions of different models and comparing their output. We execute a VoE analysis on a series of widely reported associations (e.g., carrot intake associated with eyesight) with an extended additional focus on lifestyle exposures (e.g., physical activity) and components of the Framingham Risk Score for cardiovascular health (e.g., blood pressure). We leveraged our tool for potential confounder identification, investigating what adjusting variables are responsible for conflicting models. We propose modeling VoE as a critical step in navigating discovery in observational data, discerning robust associations, and cataloging adjusting variables that impact model output.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34555021</pmid><doi>10.1371/journal.pbio.3001398</doi><orcidid>https://orcid.org/0000-0002-8756-8525</orcidid><orcidid>https://orcid.org/0000-0002-0837-4360</orcidid><orcidid>https://orcid.org/0000-0003-0305-471X</orcidid><orcidid>https://orcid.org/0000-0001-6674-3219</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2021-09, Vol.19 (9), p.e3001398-e3001398
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_2582586262
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central
subjects Automation
Biology and Life Sciences
Biomedical data
Blood pressure
Cardiovascular diseases
Computer applications
Coronaviruses
COVID-19
Data collection
Data science
Disease
Electronic data processing
Exercise
Genotype & phenotype
Health risks
Hypotheses
Independent variables
Medical research
Medicine and Health Sciences
Meta
Methods
Physical activity
Physical Sciences
Robustness
Software
Variables
Vibration
Vibration analysis
Vitamin D
title Leveraging vibration of effects analysis for robust discovery in observational biomedical data science
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20vibration%20of%20effects%20analysis%20for%20robust%20discovery%20in%20observational%20biomedical%20data%20science&rft.jtitle=PLoS%20biology&rft.au=Tierney,%20Braden%20T&rft.date=2021-09-23&rft.volume=19&rft.issue=9&rft.spage=e3001398&rft.epage=e3001398&rft.pages=e3001398-e3001398&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3001398&rft_dat=%3Cgale_plos_%3EA677985560%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582586262&rft_id=info:pmid/34555021&rft_galeid=A677985560&rft_doaj_id=oai_doaj_org_article_7a473add305f4aa796f527371dfa9008&rfr_iscdi=true