Leveraging vibration of effects analysis for robust discovery in observational biomedical data science
Hypothesis generation in observational, biomedical data science often starts with computing an association or identifying the statistical relationship between a dependent and an independent variable. However, the outcome of this process depends fundamentally on modeling strategy, with differing stra...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2021-09, Vol.19 (9), p.e3001398-e3001398 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e3001398 |
---|---|
container_issue | 9 |
container_start_page | e3001398 |
container_title | PLoS biology |
container_volume | 19 |
creator | Tierney, Braden T Anderson, Elizabeth Tan, Yingxuan Claypool, Kajal Tangirala, Sivateja Kostic, Aleksandar D Manrai, Arjun K Patel, Chirag J |
description | Hypothesis generation in observational, biomedical data science often starts with computing an association or identifying the statistical relationship between a dependent and an independent variable. However, the outcome of this process depends fundamentally on modeling strategy, with differing strategies generating what can be called “vibration of effects” (VoE). VoE is defined by variation in associations that often lead to contradictory results. Here, we present a computational tool capable of modeling VoE in biomedical data by fitting millions of different models and comparing their output. We execute a VoE analysis on a series of widely reported associations (e.g., carrot intake associated with eyesight) with an extended additional focus on lifestyle exposures (e.g., physical activity) and components of the Framingham Risk Score for cardiovascular health (e.g., blood pressure). We leveraged our tool for potential confounder identification, investigating what adjusting variables are responsible for conflicting models. We propose modeling VoE as a critical step in navigating discovery in observational data, discerning robust associations, and cataloging adjusting variables that impact model output. |
doi_str_mv | 10.1371/journal.pbio.3001398 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2582586262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A677985560</galeid><doaj_id>oai_doaj_org_article_7a473add305f4aa796f527371dfa9008</doaj_id><sourcerecordid>A677985560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c672t-a7c2bbf53f5cd828e4035592de312d40ebd5ec55da2023a02c7784be2aedddd83</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7jr6DwQL3ujFjGnSNOmNsCx-DAwu-HUbTpOTmqHTjEk7OP_edKeKI3uhSSAhec57cl44Wfa0IKuCieLV1o-hh261b5xfMUIKVst72WXBS74UUvL7f5wvskcxbgmhtKbyYXbBSs45ocVlZjd4wACt69v84JoAg_N97m2O1qIeYg4pxzG6mFsf8uCbMQ65cVH7FHbMXWKbiOFwGwddnj6zQ-N0OhoYII_aYa_xcfbAQhfxybwvsi9v33y-fr_c3LxbX19tlroSdFiC0LRpLGeWayOpxJIwzmtqkBXUlAQbw1FzboASyoBQLYQsG6SAJg3JFtmzk-6-81HNFkVFuUyrohVNxPpEGA9btQ9uB-GoPDh1e-FDqyAMTneoBJSCgTGMcFsCiLqynIrkvbFQEzJlez1nG5tUtcZ-CNCdiZ6_9O6bav1BSV6QKkktshezQPDfR4yD2iVrseugRz9O_xZVVUpelgl9_hd6d3Uz1UIqwPXWp7x6ElVXlRC15LwiiVrdQaVpcOe079G6dH8W8PIsIDED_hhaGGNU608f_4P98O_szddztjyxOvgYA9rfPhdETR3xyxA1dYSaO4L9BC0__hA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582586262</pqid></control><display><type>article</type><title>Leveraging vibration of effects analysis for robust discovery in observational biomedical data science</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Tierney, Braden T ; Anderson, Elizabeth ; Tan, Yingxuan ; Claypool, Kajal ; Tangirala, Sivateja ; Kostic, Aleksandar D ; Manrai, Arjun K ; Patel, Chirag J</creator><contributor>Munafò, Marcus</contributor><creatorcontrib>Tierney, Braden T ; Anderson, Elizabeth ; Tan, Yingxuan ; Claypool, Kajal ; Tangirala, Sivateja ; Kostic, Aleksandar D ; Manrai, Arjun K ; Patel, Chirag J ; Munafò, Marcus</creatorcontrib><description>Hypothesis generation in observational, biomedical data science often starts with computing an association or identifying the statistical relationship between a dependent and an independent variable. However, the outcome of this process depends fundamentally on modeling strategy, with differing strategies generating what can be called “vibration of effects” (VoE). VoE is defined by variation in associations that often lead to contradictory results. Here, we present a computational tool capable of modeling VoE in biomedical data by fitting millions of different models and comparing their output. We execute a VoE analysis on a series of widely reported associations (e.g., carrot intake associated with eyesight) with an extended additional focus on lifestyle exposures (e.g., physical activity) and components of the Framingham Risk Score for cardiovascular health (e.g., blood pressure). We leveraged our tool for potential confounder identification, investigating what adjusting variables are responsible for conflicting models. We propose modeling VoE as a critical step in navigating discovery in observational data, discerning robust associations, and cataloging adjusting variables that impact model output.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3001398</identifier><identifier>PMID: 34555021</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Automation ; Biology and Life Sciences ; Biomedical data ; Blood pressure ; Cardiovascular diseases ; Computer applications ; Coronaviruses ; COVID-19 ; Data collection ; Data science ; Disease ; Electronic data processing ; Exercise ; Genotype & phenotype ; Health risks ; Hypotheses ; Independent variables ; Medical research ; Medicine and Health Sciences ; Meta ; Methods ; Physical activity ; Physical Sciences ; Robustness ; Software ; Variables ; Vibration ; Vibration analysis ; Vitamin D</subject><ispartof>PLoS biology, 2021-09, Vol.19 (9), p.e3001398-e3001398</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Tierney et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Tierney et al 2021 Tierney et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c672t-a7c2bbf53f5cd828e4035592de312d40ebd5ec55da2023a02c7784be2aedddd83</citedby><cites>FETCH-LOGICAL-c672t-a7c2bbf53f5cd828e4035592de312d40ebd5ec55da2023a02c7784be2aedddd83</cites><orcidid>0000-0002-8756-8525 ; 0000-0002-0837-4360 ; 0000-0003-0305-471X ; 0000-0001-6674-3219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510627/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510627/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Munafò, Marcus</contributor><creatorcontrib>Tierney, Braden T</creatorcontrib><creatorcontrib>Anderson, Elizabeth</creatorcontrib><creatorcontrib>Tan, Yingxuan</creatorcontrib><creatorcontrib>Claypool, Kajal</creatorcontrib><creatorcontrib>Tangirala, Sivateja</creatorcontrib><creatorcontrib>Kostic, Aleksandar D</creatorcontrib><creatorcontrib>Manrai, Arjun K</creatorcontrib><creatorcontrib>Patel, Chirag J</creatorcontrib><title>Leveraging vibration of effects analysis for robust discovery in observational biomedical data science</title><title>PLoS biology</title><description>Hypothesis generation in observational, biomedical data science often starts with computing an association or identifying the statistical relationship between a dependent and an independent variable. However, the outcome of this process depends fundamentally on modeling strategy, with differing strategies generating what can be called “vibration of effects” (VoE). VoE is defined by variation in associations that often lead to contradictory results. Here, we present a computational tool capable of modeling VoE in biomedical data by fitting millions of different models and comparing their output. We execute a VoE analysis on a series of widely reported associations (e.g., carrot intake associated with eyesight) with an extended additional focus on lifestyle exposures (e.g., physical activity) and components of the Framingham Risk Score for cardiovascular health (e.g., blood pressure). We leveraged our tool for potential confounder identification, investigating what adjusting variables are responsible for conflicting models. We propose modeling VoE as a critical step in navigating discovery in observational data, discerning robust associations, and cataloging adjusting variables that impact model output.</description><subject>Automation</subject><subject>Biology and Life Sciences</subject><subject>Biomedical data</subject><subject>Blood pressure</subject><subject>Cardiovascular diseases</subject><subject>Computer applications</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Data collection</subject><subject>Data science</subject><subject>Disease</subject><subject>Electronic data processing</subject><subject>Exercise</subject><subject>Genotype & phenotype</subject><subject>Health risks</subject><subject>Hypotheses</subject><subject>Independent variables</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Meta</subject><subject>Methods</subject><subject>Physical activity</subject><subject>Physical Sciences</subject><subject>Robustness</subject><subject>Software</subject><subject>Variables</subject><subject>Vibration</subject><subject>Vibration analysis</subject><subject>Vitamin D</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7jr6DwQL3ujFjGnSNOmNsCx-DAwu-HUbTpOTmqHTjEk7OP_edKeKI3uhSSAhec57cl44Wfa0IKuCieLV1o-hh261b5xfMUIKVst72WXBS74UUvL7f5wvskcxbgmhtKbyYXbBSs45ocVlZjd4wACt69v84JoAg_N97m2O1qIeYg4pxzG6mFsf8uCbMQ65cVH7FHbMXWKbiOFwGwddnj6zQ-N0OhoYII_aYa_xcfbAQhfxybwvsi9v33y-fr_c3LxbX19tlroSdFiC0LRpLGeWayOpxJIwzmtqkBXUlAQbw1FzboASyoBQLYQsG6SAJg3JFtmzk-6-81HNFkVFuUyrohVNxPpEGA9btQ9uB-GoPDh1e-FDqyAMTneoBJSCgTGMcFsCiLqynIrkvbFQEzJlez1nG5tUtcZ-CNCdiZ6_9O6bav1BSV6QKkktshezQPDfR4yD2iVrseugRz9O_xZVVUpelgl9_hd6d3Uz1UIqwPXWp7x6ElVXlRC15LwiiVrdQaVpcOe079G6dH8W8PIsIDED_hhaGGNU608f_4P98O_szddztjyxOvgYA9rfPhdETR3xyxA1dYSaO4L9BC0__hA</recordid><startdate>20210923</startdate><enddate>20210923</enddate><creator>Tierney, Braden T</creator><creator>Anderson, Elizabeth</creator><creator>Tan, Yingxuan</creator><creator>Claypool, Kajal</creator><creator>Tangirala, Sivateja</creator><creator>Kostic, Aleksandar D</creator><creator>Manrai, Arjun K</creator><creator>Patel, Chirag J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-8756-8525</orcidid><orcidid>https://orcid.org/0000-0002-0837-4360</orcidid><orcidid>https://orcid.org/0000-0003-0305-471X</orcidid><orcidid>https://orcid.org/0000-0001-6674-3219</orcidid></search><sort><creationdate>20210923</creationdate><title>Leveraging vibration of effects analysis for robust discovery in observational biomedical data science</title><author>Tierney, Braden T ; Anderson, Elizabeth ; Tan, Yingxuan ; Claypool, Kajal ; Tangirala, Sivateja ; Kostic, Aleksandar D ; Manrai, Arjun K ; Patel, Chirag J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c672t-a7c2bbf53f5cd828e4035592de312d40ebd5ec55da2023a02c7784be2aedddd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automation</topic><topic>Biology and Life Sciences</topic><topic>Biomedical data</topic><topic>Blood pressure</topic><topic>Cardiovascular diseases</topic><topic>Computer applications</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Data collection</topic><topic>Data science</topic><topic>Disease</topic><topic>Electronic data processing</topic><topic>Exercise</topic><topic>Genotype & phenotype</topic><topic>Health risks</topic><topic>Hypotheses</topic><topic>Independent variables</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Meta</topic><topic>Methods</topic><topic>Physical activity</topic><topic>Physical Sciences</topic><topic>Robustness</topic><topic>Software</topic><topic>Variables</topic><topic>Vibration</topic><topic>Vibration analysis</topic><topic>Vitamin D</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tierney, Braden T</creatorcontrib><creatorcontrib>Anderson, Elizabeth</creatorcontrib><creatorcontrib>Tan, Yingxuan</creatorcontrib><creatorcontrib>Claypool, Kajal</creatorcontrib><creatorcontrib>Tangirala, Sivateja</creatorcontrib><creatorcontrib>Kostic, Aleksandar D</creatorcontrib><creatorcontrib>Manrai, Arjun K</creatorcontrib><creatorcontrib>Patel, Chirag J</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tierney, Braden T</au><au>Anderson, Elizabeth</au><au>Tan, Yingxuan</au><au>Claypool, Kajal</au><au>Tangirala, Sivateja</au><au>Kostic, Aleksandar D</au><au>Manrai, Arjun K</au><au>Patel, Chirag J</au><au>Munafò, Marcus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging vibration of effects analysis for robust discovery in observational biomedical data science</atitle><jtitle>PLoS biology</jtitle><date>2021-09-23</date><risdate>2021</risdate><volume>19</volume><issue>9</issue><spage>e3001398</spage><epage>e3001398</epage><pages>e3001398-e3001398</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Hypothesis generation in observational, biomedical data science often starts with computing an association or identifying the statistical relationship between a dependent and an independent variable. However, the outcome of this process depends fundamentally on modeling strategy, with differing strategies generating what can be called “vibration of effects” (VoE). VoE is defined by variation in associations that often lead to contradictory results. Here, we present a computational tool capable of modeling VoE in biomedical data by fitting millions of different models and comparing their output. We execute a VoE analysis on a series of widely reported associations (e.g., carrot intake associated with eyesight) with an extended additional focus on lifestyle exposures (e.g., physical activity) and components of the Framingham Risk Score for cardiovascular health (e.g., blood pressure). We leveraged our tool for potential confounder identification, investigating what adjusting variables are responsible for conflicting models. We propose modeling VoE as a critical step in navigating discovery in observational data, discerning robust associations, and cataloging adjusting variables that impact model output.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34555021</pmid><doi>10.1371/journal.pbio.3001398</doi><orcidid>https://orcid.org/0000-0002-8756-8525</orcidid><orcidid>https://orcid.org/0000-0002-0837-4360</orcidid><orcidid>https://orcid.org/0000-0003-0305-471X</orcidid><orcidid>https://orcid.org/0000-0001-6674-3219</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2021-09, Vol.19 (9), p.e3001398-e3001398 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_2582586262 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central |
subjects | Automation Biology and Life Sciences Biomedical data Blood pressure Cardiovascular diseases Computer applications Coronaviruses COVID-19 Data collection Data science Disease Electronic data processing Exercise Genotype & phenotype Health risks Hypotheses Independent variables Medical research Medicine and Health Sciences Meta Methods Physical activity Physical Sciences Robustness Software Variables Vibration Vibration analysis Vitamin D |
title | Leveraging vibration of effects analysis for robust discovery in observational biomedical data science |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20vibration%20of%20effects%20analysis%20for%20robust%20discovery%20in%20observational%20biomedical%20data%20science&rft.jtitle=PLoS%20biology&rft.au=Tierney,%20Braden%20T&rft.date=2021-09-23&rft.volume=19&rft.issue=9&rft.spage=e3001398&rft.epage=e3001398&rft.pages=e3001398-e3001398&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3001398&rft_dat=%3Cgale_plos_%3EA677985560%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582586262&rft_id=info:pmid/34555021&rft_galeid=A677985560&rft_doaj_id=oai_doaj_org_article_7a473add305f4aa796f527371dfa9008&rfr_iscdi=true |