Branched chain fatty acid synthesis drives tissue-specific innate immune response and  infection dynamics of  Staphylococcus aureus

Fatty acid-derived acyl chains of phospholipids and lipoproteins are central to bacterial membrane fluidity and lipoprotein function. Though it can incorporate exogenous unsaturated fatty acids (UFA), Staphylococcus aureus synthesizes branched chain fatty acids (BCFA), not UFA, to modulate or increa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2021-09, Vol.17 (9), p.e1009930-e1009930
Hauptverfasser: Chen, Xi, Teoh, Wei Ping, Stock, Madison R, Resko, Zachary J, Alonzo, 3rd, Francis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1009930
container_issue 9
container_start_page e1009930
container_title PLoS pathogens
container_volume 17
creator Chen, Xi
Teoh, Wei Ping
Stock, Madison R
Resko, Zachary J
Alonzo, 3rd, Francis
description Fatty acid-derived acyl chains of phospholipids and lipoproteins are central to bacterial membrane fluidity and lipoprotein function. Though it can incorporate exogenous unsaturated fatty acids (UFA), Staphylococcus aureus synthesizes branched chain fatty acids (BCFA), not UFA, to modulate or increase membrane fluidity. However, both endogenous BCFA and exogenous UFA can be attached to bacterial lipoproteins. Furthermore, S. aureus membrane lipid content varies based upon the amount of exogenous lipid in the environment. Thus far, the relevance of acyl chain diversity within the S. aureus cell envelope is limited to the observation that attachment of UFA to lipoproteins enhances cytokine secretion by cell lines in a TLR2-dependent manner. Here, we leveraged a BCFA auxotroph of S. aureus and determined that driving UFA incorporation disrupted infection dynamics and increased cytokine production in the liver during systemic infection of mice. In contrast, infection of TLR2-deficient mice restored inflammatory cytokines and bacterial burden to wildtype levels, linking the shift in acyl chain composition toward UFA to detrimental immune activation in vivo. In in vitro studies, bacterial lipoproteins isolated from UFA-supplemented cultures were resistant to lipase-mediated ester hydrolysis and exhibited heightened TLR2-dependent innate cell activation, whereas lipoproteins with BCFA esters were completely inactivated after lipase treatment. These results suggest that de novo synthesis of BCFA reduces lipoprotein-mediated TLR2 activation and improves lipase-mediated hydrolysis making it an important determinant of innate immunity. Overall, this study highlights the potential relevance of cell envelope acyl chain repertoire in infection dynamics of bacterial pathogens.
doi_str_mv 10.1371/journal.ppat.1009930
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2582586117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A677502880</galeid><doaj_id>oai_doaj_org_article_f39a283bbc0a42a0a414a8c3948f696f</doaj_id><sourcerecordid>A677502880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-f56dd233abc3b1fd18bbab5d6bd8d4351c1e5915d9714a7df4435a21efd539443</originalsourceid><addsrcrecordid>eNqVk81u1DAQxyMEoqXwBggscYHDLnYc5-OCVCo-VqpAonC2JvZ411XWDrZTsQ_Ae_AsPBledlt1US_IkZ2Mf_OfzNhTFE8ZnTPesNeXfgoOhvk4QpozSruO03vFMROCzxreVPdvvR8Vj2K8pLRinNUPiyNeVV1NaXNc_HwbwKkVaqJWYB0xkNKGgLKaxI1LK4w2Eh3sFUaSbIwTzuKIyhqriHUOEhK7Xk8OScA4eheRgNO_f-VNgypZ74jeOFhbFYk32X6RYFxtBq-8UlMkMAWc4uPigYEh4pP9elJ8e__u69nH2fnnD4uz0_OZqmuWZkbUWpecQ694z4xmbd9DL3Td61ZXXDDFUHRM6K5hFTTaVNkIJUOjBe_yx0nxfKc7Dj7KfQWjLEWbn5qxJhOLHaE9XMox2DWEjfRg5V-DD0sJIVk1oDS8g7Llfa8oVCXkKQdtVQ7UmrqrTdZ6s4829WvUCl0KMByIHu44u5JLfyXbSpSUlVng5V4g-O8TxiTXNiocBnDop-1_N4wK0XCW0Rf_oHdnt6eWkBPIR-RzXLUVlad10whati3N1PwOKg-N-Ry9Q2Oz_cDh1YFDZhL-SEuYYpSLiy__wX46ZKsdq4KPMaC5qR2jctsE10nKbRPIfRNkt2e3637jdH3r-R9Vagbm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582586117</pqid></control><display><type>article</type><title>Branched chain fatty acid synthesis drives tissue-specific innate immune response and  infection dynamics of  Staphylococcus aureus</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Chen, Xi ; Teoh, Wei Ping ; Stock, Madison R ; Resko, Zachary J ; Alonzo, 3rd, Francis</creator><contributor>Peschel, Andreas</contributor><creatorcontrib>Chen, Xi ; Teoh, Wei Ping ; Stock, Madison R ; Resko, Zachary J ; Alonzo, 3rd, Francis ; Peschel, Andreas</creatorcontrib><description>Fatty acid-derived acyl chains of phospholipids and lipoproteins are central to bacterial membrane fluidity and lipoprotein function. Though it can incorporate exogenous unsaturated fatty acids (UFA), Staphylococcus aureus synthesizes branched chain fatty acids (BCFA), not UFA, to modulate or increase membrane fluidity. However, both endogenous BCFA and exogenous UFA can be attached to bacterial lipoproteins. Furthermore, S. aureus membrane lipid content varies based upon the amount of exogenous lipid in the environment. Thus far, the relevance of acyl chain diversity within the S. aureus cell envelope is limited to the observation that attachment of UFA to lipoproteins enhances cytokine secretion by cell lines in a TLR2-dependent manner. Here, we leveraged a BCFA auxotroph of S. aureus and determined that driving UFA incorporation disrupted infection dynamics and increased cytokine production in the liver during systemic infection of mice. In contrast, infection of TLR2-deficient mice restored inflammatory cytokines and bacterial burden to wildtype levels, linking the shift in acyl chain composition toward UFA to detrimental immune activation in vivo. In in vitro studies, bacterial lipoproteins isolated from UFA-supplemented cultures were resistant to lipase-mediated ester hydrolysis and exhibited heightened TLR2-dependent innate cell activation, whereas lipoproteins with BCFA esters were completely inactivated after lipase treatment. These results suggest that de novo synthesis of BCFA reduces lipoprotein-mediated TLR2 activation and improves lipase-mediated hydrolysis making it an important determinant of innate immunity. Overall, this study highlights the potential relevance of cell envelope acyl chain repertoire in infection dynamics of bacterial pathogens.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1009930</identifier><identifier>PMID: 34496007</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Bacteria ; Bacterial infections ; Bacterial proteins ; Bacterial Proteins - immunology ; Bacterial Proteins - metabolism ; Biology and Life Sciences ; Cell activation ; Cell lines ; Chain branching ; Chain dynamics ; Chemical properties ; Cytokines ; Dehydrogenases ; Development and progression ; Disseminated infection ; Esters ; Fatty acids ; Fatty Acids - immunology ; Fatty Acids - metabolism ; Fluidity ; Glycerol ; Hydrolysis ; Immune response ; Immune system ; Immunity, Innate - immunology ; In vivo methods and tests ; Incorporation ; Inflammation ; Innate immunity ; Lipase ; Lipids ; Lipoproteins ; Medicine and Health Sciences ; Membrane fluidity ; Membrane Fluidity - physiology ; Membrane proteins ; Membranes ; Mice ; Microbiological research ; Phospholipids ; Physical Sciences ; Physiological aspects ; Research and Analysis Methods ; Staphylococcal Infections - immunology ; Staphylococcal Infections - metabolism ; Staphylococcus aureus ; Staphylococcus aureus - immunology ; Staphylococcus aureus - metabolism ; Staphylococcus aureus infections ; Staphylococcus infections ; Synthesis ; TLR2 protein ; Toll-like receptors ; Triglycerides ; Viscosity</subject><ispartof>PLoS pathogens, 2021-09, Vol.17 (9), p.e1009930-e1009930</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Chen et al 2021 Chen et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-f56dd233abc3b1fd18bbab5d6bd8d4351c1e5915d9714a7df4435a21efd539443</citedby><cites>FETCH-LOGICAL-c661t-f56dd233abc3b1fd18bbab5d6bd8d4351c1e5915d9714a7df4435a21efd539443</cites><orcidid>0000-0002-2886-8173 ; 0000-0003-4421-5145 ; 0000-0001-8445-4218 ; 0000-0003-4588-3022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452012/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452012/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23849,27907,27908,53774,53776,79351,79352</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34496007$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Peschel, Andreas</contributor><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Teoh, Wei Ping</creatorcontrib><creatorcontrib>Stock, Madison R</creatorcontrib><creatorcontrib>Resko, Zachary J</creatorcontrib><creatorcontrib>Alonzo, 3rd, Francis</creatorcontrib><title>Branched chain fatty acid synthesis drives tissue-specific innate immune response and  infection dynamics of  Staphylococcus aureus</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Fatty acid-derived acyl chains of phospholipids and lipoproteins are central to bacterial membrane fluidity and lipoprotein function. Though it can incorporate exogenous unsaturated fatty acids (UFA), Staphylococcus aureus synthesizes branched chain fatty acids (BCFA), not UFA, to modulate or increase membrane fluidity. However, both endogenous BCFA and exogenous UFA can be attached to bacterial lipoproteins. Furthermore, S. aureus membrane lipid content varies based upon the amount of exogenous lipid in the environment. Thus far, the relevance of acyl chain diversity within the S. aureus cell envelope is limited to the observation that attachment of UFA to lipoproteins enhances cytokine secretion by cell lines in a TLR2-dependent manner. Here, we leveraged a BCFA auxotroph of S. aureus and determined that driving UFA incorporation disrupted infection dynamics and increased cytokine production in the liver during systemic infection of mice. In contrast, infection of TLR2-deficient mice restored inflammatory cytokines and bacterial burden to wildtype levels, linking the shift in acyl chain composition toward UFA to detrimental immune activation in vivo. In in vitro studies, bacterial lipoproteins isolated from UFA-supplemented cultures were resistant to lipase-mediated ester hydrolysis and exhibited heightened TLR2-dependent innate cell activation, whereas lipoproteins with BCFA esters were completely inactivated after lipase treatment. These results suggest that de novo synthesis of BCFA reduces lipoprotein-mediated TLR2 activation and improves lipase-mediated hydrolysis making it an important determinant of innate immunity. Overall, this study highlights the potential relevance of cell envelope acyl chain repertoire in infection dynamics of bacterial pathogens.</description><subject>Animals</subject><subject>Bacteria</subject><subject>Bacterial infections</subject><subject>Bacterial proteins</subject><subject>Bacterial Proteins - immunology</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biology and Life Sciences</subject><subject>Cell activation</subject><subject>Cell lines</subject><subject>Chain branching</subject><subject>Chain dynamics</subject><subject>Chemical properties</subject><subject>Cytokines</subject><subject>Dehydrogenases</subject><subject>Development and progression</subject><subject>Disseminated infection</subject><subject>Esters</subject><subject>Fatty acids</subject><subject>Fatty Acids - immunology</subject><subject>Fatty Acids - metabolism</subject><subject>Fluidity</subject><subject>Glycerol</subject><subject>Hydrolysis</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunity, Innate - immunology</subject><subject>In vivo methods and tests</subject><subject>Incorporation</subject><subject>Inflammation</subject><subject>Innate immunity</subject><subject>Lipase</subject><subject>Lipids</subject><subject>Lipoproteins</subject><subject>Medicine and Health Sciences</subject><subject>Membrane fluidity</subject><subject>Membrane Fluidity - physiology</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Mice</subject><subject>Microbiological research</subject><subject>Phospholipids</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Research and Analysis Methods</subject><subject>Staphylococcal Infections - immunology</subject><subject>Staphylococcal Infections - metabolism</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus aureus - immunology</subject><subject>Staphylococcus aureus - metabolism</subject><subject>Staphylococcus aureus infections</subject><subject>Staphylococcus infections</subject><subject>Synthesis</subject><subject>TLR2 protein</subject><subject>Toll-like receptors</subject><subject>Triglycerides</subject><subject>Viscosity</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk81u1DAQxyMEoqXwBggscYHDLnYc5-OCVCo-VqpAonC2JvZ411XWDrZTsQ_Ae_AsPBledlt1US_IkZ2Mf_OfzNhTFE8ZnTPesNeXfgoOhvk4QpozSruO03vFMROCzxreVPdvvR8Vj2K8pLRinNUPiyNeVV1NaXNc_HwbwKkVaqJWYB0xkNKGgLKaxI1LK4w2Eh3sFUaSbIwTzuKIyhqriHUOEhK7Xk8OScA4eheRgNO_f-VNgypZ74jeOFhbFYk32X6RYFxtBq-8UlMkMAWc4uPigYEh4pP9elJ8e__u69nH2fnnD4uz0_OZqmuWZkbUWpecQ694z4xmbd9DL3Td61ZXXDDFUHRM6K5hFTTaVNkIJUOjBe_yx0nxfKc7Dj7KfQWjLEWbn5qxJhOLHaE9XMox2DWEjfRg5V-DD0sJIVk1oDS8g7Llfa8oVCXkKQdtVQ7UmrqrTdZ6s4829WvUCl0KMByIHu44u5JLfyXbSpSUlVng5V4g-O8TxiTXNiocBnDop-1_N4wK0XCW0Rf_oHdnt6eWkBPIR-RzXLUVlad10whati3N1PwOKg-N-Ry9Q2Oz_cDh1YFDZhL-SEuYYpSLiy__wX46ZKsdq4KPMaC5qR2jctsE10nKbRPIfRNkt2e3637jdH3r-R9Vagbm</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Chen, Xi</creator><creator>Teoh, Wei Ping</creator><creator>Stock, Madison R</creator><creator>Resko, Zachary J</creator><creator>Alonzo, 3rd, Francis</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2886-8173</orcidid><orcidid>https://orcid.org/0000-0003-4421-5145</orcidid><orcidid>https://orcid.org/0000-0001-8445-4218</orcidid><orcidid>https://orcid.org/0000-0003-4588-3022</orcidid></search><sort><creationdate>20210901</creationdate><title>Branched chain fatty acid synthesis drives tissue-specific innate immune response and  infection dynamics of  Staphylococcus aureus</title><author>Chen, Xi ; Teoh, Wei Ping ; Stock, Madison R ; Resko, Zachary J ; Alonzo, 3rd, Francis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-f56dd233abc3b1fd18bbab5d6bd8d4351c1e5915d9714a7df4435a21efd539443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Bacteria</topic><topic>Bacterial infections</topic><topic>Bacterial proteins</topic><topic>Bacterial Proteins - immunology</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biology and Life Sciences</topic><topic>Cell activation</topic><topic>Cell lines</topic><topic>Chain branching</topic><topic>Chain dynamics</topic><topic>Chemical properties</topic><topic>Cytokines</topic><topic>Dehydrogenases</topic><topic>Development and progression</topic><topic>Disseminated infection</topic><topic>Esters</topic><topic>Fatty acids</topic><topic>Fatty Acids - immunology</topic><topic>Fatty Acids - metabolism</topic><topic>Fluidity</topic><topic>Glycerol</topic><topic>Hydrolysis</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunity, Innate - immunology</topic><topic>In vivo methods and tests</topic><topic>Incorporation</topic><topic>Inflammation</topic><topic>Innate immunity</topic><topic>Lipase</topic><topic>Lipids</topic><topic>Lipoproteins</topic><topic>Medicine and Health Sciences</topic><topic>Membrane fluidity</topic><topic>Membrane Fluidity - physiology</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Mice</topic><topic>Microbiological research</topic><topic>Phospholipids</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Research and Analysis Methods</topic><topic>Staphylococcal Infections - immunology</topic><topic>Staphylococcal Infections - metabolism</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus aureus - immunology</topic><topic>Staphylococcus aureus - metabolism</topic><topic>Staphylococcus aureus infections</topic><topic>Staphylococcus infections</topic><topic>Synthesis</topic><topic>TLR2 protein</topic><topic>Toll-like receptors</topic><topic>Triglycerides</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Teoh, Wei Ping</creatorcontrib><creatorcontrib>Stock, Madison R</creatorcontrib><creatorcontrib>Resko, Zachary J</creatorcontrib><creatorcontrib>Alonzo, 3rd, Francis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xi</au><au>Teoh, Wei Ping</au><au>Stock, Madison R</au><au>Resko, Zachary J</au><au>Alonzo, 3rd, Francis</au><au>Peschel, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Branched chain fatty acid synthesis drives tissue-specific innate immune response and  infection dynamics of  Staphylococcus aureus</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>17</volume><issue>9</issue><spage>e1009930</spage><epage>e1009930</epage><pages>e1009930-e1009930</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Fatty acid-derived acyl chains of phospholipids and lipoproteins are central to bacterial membrane fluidity and lipoprotein function. Though it can incorporate exogenous unsaturated fatty acids (UFA), Staphylococcus aureus synthesizes branched chain fatty acids (BCFA), not UFA, to modulate or increase membrane fluidity. However, both endogenous BCFA and exogenous UFA can be attached to bacterial lipoproteins. Furthermore, S. aureus membrane lipid content varies based upon the amount of exogenous lipid in the environment. Thus far, the relevance of acyl chain diversity within the S. aureus cell envelope is limited to the observation that attachment of UFA to lipoproteins enhances cytokine secretion by cell lines in a TLR2-dependent manner. Here, we leveraged a BCFA auxotroph of S. aureus and determined that driving UFA incorporation disrupted infection dynamics and increased cytokine production in the liver during systemic infection of mice. In contrast, infection of TLR2-deficient mice restored inflammatory cytokines and bacterial burden to wildtype levels, linking the shift in acyl chain composition toward UFA to detrimental immune activation in vivo. In in vitro studies, bacterial lipoproteins isolated from UFA-supplemented cultures were resistant to lipase-mediated ester hydrolysis and exhibited heightened TLR2-dependent innate cell activation, whereas lipoproteins with BCFA esters were completely inactivated after lipase treatment. These results suggest that de novo synthesis of BCFA reduces lipoprotein-mediated TLR2 activation and improves lipase-mediated hydrolysis making it an important determinant of innate immunity. Overall, this study highlights the potential relevance of cell envelope acyl chain repertoire in infection dynamics of bacterial pathogens.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34496007</pmid><doi>10.1371/journal.ppat.1009930</doi><orcidid>https://orcid.org/0000-0002-2886-8173</orcidid><orcidid>https://orcid.org/0000-0003-4421-5145</orcidid><orcidid>https://orcid.org/0000-0001-8445-4218</orcidid><orcidid>https://orcid.org/0000-0003-4588-3022</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2021-09, Vol.17 (9), p.e1009930-e1009930
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_2582586117
source MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Bacteria
Bacterial infections
Bacterial proteins
Bacterial Proteins - immunology
Bacterial Proteins - metabolism
Biology and Life Sciences
Cell activation
Cell lines
Chain branching
Chain dynamics
Chemical properties
Cytokines
Dehydrogenases
Development and progression
Disseminated infection
Esters
Fatty acids
Fatty Acids - immunology
Fatty Acids - metabolism
Fluidity
Glycerol
Hydrolysis
Immune response
Immune system
Immunity, Innate - immunology
In vivo methods and tests
Incorporation
Inflammation
Innate immunity
Lipase
Lipids
Lipoproteins
Medicine and Health Sciences
Membrane fluidity
Membrane Fluidity - physiology
Membrane proteins
Membranes
Mice
Microbiological research
Phospholipids
Physical Sciences
Physiological aspects
Research and Analysis Methods
Staphylococcal Infections - immunology
Staphylococcal Infections - metabolism
Staphylococcus aureus
Staphylococcus aureus - immunology
Staphylococcus aureus - metabolism
Staphylococcus aureus infections
Staphylococcus infections
Synthesis
TLR2 protein
Toll-like receptors
Triglycerides
Viscosity
title Branched chain fatty acid synthesis drives tissue-specific innate immune response and  infection dynamics of  Staphylococcus aureus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A05%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Branched%20chain%20fatty%20acid%20synthesis%20drives%20tissue-specific%20innate%20immune%20response%20and%C2%A0%20infection%20dynamics%20of%C2%A0%20Staphylococcus%20aureus&rft.jtitle=PLoS%20pathogens&rft.au=Chen,%20Xi&rft.date=2021-09-01&rft.volume=17&rft.issue=9&rft.spage=e1009930&rft.epage=e1009930&rft.pages=e1009930-e1009930&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1009930&rft_dat=%3Cgale_plos_%3EA677502880%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582586117&rft_id=info:pmid/34496007&rft_galeid=A677502880&rft_doaj_id=oai_doaj_org_article_f39a283bbc0a42a0a414a8c3948f696f&rfr_iscdi=true