A model of naturalistic decision making in preference tests
Decisions as to whether to continue with an ongoing activity or to switch to an alternative are a constant in an animal's natural world, and in particular underlie foraging behavior and performance in food preference tests. Stimuli experienced by the animal both impact the choice and are themse...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2021-09, Vol.17 (9), p.e1009012-e1009012 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009012 |
---|---|
container_issue | 9 |
container_start_page | e1009012 |
container_title | PLoS computational biology |
container_volume | 17 |
creator | Ksander, John Katz, Donald B Miller, Paul |
description | Decisions as to whether to continue with an ongoing activity or to switch to an alternative are a constant in an animal's natural world, and in particular underlie foraging behavior and performance in food preference tests. Stimuli experienced by the animal both impact the choice and are themselves impacted by the choice, in a dynamic back and forth. Here, we present model neural circuits, based on spiking neurons, in which the choice to switch away from ongoing behavior instantiates this back and forth, arising as a state transition in neural activity. We analyze two classes of circuit, which differ in whether state transitions result from a loss of hedonic input from the stimulus (an "entice to stay" model) or from aversive stimulus-input (a "repel to leave" model). In both classes of model, we find that the mean time spent sampling a stimulus decreases with increasing value of the alternative stimulus, a fact that we linked to the inclusion of depressing synapses in our model. The competitive interaction is much greater in "entice to stay" model networks, which has qualitative features of the marginal value theorem, and thereby provides a framework for optimal foraging behavior. We offer suggestions as to how our models could be discriminatively tested through the analysis of electrophysiological and behavioral data. |
doi_str_mv | 10.1371/journal.pcbi.1009012 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2582586114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A677505774</galeid><doaj_id>oai_doaj_org_article_bbc181d29d164707a0113bede16c0c2c</doaj_id><sourcerecordid>A677505774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-4a6eea6a4c8dba80c8b5ed96e82768d7e93e2282a6e355b90c96d88daf956dc83</originalsourceid><addsrcrecordid>eNqVkluL1DAUx4so7rr6DUQLvqwPMyZNc0MQhsXLwKLg5TmkyWnN2CazSSvrtzd1usuO-CIJ5HDyO1f-RfEUozUmHL_ahSl63a_3pnFrjJBEuLpXnGJKyYoTKu7fsU-KRyntEMqmZA-LE1JTSjN_WrzelEOw0JehLb0ep6h7l0ZnSgvGJRd8Oegfznel8-U-QgsRvIFyhDSmx8WDVvcJnizvWfHt3duvFx9Wl5_eby82lyvDCBlXtWYAmunaCNtogYxoKFjJQFScCctBEqgqUWWMUNpIZCSzQljdSsqsEeSseH7Iu-9DUsvcSVVU5MswrjOxPRA26J3aRzfo-EsF7dQfR4id0jFP1YNqGoMFtpW0mNUccY0wJg1YwMwgU5mc681SbWoGsAb8mJdylPT4x7vvqgs_lagllvXczPmSIIarKS9KDS4Z6HvtIUxz35yxWpCKZfTFX-i_p1sfqE7nAZxvQ65r8rEwOBM8tC77N4xziijnc8DLo4DMjHA9dnpKSW2_fP4P9uMxWx9YE0NKWQ23W8FIzaK8aV_NolSLKHPYs7sbvQ26USH5DXFT3YE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582586114</pqid></control><display><type>article</type><title>A model of naturalistic decision making in preference tests</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ksander, John ; Katz, Donald B ; Miller, Paul</creator><contributor>Soltani, Alireza</contributor><creatorcontrib>Ksander, John ; Katz, Donald B ; Miller, Paul ; Soltani, Alireza</creatorcontrib><description>Decisions as to whether to continue with an ongoing activity or to switch to an alternative are a constant in an animal's natural world, and in particular underlie foraging behavior and performance in food preference tests. Stimuli experienced by the animal both impact the choice and are themselves impacted by the choice, in a dynamic back and forth. Here, we present model neural circuits, based on spiking neurons, in which the choice to switch away from ongoing behavior instantiates this back and forth, arising as a state transition in neural activity. We analyze two classes of circuit, which differ in whether state transitions result from a loss of hedonic input from the stimulus (an "entice to stay" model) or from aversive stimulus-input (a "repel to leave" model). In both classes of model, we find that the mean time spent sampling a stimulus decreases with increasing value of the alternative stimulus, a fact that we linked to the inclusion of depressing synapses in our model. The competitive interaction is much greater in "entice to stay" model networks, which has qualitative features of the marginal value theorem, and thereby provides a framework for optimal foraging behavior. We offer suggestions as to how our models could be discriminatively tested through the analysis of electrophysiological and behavioral data.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009012</identifier><identifier>PMID: 34555012</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal behavior ; Animals ; Biology and Life Sciences ; Computer and Information Sciences ; Decision Making ; Feeding Behavior ; Firing pattern ; Food ; Food Preferences ; Foraging behavior ; Medicine and Health Sciences ; Methods ; Models, Theoretical ; Neural circuitry ; Neural networks ; Neurons ; Neurons - physiology ; Optimal foraging ; Population ; Psychological aspects ; Psychological research ; Psychological tests ; Psychomotor Performance - physiology ; Social Sciences ; Synapses ; Taste</subject><ispartof>PLoS computational biology, 2021-09, Vol.17 (9), p.e1009012-e1009012</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Ksander et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Ksander et al 2021 Ksander et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-4a6eea6a4c8dba80c8b5ed96e82768d7e93e2282a6e355b90c96d88daf956dc83</citedby><cites>FETCH-LOGICAL-c633t-4a6eea6a4c8dba80c8b5ed96e82768d7e93e2282a6e355b90c96d88daf956dc83</cites><orcidid>0000-0001-5051-0664 ; 0000-0002-9280-000X ; 0000-0002-8444-6063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8491944/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8491944/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34555012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Soltani, Alireza</contributor><creatorcontrib>Ksander, John</creatorcontrib><creatorcontrib>Katz, Donald B</creatorcontrib><creatorcontrib>Miller, Paul</creatorcontrib><title>A model of naturalistic decision making in preference tests</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Decisions as to whether to continue with an ongoing activity or to switch to an alternative are a constant in an animal's natural world, and in particular underlie foraging behavior and performance in food preference tests. Stimuli experienced by the animal both impact the choice and are themselves impacted by the choice, in a dynamic back and forth. Here, we present model neural circuits, based on spiking neurons, in which the choice to switch away from ongoing behavior instantiates this back and forth, arising as a state transition in neural activity. We analyze two classes of circuit, which differ in whether state transitions result from a loss of hedonic input from the stimulus (an "entice to stay" model) or from aversive stimulus-input (a "repel to leave" model). In both classes of model, we find that the mean time spent sampling a stimulus decreases with increasing value of the alternative stimulus, a fact that we linked to the inclusion of depressing synapses in our model. The competitive interaction is much greater in "entice to stay" model networks, which has qualitative features of the marginal value theorem, and thereby provides a framework for optimal foraging behavior. We offer suggestions as to how our models could be discriminatively tested through the analysis of electrophysiological and behavioral data.</description><subject>Animal behavior</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Decision Making</subject><subject>Feeding Behavior</subject><subject>Firing pattern</subject><subject>Food</subject><subject>Food Preferences</subject><subject>Foraging behavior</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Optimal foraging</subject><subject>Population</subject><subject>Psychological aspects</subject><subject>Psychological research</subject><subject>Psychological tests</subject><subject>Psychomotor Performance - physiology</subject><subject>Social Sciences</subject><subject>Synapses</subject><subject>Taste</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkluL1DAUx4so7rr6DUQLvqwPMyZNc0MQhsXLwKLg5TmkyWnN2CazSSvrtzd1usuO-CIJ5HDyO1f-RfEUozUmHL_ahSl63a_3pnFrjJBEuLpXnGJKyYoTKu7fsU-KRyntEMqmZA-LE1JTSjN_WrzelEOw0JehLb0ep6h7l0ZnSgvGJRd8Oegfznel8-U-QgsRvIFyhDSmx8WDVvcJnizvWfHt3duvFx9Wl5_eby82lyvDCBlXtWYAmunaCNtogYxoKFjJQFScCctBEqgqUWWMUNpIZCSzQljdSsqsEeSseH7Iu-9DUsvcSVVU5MswrjOxPRA26J3aRzfo-EsF7dQfR4id0jFP1YNqGoMFtpW0mNUccY0wJg1YwMwgU5mc681SbWoGsAb8mJdylPT4x7vvqgs_lagllvXczPmSIIarKS9KDS4Z6HvtIUxz35yxWpCKZfTFX-i_p1sfqE7nAZxvQ65r8rEwOBM8tC77N4xziijnc8DLo4DMjHA9dnpKSW2_fP4P9uMxWx9YE0NKWQ23W8FIzaK8aV_NolSLKHPYs7sbvQ26USH5DXFT3YE</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ksander, John</creator><creator>Katz, Donald B</creator><creator>Miller, Paul</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5051-0664</orcidid><orcidid>https://orcid.org/0000-0002-9280-000X</orcidid><orcidid>https://orcid.org/0000-0002-8444-6063</orcidid></search><sort><creationdate>20210901</creationdate><title>A model of naturalistic decision making in preference tests</title><author>Ksander, John ; Katz, Donald B ; Miller, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-4a6eea6a4c8dba80c8b5ed96e82768d7e93e2282a6e355b90c96d88daf956dc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal behavior</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Decision Making</topic><topic>Feeding Behavior</topic><topic>Firing pattern</topic><topic>Food</topic><topic>Food Preferences</topic><topic>Foraging behavior</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Optimal foraging</topic><topic>Population</topic><topic>Psychological aspects</topic><topic>Psychological research</topic><topic>Psychological tests</topic><topic>Psychomotor Performance - physiology</topic><topic>Social Sciences</topic><topic>Synapses</topic><topic>Taste</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ksander, John</creatorcontrib><creatorcontrib>Katz, Donald B</creatorcontrib><creatorcontrib>Miller, Paul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ksander, John</au><au>Katz, Donald B</au><au>Miller, Paul</au><au>Soltani, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A model of naturalistic decision making in preference tests</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>17</volume><issue>9</issue><spage>e1009012</spage><epage>e1009012</epage><pages>e1009012-e1009012</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Decisions as to whether to continue with an ongoing activity or to switch to an alternative are a constant in an animal's natural world, and in particular underlie foraging behavior and performance in food preference tests. Stimuli experienced by the animal both impact the choice and are themselves impacted by the choice, in a dynamic back and forth. Here, we present model neural circuits, based on spiking neurons, in which the choice to switch away from ongoing behavior instantiates this back and forth, arising as a state transition in neural activity. We analyze two classes of circuit, which differ in whether state transitions result from a loss of hedonic input from the stimulus (an "entice to stay" model) or from aversive stimulus-input (a "repel to leave" model). In both classes of model, we find that the mean time spent sampling a stimulus decreases with increasing value of the alternative stimulus, a fact that we linked to the inclusion of depressing synapses in our model. The competitive interaction is much greater in "entice to stay" model networks, which has qualitative features of the marginal value theorem, and thereby provides a framework for optimal foraging behavior. We offer suggestions as to how our models could be discriminatively tested through the analysis of electrophysiological and behavioral data.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34555012</pmid><doi>10.1371/journal.pcbi.1009012</doi><orcidid>https://orcid.org/0000-0001-5051-0664</orcidid><orcidid>https://orcid.org/0000-0002-9280-000X</orcidid><orcidid>https://orcid.org/0000-0002-8444-6063</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2021-09, Vol.17 (9), p.e1009012-e1009012 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2582586114 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animal behavior Animals Biology and Life Sciences Computer and Information Sciences Decision Making Feeding Behavior Firing pattern Food Food Preferences Foraging behavior Medicine and Health Sciences Methods Models, Theoretical Neural circuitry Neural networks Neurons Neurons - physiology Optimal foraging Population Psychological aspects Psychological research Psychological tests Psychomotor Performance - physiology Social Sciences Synapses Taste |
title | A model of naturalistic decision making in preference tests |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A47%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20model%20of%20naturalistic%20decision%20making%20in%20preference%20tests&rft.jtitle=PLoS%20computational%20biology&rft.au=Ksander,%20John&rft.date=2021-09-01&rft.volume=17&rft.issue=9&rft.spage=e1009012&rft.epage=e1009012&rft.pages=e1009012-e1009012&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009012&rft_dat=%3Cgale_plos_%3EA677505774%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582586114&rft_id=info:pmid/34555012&rft_galeid=A677505774&rft_doaj_id=oai_doaj_org_article_bbc181d29d164707a0113bede16c0c2c&rfr_iscdi=true |