U2 snRNA structure is influenced by SF3A and SF3B proteins but not by SF3B inhibitors

U2 snRNP is an essential component of the spliceosome. It is responsible for branch point recognition in the spliceosome A-complex via base-pairing of U2 snRNA with an intron to form the branch helix. Small molecule inhibitors target the SF3B component of the U2 snRNP and interfere with A-complex fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-10, Vol.16 (10), p.e0258551-e0258551
Hauptverfasser: Urabe, Veronica K, Stevers, Meredith, Ghosh, Arun K, Jurica, Melissa S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0258551
container_issue 10
container_start_page e0258551
container_title PloS one
container_volume 16
creator Urabe, Veronica K
Stevers, Meredith
Ghosh, Arun K
Jurica, Melissa S
description U2 snRNP is an essential component of the spliceosome. It is responsible for branch point recognition in the spliceosome A-complex via base-pairing of U2 snRNA with an intron to form the branch helix. Small molecule inhibitors target the SF3B component of the U2 snRNP and interfere with A-complex formation during spliceosome assembly. We previously found that the first SF3B inhibited-complex is less stable than A-complex and hypothesized that SF3B inhibitors interfere with U2 snRNA secondary structure changes required to form the branch helix. Using RNA chemical modifiers, we probed U2 snRNA structure in A-complex and SF3B inhibited splicing complexes. The reactivity pattern for U2 snRNA in the SF3B inhibited-complex is indistinguishable from that of A-complex, suggesting that they have the same secondary structure conformation, including the branch helix. This observation suggests SF3B inhibited-complex instability does not stem from an alternate RNA conformation and instead points to the inhibitors interfering with protein component interactions that normally stabilize U2 snRNP’s association with an intron. In addition, we probed U2 snRNA in the free U2 snRNP in the presence of SF3B inhibitor and again saw no differences. However, increased protection of nucleotides upstream of Stem I in the absence of SF3A and SF3B proteins suggests a change of secondary structure at the very 5′ end of U2 snRNA. Chemical probing of synthetic U2 snRNA in the absence of proteins results in similar protections and predicts a previously uncharacterized extension of Stem I. Because this stem must be disrupted for SF3A and SF3B proteins to stably join the snRNP, the structure has the potential to influence snRNP assembly and recycling after spliceosome disassembly.
doi_str_mv 10.1371/journal.pone.0258551
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2582105998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A678973885</galeid><doaj_id>oai_doaj_org_article_0976836617604d699a0dbbe03cebfff0</doaj_id><sourcerecordid>A678973885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-36da17a316c7678fe75bea980331d89551f0725b1f4647612fd70b14c976beb13</originalsourceid><addsrcrecordid>eNqNklFrFDEQxxdRbK1-A8EFQfThzmRzm2RfhGuxelAstJ6vIclO7nLsJWeSFfvtzXqrdKUPkoeE5Df_mflniuIlRnNMGH6_831wspsfvIM5qmpe1_hRcYobUs1ohcjje-eT4lmMO4Rqwil9WpyQBV1knp0W63VVRnfzZVnGFHqd-gCljaV1puvBaWhLdVfeXpJlKV07HM7LQ_AJrIul6lPpfBqJ8xy0tcomH-Lz4omRXYQX435WrC8_fr34PLu6_rS6WF7NNMU8zQhtJWaSYKoZZdwAqxXIhiNCcMub3JBBrKoVNrleRnFlWoYUXuiGUQUKk7Pi1VH30PkoRkeiyGZUGNVNwzOxOhKtlztxCHYvw53w0orfFz5shAzJ6g4EyqqcUIoZRYuWNo1ErVKAiAZljEFZ68OYrVd7aDW4FGQ3EZ2-OLsVG_9D8BrTqhrKfTsKBP-9h5jE3kYNXScd-P5YN8cVb4Zcr_9BH-5upDYyN5A_zee8ehAVy2xowwjndabmD1B5tbC3Oo-Psfl-EvBuEpCZBD_TRvYxitXtzf-z19-m7Jt77BZkl7bRd32y3sUpuDiCOvgYA5i_JmMkhun_44YYpl-M009-AQ4F8kE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582105998</pqid></control><display><type>article</type><title>U2 snRNA structure is influenced by SF3A and SF3B proteins but not by SF3B inhibitors</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Urabe, Veronica K ; Stevers, Meredith ; Ghosh, Arun K ; Jurica, Melissa S</creator><contributor>Singh, Ravindra N.</contributor><creatorcontrib>Urabe, Veronica K ; Stevers, Meredith ; Ghosh, Arun K ; Jurica, Melissa S ; Singh, Ravindra N.</creatorcontrib><description>U2 snRNP is an essential component of the spliceosome. It is responsible for branch point recognition in the spliceosome A-complex via base-pairing of U2 snRNA with an intron to form the branch helix. Small molecule inhibitors target the SF3B component of the U2 snRNP and interfere with A-complex formation during spliceosome assembly. We previously found that the first SF3B inhibited-complex is less stable than A-complex and hypothesized that SF3B inhibitors interfere with U2 snRNA secondary structure changes required to form the branch helix. Using RNA chemical modifiers, we probed U2 snRNA structure in A-complex and SF3B inhibited splicing complexes. The reactivity pattern for U2 snRNA in the SF3B inhibited-complex is indistinguishable from that of A-complex, suggesting that they have the same secondary structure conformation, including the branch helix. This observation suggests SF3B inhibited-complex instability does not stem from an alternate RNA conformation and instead points to the inhibitors interfering with protein component interactions that normally stabilize U2 snRNP’s association with an intron. In addition, we probed U2 snRNA in the free U2 snRNP in the presence of SF3B inhibitor and again saw no differences. However, increased protection of nucleotides upstream of Stem I in the absence of SF3A and SF3B proteins suggests a change of secondary structure at the very 5′ end of U2 snRNA. Chemical probing of synthetic U2 snRNA in the absence of proteins results in similar protections and predicts a previously uncharacterized extension of Stem I. Because this stem must be disrupted for SF3A and SF3B proteins to stably join the snRNP, the structure has the potential to influence snRNP assembly and recycling after spliceosome disassembly.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0258551</identifier><identifier>PMID: 34648557</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Adenosine ; Analysis ; Biology and life sciences ; Complex formation ; Developmental biology ; Gene expression ; Genetic engineering ; Inhibitors ; Methods ; Nucleotides ; Protein structure ; Proteins ; Research and Analysis Methods ; Ribonucleoproteins (small nuclear) ; Ribonucleoproteins (U2 small nuclear) ; Secondary structure ; Small nuclear ribonucleoproteins ; snRNA ; Stems ; Structure</subject><ispartof>PloS one, 2021-10, Vol.16 (10), p.e0258551-e0258551</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Urabe et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Urabe et al 2021 Urabe et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c618t-36da17a316c7678fe75bea980331d89551f0725b1f4647612fd70b14c976beb13</cites><orcidid>0000-0002-4488-1386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516221/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516221/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids></links><search><contributor>Singh, Ravindra N.</contributor><creatorcontrib>Urabe, Veronica K</creatorcontrib><creatorcontrib>Stevers, Meredith</creatorcontrib><creatorcontrib>Ghosh, Arun K</creatorcontrib><creatorcontrib>Jurica, Melissa S</creatorcontrib><title>U2 snRNA structure is influenced by SF3A and SF3B proteins but not by SF3B inhibitors</title><title>PloS one</title><description>U2 snRNP is an essential component of the spliceosome. It is responsible for branch point recognition in the spliceosome A-complex via base-pairing of U2 snRNA with an intron to form the branch helix. Small molecule inhibitors target the SF3B component of the U2 snRNP and interfere with A-complex formation during spliceosome assembly. We previously found that the first SF3B inhibited-complex is less stable than A-complex and hypothesized that SF3B inhibitors interfere with U2 snRNA secondary structure changes required to form the branch helix. Using RNA chemical modifiers, we probed U2 snRNA structure in A-complex and SF3B inhibited splicing complexes. The reactivity pattern for U2 snRNA in the SF3B inhibited-complex is indistinguishable from that of A-complex, suggesting that they have the same secondary structure conformation, including the branch helix. This observation suggests SF3B inhibited-complex instability does not stem from an alternate RNA conformation and instead points to the inhibitors interfering with protein component interactions that normally stabilize U2 snRNP’s association with an intron. In addition, we probed U2 snRNA in the free U2 snRNP in the presence of SF3B inhibitor and again saw no differences. However, increased protection of nucleotides upstream of Stem I in the absence of SF3A and SF3B proteins suggests a change of secondary structure at the very 5′ end of U2 snRNA. Chemical probing of synthetic U2 snRNA in the absence of proteins results in similar protections and predicts a previously uncharacterized extension of Stem I. Because this stem must be disrupted for SF3A and SF3B proteins to stably join the snRNP, the structure has the potential to influence snRNP assembly and recycling after spliceosome disassembly.</description><subject>Adenosine</subject><subject>Analysis</subject><subject>Biology and life sciences</subject><subject>Complex formation</subject><subject>Developmental biology</subject><subject>Gene expression</subject><subject>Genetic engineering</subject><subject>Inhibitors</subject><subject>Methods</subject><subject>Nucleotides</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Ribonucleoproteins (small nuclear)</subject><subject>Ribonucleoproteins (U2 small nuclear)</subject><subject>Secondary structure</subject><subject>Small nuclear ribonucleoproteins</subject><subject>snRNA</subject><subject>Stems</subject><subject>Structure</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNklFrFDEQxxdRbK1-A8EFQfThzmRzm2RfhGuxelAstJ6vIclO7nLsJWeSFfvtzXqrdKUPkoeE5Df_mflniuIlRnNMGH6_831wspsfvIM5qmpe1_hRcYobUs1ohcjje-eT4lmMO4Rqwil9WpyQBV1knp0W63VVRnfzZVnGFHqd-gCljaV1puvBaWhLdVfeXpJlKV07HM7LQ_AJrIul6lPpfBqJ8xy0tcomH-Lz4omRXYQX435WrC8_fr34PLu6_rS6WF7NNMU8zQhtJWaSYKoZZdwAqxXIhiNCcMub3JBBrKoVNrleRnFlWoYUXuiGUQUKk7Pi1VH30PkoRkeiyGZUGNVNwzOxOhKtlztxCHYvw53w0orfFz5shAzJ6g4EyqqcUIoZRYuWNo1ErVKAiAZljEFZ68OYrVd7aDW4FGQ3EZ2-OLsVG_9D8BrTqhrKfTsKBP-9h5jE3kYNXScd-P5YN8cVb4Zcr_9BH-5upDYyN5A_zee8ehAVy2xowwjndabmD1B5tbC3Oo-Psfl-EvBuEpCZBD_TRvYxitXtzf-z19-m7Jt77BZkl7bRd32y3sUpuDiCOvgYA5i_JmMkhun_44YYpl-M009-AQ4F8kE</recordid><startdate>20211014</startdate><enddate>20211014</enddate><creator>Urabe, Veronica K</creator><creator>Stevers, Meredith</creator><creator>Ghosh, Arun K</creator><creator>Jurica, Melissa S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4488-1386</orcidid></search><sort><creationdate>20211014</creationdate><title>U2 snRNA structure is influenced by SF3A and SF3B proteins but not by SF3B inhibitors</title><author>Urabe, Veronica K ; Stevers, Meredith ; Ghosh, Arun K ; Jurica, Melissa S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-36da17a316c7678fe75bea980331d89551f0725b1f4647612fd70b14c976beb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine</topic><topic>Analysis</topic><topic>Biology and life sciences</topic><topic>Complex formation</topic><topic>Developmental biology</topic><topic>Gene expression</topic><topic>Genetic engineering</topic><topic>Inhibitors</topic><topic>Methods</topic><topic>Nucleotides</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Ribonucleoproteins (small nuclear)</topic><topic>Ribonucleoproteins (U2 small nuclear)</topic><topic>Secondary structure</topic><topic>Small nuclear ribonucleoproteins</topic><topic>snRNA</topic><topic>Stems</topic><topic>Structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urabe, Veronica K</creatorcontrib><creatorcontrib>Stevers, Meredith</creatorcontrib><creatorcontrib>Ghosh, Arun K</creatorcontrib><creatorcontrib>Jurica, Melissa S</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urabe, Veronica K</au><au>Stevers, Meredith</au><au>Ghosh, Arun K</au><au>Jurica, Melissa S</au><au>Singh, Ravindra N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>U2 snRNA structure is influenced by SF3A and SF3B proteins but not by SF3B inhibitors</atitle><jtitle>PloS one</jtitle><date>2021-10-14</date><risdate>2021</risdate><volume>16</volume><issue>10</issue><spage>e0258551</spage><epage>e0258551</epage><pages>e0258551-e0258551</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>U2 snRNP is an essential component of the spliceosome. It is responsible for branch point recognition in the spliceosome A-complex via base-pairing of U2 snRNA with an intron to form the branch helix. Small molecule inhibitors target the SF3B component of the U2 snRNP and interfere with A-complex formation during spliceosome assembly. We previously found that the first SF3B inhibited-complex is less stable than A-complex and hypothesized that SF3B inhibitors interfere with U2 snRNA secondary structure changes required to form the branch helix. Using RNA chemical modifiers, we probed U2 snRNA structure in A-complex and SF3B inhibited splicing complexes. The reactivity pattern for U2 snRNA in the SF3B inhibited-complex is indistinguishable from that of A-complex, suggesting that they have the same secondary structure conformation, including the branch helix. This observation suggests SF3B inhibited-complex instability does not stem from an alternate RNA conformation and instead points to the inhibitors interfering with protein component interactions that normally stabilize U2 snRNP’s association with an intron. In addition, we probed U2 snRNA in the free U2 snRNP in the presence of SF3B inhibitor and again saw no differences. However, increased protection of nucleotides upstream of Stem I in the absence of SF3A and SF3B proteins suggests a change of secondary structure at the very 5′ end of U2 snRNA. Chemical probing of synthetic U2 snRNA in the absence of proteins results in similar protections and predicts a previously uncharacterized extension of Stem I. Because this stem must be disrupted for SF3A and SF3B proteins to stably join the snRNP, the structure has the potential to influence snRNP assembly and recycling after spliceosome disassembly.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34648557</pmid><doi>10.1371/journal.pone.0258551</doi><tpages>e0258551</tpages><orcidid>https://orcid.org/0000-0002-4488-1386</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-10, Vol.16 (10), p.e0258551-e0258551
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2582105998
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Adenosine
Analysis
Biology and life sciences
Complex formation
Developmental biology
Gene expression
Genetic engineering
Inhibitors
Methods
Nucleotides
Protein structure
Proteins
Research and Analysis Methods
Ribonucleoproteins (small nuclear)
Ribonucleoproteins (U2 small nuclear)
Secondary structure
Small nuclear ribonucleoproteins
snRNA
Stems
Structure
title U2 snRNA structure is influenced by SF3A and SF3B proteins but not by SF3B inhibitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=U2%20snRNA%20structure%20is%20influenced%20by%20SF3A%20and%20SF3B%20proteins%20but%20not%20by%20SF3B%20inhibitors&rft.jtitle=PloS%20one&rft.au=Urabe,%20Veronica%20K&rft.date=2021-10-14&rft.volume=16&rft.issue=10&rft.spage=e0258551&rft.epage=e0258551&rft.pages=e0258551-e0258551&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0258551&rft_dat=%3Cgale_plos_%3EA678973885%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582105998&rft_id=info:pmid/34648557&rft_galeid=A678973885&rft_doaj_id=oai_doaj_org_article_0976836617604d699a0dbbe03cebfff0&rfr_iscdi=true