Task-driven assessment of experimental designs in diffusion MRI: A computational framework
This paper proposes a task-driven computational framework for assessing diffusion MRI experimental designs which, rather than relying on parameter-estimation metrics, directly measures quantitative task performance. Traditional computational experimental design (CED) methods may be ill-suited to exp...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-10, Vol.16 (10), p.e0258442 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | e0258442 |
container_title | PloS one |
container_volume | 16 |
creator | Epstein, Sean C Bray, Timothy J P Hall-Craggs, Margaret A Zhang, Hui |
description | This paper proposes a task-driven computational framework for assessing diffusion MRI experimental designs which, rather than relying on parameter-estimation metrics, directly measures quantitative task performance. Traditional computational experimental design (CED) methods may be ill-suited to experimental tasks, such as clinical classification, where outcome does not depend on parameter-estimation accuracy or precision alone. Current assessment metrics evaluate experiments' ability to faithfully recover microstructural parameters rather than their task performance. The method we propose addresses this shortcoming. For a given MRI experimental design (protocol, parameter-estimation method, model, etc.), experiments are simulated start-to-finish and task performance is computed from receiver operating characteristic (ROC) curves and associated summary metrics (e.g. area under the curve (AUC)). Two experiments were performed: first, a validation of the pipeline's task performance predictions against clinical results, comparing in-silico predictions to real-world ROC/AUC; and second, a demonstration of the pipeline's advantages over traditional CED approaches, using two simulated clinical classification tasks. Comparison with clinical datasets validates our method's predictions of (a) the qualitative form of ROC curves, (b) the relative task performance of different experimental designs, and (c) the absolute performance (AUC) of each experimental design. Furthermore, we show that our method outperforms traditional task-agnostic assessment methods, enabling improved, more useful experimental design. Our pipeline produces accurate, quantitative predictions of real-world task performance. Compared to current approaches, such task-driven assessment is more likely to identify experimental designs that perform well in practice. Our method is not limited to diffusion MRI; the pipeline generalises to any task-based quantitative MRI application, and provides the foundation for developing future task-driven end-to end CED frameworks. |
doi_str_mv | 10.1371/journal.pone.0258442 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2580326503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A678390958</galeid><doaj_id>oai_doaj_org_article_b0bb6e163c6c4320b68ea2c5fb24fdb7</doaj_id><sourcerecordid>A678390958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-ec853388c37c2276fee28b553675954f26d3dadd9e39259c755f673631dbed143</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoh_wDxBEQkJw2MXxV5IekFYVHysVVSqFAxfLsce73ibxYidt-fc4bFptUA8oh8TjZ15nXs8kyYsMzTOSZ-83rvetrOdb18IcYVZQih8lh1lJ8IxjRB7vfR8kRyFsEGKk4PxpckAoxxRxepj8vJThaqa9vYY2lSFACA20XepMCrdb8HZYyTrVEOyqDaltU22N6YN1bfr1YnmSLlLlmm3fyS6GImm8bODG-atnyRMj6wDPx_dx8v3Tx8vTL7Oz88_L08XZTHGadTNQBSOkKBTJFcY5NwC4qBgjPGclowZzTbTUugRSYlaqnDHDc8JJpivQGSXHyaud7rZ2QYy2BBEdQQRzhkgkljtCO7kR21iU9L-Fk1b8DTi_EtJ3VtUgKlRVHDJOFFeUYFTxAiRWzFSYGl3lUevDeFpfNaBVtMfLeiI63WntWqzctSgYQhSXUeDtKODdrx5CJxobFNS1bMH1u__mZcH4UNnrf9CHqxuplYwF2Na4eK4aRMWC5wUpUcmKSM0foOKjobEq9pCxMT5JeDdJiEwHt91K9iGI5beL_2fPf0zZN3vsGmTdrYOr-6F9whSkO1B5F4IHc29yhsQwAnduiGEExDgCMe3l_gXdJ931PPkDqE4BRg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580326503</pqid></control><display><type>article</type><title>Task-driven assessment of experimental designs in diffusion MRI: A computational framework</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Epstein, Sean C ; Bray, Timothy J P ; Hall-Craggs, Margaret A ; Zhang, Hui</creator><contributor>Yap, Pew-Thian</contributor><creatorcontrib>Epstein, Sean C ; Bray, Timothy J P ; Hall-Craggs, Margaret A ; Zhang, Hui ; Yap, Pew-Thian</creatorcontrib><description>This paper proposes a task-driven computational framework for assessing diffusion MRI experimental designs which, rather than relying on parameter-estimation metrics, directly measures quantitative task performance. Traditional computational experimental design (CED) methods may be ill-suited to experimental tasks, such as clinical classification, where outcome does not depend on parameter-estimation accuracy or precision alone. Current assessment metrics evaluate experiments' ability to faithfully recover microstructural parameters rather than their task performance. The method we propose addresses this shortcoming. For a given MRI experimental design (protocol, parameter-estimation method, model, etc.), experiments are simulated start-to-finish and task performance is computed from receiver operating characteristic (ROC) curves and associated summary metrics (e.g. area under the curve (AUC)). Two experiments were performed: first, a validation of the pipeline's task performance predictions against clinical results, comparing in-silico predictions to real-world ROC/AUC; and second, a demonstration of the pipeline's advantages over traditional CED approaches, using two simulated clinical classification tasks. Comparison with clinical datasets validates our method's predictions of (a) the qualitative form of ROC curves, (b) the relative task performance of different experimental designs, and (c) the absolute performance (AUC) of each experimental design. Furthermore, we show that our method outperforms traditional task-agnostic assessment methods, enabling improved, more useful experimental design. Our pipeline produces accurate, quantitative predictions of real-world task performance. Compared to current approaches, such task-driven assessment is more likely to identify experimental designs that perform well in practice. Our method is not limited to diffusion MRI; the pipeline generalises to any task-based quantitative MRI application, and provides the foundation for developing future task-driven end-to end CED frameworks.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0258442</identifier><identifier>PMID: 34624064</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Area Under Curve ; Bias ; Biology and Life Sciences ; Business metrics ; Classification ; Computer and Information Sciences ; Computer applications ; Computer science ; Computer Simulation ; Data entry ; Design of experiments ; Design parameters ; Diffusion ; Diffusion Magnetic Resonance Imaging - methods ; Estimation accuracy ; Evaluation ; Experimental design ; Experiments ; Humans ; Magnetic resonance imaging ; Medical imaging ; Medical research ; Medicine and Health Sciences ; Parameter estimation ; Physical Sciences ; Pipeline design ; Predictions ; Research and Analysis Methods ; Research Design ; ROC Curve ; Task Performance and Analysis</subject><ispartof>PloS one, 2021-10, Vol.16 (10), p.e0258442</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Epstein et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Epstein et al 2021 Epstein et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c641t-ec853388c37c2276fee28b553675954f26d3dadd9e39259c755f673631dbed143</cites><orcidid>0000-0002-8071-1114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8500429/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8500429/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34624064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Yap, Pew-Thian</contributor><creatorcontrib>Epstein, Sean C</creatorcontrib><creatorcontrib>Bray, Timothy J P</creatorcontrib><creatorcontrib>Hall-Craggs, Margaret A</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><title>Task-driven assessment of experimental designs in diffusion MRI: A computational framework</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>This paper proposes a task-driven computational framework for assessing diffusion MRI experimental designs which, rather than relying on parameter-estimation metrics, directly measures quantitative task performance. Traditional computational experimental design (CED) methods may be ill-suited to experimental tasks, such as clinical classification, where outcome does not depend on parameter-estimation accuracy or precision alone. Current assessment metrics evaluate experiments' ability to faithfully recover microstructural parameters rather than their task performance. The method we propose addresses this shortcoming. For a given MRI experimental design (protocol, parameter-estimation method, model, etc.), experiments are simulated start-to-finish and task performance is computed from receiver operating characteristic (ROC) curves and associated summary metrics (e.g. area under the curve (AUC)). Two experiments were performed: first, a validation of the pipeline's task performance predictions against clinical results, comparing in-silico predictions to real-world ROC/AUC; and second, a demonstration of the pipeline's advantages over traditional CED approaches, using two simulated clinical classification tasks. Comparison with clinical datasets validates our method's predictions of (a) the qualitative form of ROC curves, (b) the relative task performance of different experimental designs, and (c) the absolute performance (AUC) of each experimental design. Furthermore, we show that our method outperforms traditional task-agnostic assessment methods, enabling improved, more useful experimental design. Our pipeline produces accurate, quantitative predictions of real-world task performance. Compared to current approaches, such task-driven assessment is more likely to identify experimental designs that perform well in practice. Our method is not limited to diffusion MRI; the pipeline generalises to any task-based quantitative MRI application, and provides the foundation for developing future task-driven end-to end CED frameworks.</description><subject>Area Under Curve</subject><subject>Bias</subject><subject>Biology and Life Sciences</subject><subject>Business metrics</subject><subject>Classification</subject><subject>Computer and Information Sciences</subject><subject>Computer applications</subject><subject>Computer science</subject><subject>Computer Simulation</subject><subject>Data entry</subject><subject>Design of experiments</subject><subject>Design parameters</subject><subject>Diffusion</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Estimation accuracy</subject><subject>Evaluation</subject><subject>Experimental design</subject><subject>Experiments</subject><subject>Humans</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Parameter estimation</subject><subject>Physical Sciences</subject><subject>Pipeline design</subject><subject>Predictions</subject><subject>Research and Analysis Methods</subject><subject>Research Design</subject><subject>ROC Curve</subject><subject>Task Performance and Analysis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoh_wDxBEQkJw2MXxV5IekFYVHysVVSqFAxfLsce73ibxYidt-fc4bFptUA8oh8TjZ15nXs8kyYsMzTOSZ-83rvetrOdb18IcYVZQih8lh1lJ8IxjRB7vfR8kRyFsEGKk4PxpckAoxxRxepj8vJThaqa9vYY2lSFACA20XepMCrdb8HZYyTrVEOyqDaltU22N6YN1bfr1YnmSLlLlmm3fyS6GImm8bODG-atnyRMj6wDPx_dx8v3Tx8vTL7Oz88_L08XZTHGadTNQBSOkKBTJFcY5NwC4qBgjPGclowZzTbTUugRSYlaqnDHDc8JJpivQGSXHyaud7rZ2QYy2BBEdQQRzhkgkljtCO7kR21iU9L-Fk1b8DTi_EtJ3VtUgKlRVHDJOFFeUYFTxAiRWzFSYGl3lUevDeFpfNaBVtMfLeiI63WntWqzctSgYQhSXUeDtKODdrx5CJxobFNS1bMH1u__mZcH4UNnrf9CHqxuplYwF2Na4eK4aRMWC5wUpUcmKSM0foOKjobEq9pCxMT5JeDdJiEwHt91K9iGI5beL_2fPf0zZN3vsGmTdrYOr-6F9whSkO1B5F4IHc29yhsQwAnduiGEExDgCMe3l_gXdJ931PPkDqE4BRg</recordid><startdate>20211008</startdate><enddate>20211008</enddate><creator>Epstein, Sean C</creator><creator>Bray, Timothy J P</creator><creator>Hall-Craggs, Margaret A</creator><creator>Zhang, Hui</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8071-1114</orcidid></search><sort><creationdate>20211008</creationdate><title>Task-driven assessment of experimental designs in diffusion MRI: A computational framework</title><author>Epstein, Sean C ; Bray, Timothy J P ; Hall-Craggs, Margaret A ; Zhang, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-ec853388c37c2276fee28b553675954f26d3dadd9e39259c755f673631dbed143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Area Under Curve</topic><topic>Bias</topic><topic>Biology and Life Sciences</topic><topic>Business metrics</topic><topic>Classification</topic><topic>Computer and Information Sciences</topic><topic>Computer applications</topic><topic>Computer science</topic><topic>Computer Simulation</topic><topic>Data entry</topic><topic>Design of experiments</topic><topic>Design parameters</topic><topic>Diffusion</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Estimation accuracy</topic><topic>Evaluation</topic><topic>Experimental design</topic><topic>Experiments</topic><topic>Humans</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Parameter estimation</topic><topic>Physical Sciences</topic><topic>Pipeline design</topic><topic>Predictions</topic><topic>Research and Analysis Methods</topic><topic>Research Design</topic><topic>ROC Curve</topic><topic>Task Performance and Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Epstein, Sean C</creatorcontrib><creatorcontrib>Bray, Timothy J P</creatorcontrib><creatorcontrib>Hall-Craggs, Margaret A</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Epstein, Sean C</au><au>Bray, Timothy J P</au><au>Hall-Craggs, Margaret A</au><au>Zhang, Hui</au><au>Yap, Pew-Thian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task-driven assessment of experimental designs in diffusion MRI: A computational framework</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-10-08</date><risdate>2021</risdate><volume>16</volume><issue>10</issue><spage>e0258442</spage><pages>e0258442-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This paper proposes a task-driven computational framework for assessing diffusion MRI experimental designs which, rather than relying on parameter-estimation metrics, directly measures quantitative task performance. Traditional computational experimental design (CED) methods may be ill-suited to experimental tasks, such as clinical classification, where outcome does not depend on parameter-estimation accuracy or precision alone. Current assessment metrics evaluate experiments' ability to faithfully recover microstructural parameters rather than their task performance. The method we propose addresses this shortcoming. For a given MRI experimental design (protocol, parameter-estimation method, model, etc.), experiments are simulated start-to-finish and task performance is computed from receiver operating characteristic (ROC) curves and associated summary metrics (e.g. area under the curve (AUC)). Two experiments were performed: first, a validation of the pipeline's task performance predictions against clinical results, comparing in-silico predictions to real-world ROC/AUC; and second, a demonstration of the pipeline's advantages over traditional CED approaches, using two simulated clinical classification tasks. Comparison with clinical datasets validates our method's predictions of (a) the qualitative form of ROC curves, (b) the relative task performance of different experimental designs, and (c) the absolute performance (AUC) of each experimental design. Furthermore, we show that our method outperforms traditional task-agnostic assessment methods, enabling improved, more useful experimental design. Our pipeline produces accurate, quantitative predictions of real-world task performance. Compared to current approaches, such task-driven assessment is more likely to identify experimental designs that perform well in practice. Our method is not limited to diffusion MRI; the pipeline generalises to any task-based quantitative MRI application, and provides the foundation for developing future task-driven end-to end CED frameworks.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34624064</pmid><doi>10.1371/journal.pone.0258442</doi><tpages>e0258442</tpages><orcidid>https://orcid.org/0000-0002-8071-1114</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-10, Vol.16 (10), p.e0258442 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2580326503 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Area Under Curve Bias Biology and Life Sciences Business metrics Classification Computer and Information Sciences Computer applications Computer science Computer Simulation Data entry Design of experiments Design parameters Diffusion Diffusion Magnetic Resonance Imaging - methods Estimation accuracy Evaluation Experimental design Experiments Humans Magnetic resonance imaging Medical imaging Medical research Medicine and Health Sciences Parameter estimation Physical Sciences Pipeline design Predictions Research and Analysis Methods Research Design ROC Curve Task Performance and Analysis |
title | Task-driven assessment of experimental designs in diffusion MRI: A computational framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task-driven%20assessment%20of%20experimental%20designs%20in%20diffusion%20MRI:%20A%20computational%20framework&rft.jtitle=PloS%20one&rft.au=Epstein,%20Sean%20C&rft.date=2021-10-08&rft.volume=16&rft.issue=10&rft.spage=e0258442&rft.pages=e0258442-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0258442&rft_dat=%3Cgale_plos_%3EA678390958%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580326503&rft_id=info:pmid/34624064&rft_galeid=A678390958&rft_doaj_id=oai_doaj_org_article_b0bb6e163c6c4320b68ea2c5fb24fdb7&rfr_iscdi=true |