An improved statistical method to identify chemical-genetic interactions by exploiting concentration-dependence
Chemical-genetics (C-G) experiments can be used to identify interactions between inhibitory compounds and bacterial genes, potentially revealing the targets of drugs, or other functionally interacting genes and pathways. C-G experiments involve constructing a library of hypomorphic strains with esse...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-10, Vol.16 (10), p.e0257911 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | e0257911 |
container_title | PloS one |
container_volume | 16 |
creator | Dutta, Esha DeJesus, Michael A Ruecker, Nadine Zaveri, Anisha Koh, Eun-Ik Sassetti, Christopher M Schnappinger, Dirk Ioerger, Thomas R |
description | Chemical-genetics (C-G) experiments can be used to identify interactions between inhibitory compounds and bacterial genes, potentially revealing the targets of drugs, or other functionally interacting genes and pathways. C-G experiments involve constructing a library of hypomorphic strains with essential genes that can be knocked-down, treating it with an inhibitory compound, and using high-throughput sequencing to quantify changes in relative abundance of individual mutants. The hypothesis is that, if the target of a drug or other genes in the same pathway are present in the library, such genes will display an excessive fitness defect due to the synergy between the dual stresses of protein depletion and antibiotic exposure. While assays at a single drug concentration are susceptible to noise and can yield false-positive interactions, improved detection can be achieved by requiring that the synergy between gene and drug be concentration-dependent. We present a novel statistical method based on Linear Mixed Models, called CGA-LMM, for analyzing C-G data. The approach is designed to capture the dependence of the abundance of each gene in the hypomorph library on increasing concentrations of drug through slope coefficients. To determine which genes represent candidate interactions, CGA-LMM uses a conservative population-based approach in which genes with negative slopes are considered significant only if they are outliers with respect to the rest of the population (assuming that most genes in the library do not interact with a given inhibitor). We applied the method to analyze 3 independent hypomorph libraries of M. tuberculosis for interactions with antibiotics with anti-tubercular activity, and we identify known target genes or expected interactions for 7 out of 9 drugs where relevant interacting genes are known. |
doi_str_mv | 10.1371/journal.pone.0257911 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2578376592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A677537326</galeid><doaj_id>oai_doaj_org_article_19a1ca45325a42529d142e9df2c1aa29</doaj_id><sourcerecordid>A677537326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6431-48b219dc5ecc6809b33a52563955d5b3eef0431498c2934b826c15c0710eecdd3</originalsourceid><addsrcrecordid>eNqNkl1r2zAUhs3YWNts_2BshsFgF870YdnWTSGUdQsUCvu6FbJ07CjYUmYppfn3kxu3xLDB8IWMzvMeHb16k-QNRktMS_xp6_aDld1y5ywsEWElx_hZco45JVlBEH1-8n-WXHi_RYjRqiheJmc0Z7ykKD9P3Mqmpt8N7g506oMMxgejZJf2EDZOp8GlRoMNpjmkagP9WMtasBCp1NgAg1TBOOvT-pDC_a5zJhjbpspZFWWDHIuZhh3Y2EbBq-RFIzsPr6d1kfy8_vzj6mt2c_tlfbW6yVSRU5zlVU0w14qBUkWFeE2pZIQVlDOmWU0BGhS5nFeKcJrXFSkUZgqVGAEorekieXfsGyfyYvLKi2hTRcuCcRKJ9ZHQTm7FbjC9HA7CSSMeNtzQCjnEW3YgMJdYyZxRwmROGOEa5wS4bojCUsYBFsnldNq-7kEfb97Nms4r1mxE6-5ElVcFRuMw76cGg_u9Bx_-MfJEtTJOZWzjYjPVG6_EqihLRktKikgt_0LFT4_PF9PSmLg_E3ycCSIT4D60cu-9WH__9v_s7a85--GE3YDswsa7bv-QlzmYH0E1OO8HaJ6cw0iMYX90Q4xhF1PYo-ztqetPosd00z8UOvuB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578376592</pqid></control><display><type>article</type><title>An improved statistical method to identify chemical-genetic interactions by exploiting concentration-dependence</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dutta, Esha ; DeJesus, Michael A ; Ruecker, Nadine ; Zaveri, Anisha ; Koh, Eun-Ik ; Sassetti, Christopher M ; Schnappinger, Dirk ; Ioerger, Thomas R</creator><contributor>Kumar, Pradeep</contributor><creatorcontrib>Dutta, Esha ; DeJesus, Michael A ; Ruecker, Nadine ; Zaveri, Anisha ; Koh, Eun-Ik ; Sassetti, Christopher M ; Schnappinger, Dirk ; Ioerger, Thomas R ; Kumar, Pradeep</creatorcontrib><description>Chemical-genetics (C-G) experiments can be used to identify interactions between inhibitory compounds and bacterial genes, potentially revealing the targets of drugs, or other functionally interacting genes and pathways. C-G experiments involve constructing a library of hypomorphic strains with essential genes that can be knocked-down, treating it with an inhibitory compound, and using high-throughput sequencing to quantify changes in relative abundance of individual mutants. The hypothesis is that, if the target of a drug or other genes in the same pathway are present in the library, such genes will display an excessive fitness defect due to the synergy between the dual stresses of protein depletion and antibiotic exposure. While assays at a single drug concentration are susceptible to noise and can yield false-positive interactions, improved detection can be achieved by requiring that the synergy between gene and drug be concentration-dependent. We present a novel statistical method based on Linear Mixed Models, called CGA-LMM, for analyzing C-G data. The approach is designed to capture the dependence of the abundance of each gene in the hypomorph library on increasing concentrations of drug through slope coefficients. To determine which genes represent candidate interactions, CGA-LMM uses a conservative population-based approach in which genes with negative slopes are considered significant only if they are outliers with respect to the rest of the population (assuming that most genes in the library do not interact with a given inhibitor). We applied the method to analyze 3 independent hypomorph libraries of M. tuberculosis for interactions with antibiotics with anti-tubercular activity, and we identify known target genes or expected interactions for 7 out of 9 drugs where relevant interacting genes are known.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0257911</identifier><identifier>PMID: 34597304</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abundance ; Analysis ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; Biochemical genetics ; Biology and Life Sciences ; Cloning ; Computer science ; Depletion ; Drug Discovery ; Drug resistance ; Evaluation ; Generalized linear models ; Genes ; Genes, Bacterial - drug effects ; Genetics ; Identification methods ; Immunology ; Libraries ; Medical research ; Medicine and Health Sciences ; Mycobacterium tuberculosis - metabolism ; Next-generation sequencing ; Outliers (statistics) ; Physical Sciences ; Physiology ; Population ; Relative abundance ; Research and Analysis Methods ; Slopes ; Statistical analysis ; Statistical methods ; Statistics ; Target recognition ; Tuberculosis</subject><ispartof>PloS one, 2021-10, Vol.16 (10), p.e0257911</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Dutta et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Dutta et al 2021 Dutta et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6431-48b219dc5ecc6809b33a52563955d5b3eef0431498c2934b826c15c0710eecdd3</citedby><cites>FETCH-LOGICAL-c6431-48b219dc5ecc6809b33a52563955d5b3eef0431498c2934b826c15c0710eecdd3</cites><orcidid>0000-0001-8702-9102 ; 0000-0003-3867-0299</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8486102/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8486102/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23849,27907,27908,53774,53776,79351,79352</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34597304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kumar, Pradeep</contributor><creatorcontrib>Dutta, Esha</creatorcontrib><creatorcontrib>DeJesus, Michael A</creatorcontrib><creatorcontrib>Ruecker, Nadine</creatorcontrib><creatorcontrib>Zaveri, Anisha</creatorcontrib><creatorcontrib>Koh, Eun-Ik</creatorcontrib><creatorcontrib>Sassetti, Christopher M</creatorcontrib><creatorcontrib>Schnappinger, Dirk</creatorcontrib><creatorcontrib>Ioerger, Thomas R</creatorcontrib><title>An improved statistical method to identify chemical-genetic interactions by exploiting concentration-dependence</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Chemical-genetics (C-G) experiments can be used to identify interactions between inhibitory compounds and bacterial genes, potentially revealing the targets of drugs, or other functionally interacting genes and pathways. C-G experiments involve constructing a library of hypomorphic strains with essential genes that can be knocked-down, treating it with an inhibitory compound, and using high-throughput sequencing to quantify changes in relative abundance of individual mutants. The hypothesis is that, if the target of a drug or other genes in the same pathway are present in the library, such genes will display an excessive fitness defect due to the synergy between the dual stresses of protein depletion and antibiotic exposure. While assays at a single drug concentration are susceptible to noise and can yield false-positive interactions, improved detection can be achieved by requiring that the synergy between gene and drug be concentration-dependent. We present a novel statistical method based on Linear Mixed Models, called CGA-LMM, for analyzing C-G data. The approach is designed to capture the dependence of the abundance of each gene in the hypomorph library on increasing concentrations of drug through slope coefficients. To determine which genes represent candidate interactions, CGA-LMM uses a conservative population-based approach in which genes with negative slopes are considered significant only if they are outliers with respect to the rest of the population (assuming that most genes in the library do not interact with a given inhibitor). We applied the method to analyze 3 independent hypomorph libraries of M. tuberculosis for interactions with antibiotics with anti-tubercular activity, and we identify known target genes or expected interactions for 7 out of 9 drugs where relevant interacting genes are known.</description><subject>Abundance</subject><subject>Analysis</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Biochemical genetics</subject><subject>Biology and Life Sciences</subject><subject>Cloning</subject><subject>Computer science</subject><subject>Depletion</subject><subject>Drug Discovery</subject><subject>Drug resistance</subject><subject>Evaluation</subject><subject>Generalized linear models</subject><subject>Genes</subject><subject>Genes, Bacterial - drug effects</subject><subject>Genetics</subject><subject>Identification methods</subject><subject>Immunology</subject><subject>Libraries</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Mycobacterium tuberculosis - metabolism</subject><subject>Next-generation sequencing</subject><subject>Outliers (statistics)</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Population</subject><subject>Relative abundance</subject><subject>Research and Analysis Methods</subject><subject>Slopes</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Target recognition</subject><subject>Tuberculosis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1r2zAUhs3YWNts_2BshsFgF870YdnWTSGUdQsUCvu6FbJ07CjYUmYppfn3kxu3xLDB8IWMzvMeHb16k-QNRktMS_xp6_aDld1y5ywsEWElx_hZco45JVlBEH1-8n-WXHi_RYjRqiheJmc0Z7ykKD9P3Mqmpt8N7g506oMMxgejZJf2EDZOp8GlRoMNpjmkagP9WMtasBCp1NgAg1TBOOvT-pDC_a5zJhjbpspZFWWDHIuZhh3Y2EbBq-RFIzsPr6d1kfy8_vzj6mt2c_tlfbW6yVSRU5zlVU0w14qBUkWFeE2pZIQVlDOmWU0BGhS5nFeKcJrXFSkUZgqVGAEorekieXfsGyfyYvLKi2hTRcuCcRKJ9ZHQTm7FbjC9HA7CSSMeNtzQCjnEW3YgMJdYyZxRwmROGOEa5wS4bojCUsYBFsnldNq-7kEfb97Nms4r1mxE6-5ElVcFRuMw76cGg_u9Bx_-MfJEtTJOZWzjYjPVG6_EqihLRktKikgt_0LFT4_PF9PSmLg_E3ycCSIT4D60cu-9WH__9v_s7a85--GE3YDswsa7bv-QlzmYH0E1OO8HaJ6cw0iMYX90Q4xhF1PYo-ztqetPosd00z8UOvuB</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Dutta, Esha</creator><creator>DeJesus, Michael A</creator><creator>Ruecker, Nadine</creator><creator>Zaveri, Anisha</creator><creator>Koh, Eun-Ik</creator><creator>Sassetti, Christopher M</creator><creator>Schnappinger, Dirk</creator><creator>Ioerger, Thomas R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8702-9102</orcidid><orcidid>https://orcid.org/0000-0003-3867-0299</orcidid></search><sort><creationdate>20211001</creationdate><title>An improved statistical method to identify chemical-genetic interactions by exploiting concentration-dependence</title><author>Dutta, Esha ; DeJesus, Michael A ; Ruecker, Nadine ; Zaveri, Anisha ; Koh, Eun-Ik ; Sassetti, Christopher M ; Schnappinger, Dirk ; Ioerger, Thomas R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6431-48b219dc5ecc6809b33a52563955d5b3eef0431498c2934b826c15c0710eecdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abundance</topic><topic>Analysis</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Biochemical genetics</topic><topic>Biology and Life Sciences</topic><topic>Cloning</topic><topic>Computer science</topic><topic>Depletion</topic><topic>Drug Discovery</topic><topic>Drug resistance</topic><topic>Evaluation</topic><topic>Generalized linear models</topic><topic>Genes</topic><topic>Genes, Bacterial - drug effects</topic><topic>Genetics</topic><topic>Identification methods</topic><topic>Immunology</topic><topic>Libraries</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Mycobacterium tuberculosis - metabolism</topic><topic>Next-generation sequencing</topic><topic>Outliers (statistics)</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Population</topic><topic>Relative abundance</topic><topic>Research and Analysis Methods</topic><topic>Slopes</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Target recognition</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta, Esha</creatorcontrib><creatorcontrib>DeJesus, Michael A</creatorcontrib><creatorcontrib>Ruecker, Nadine</creatorcontrib><creatorcontrib>Zaveri, Anisha</creatorcontrib><creatorcontrib>Koh, Eun-Ik</creatorcontrib><creatorcontrib>Sassetti, Christopher M</creatorcontrib><creatorcontrib>Schnappinger, Dirk</creatorcontrib><creatorcontrib>Ioerger, Thomas R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta, Esha</au><au>DeJesus, Michael A</au><au>Ruecker, Nadine</au><au>Zaveri, Anisha</au><au>Koh, Eun-Ik</au><au>Sassetti, Christopher M</au><au>Schnappinger, Dirk</au><au>Ioerger, Thomas R</au><au>Kumar, Pradeep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved statistical method to identify chemical-genetic interactions by exploiting concentration-dependence</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>16</volume><issue>10</issue><spage>e0257911</spage><pages>e0257911-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Chemical-genetics (C-G) experiments can be used to identify interactions between inhibitory compounds and bacterial genes, potentially revealing the targets of drugs, or other functionally interacting genes and pathways. C-G experiments involve constructing a library of hypomorphic strains with essential genes that can be knocked-down, treating it with an inhibitory compound, and using high-throughput sequencing to quantify changes in relative abundance of individual mutants. The hypothesis is that, if the target of a drug or other genes in the same pathway are present in the library, such genes will display an excessive fitness defect due to the synergy between the dual stresses of protein depletion and antibiotic exposure. While assays at a single drug concentration are susceptible to noise and can yield false-positive interactions, improved detection can be achieved by requiring that the synergy between gene and drug be concentration-dependent. We present a novel statistical method based on Linear Mixed Models, called CGA-LMM, for analyzing C-G data. The approach is designed to capture the dependence of the abundance of each gene in the hypomorph library on increasing concentrations of drug through slope coefficients. To determine which genes represent candidate interactions, CGA-LMM uses a conservative population-based approach in which genes with negative slopes are considered significant only if they are outliers with respect to the rest of the population (assuming that most genes in the library do not interact with a given inhibitor). We applied the method to analyze 3 independent hypomorph libraries of M. tuberculosis for interactions with antibiotics with anti-tubercular activity, and we identify known target genes or expected interactions for 7 out of 9 drugs where relevant interacting genes are known.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34597304</pmid><doi>10.1371/journal.pone.0257911</doi><tpages>e0257911</tpages><orcidid>https://orcid.org/0000-0001-8702-9102</orcidid><orcidid>https://orcid.org/0000-0003-3867-0299</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-10, Vol.16 (10), p.e0257911 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2578376592 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Abundance Analysis Anti-Bacterial Agents - pharmacology Antibiotics Biochemical genetics Biology and Life Sciences Cloning Computer science Depletion Drug Discovery Drug resistance Evaluation Generalized linear models Genes Genes, Bacterial - drug effects Genetics Identification methods Immunology Libraries Medical research Medicine and Health Sciences Mycobacterium tuberculosis - metabolism Next-generation sequencing Outliers (statistics) Physical Sciences Physiology Population Relative abundance Research and Analysis Methods Slopes Statistical analysis Statistical methods Statistics Target recognition Tuberculosis |
title | An improved statistical method to identify chemical-genetic interactions by exploiting concentration-dependence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A42%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20statistical%20method%20to%20identify%20chemical-genetic%20interactions%20by%20exploiting%20concentration-dependence&rft.jtitle=PloS%20one&rft.au=Dutta,%20Esha&rft.date=2021-10-01&rft.volume=16&rft.issue=10&rft.spage=e0257911&rft.pages=e0257911-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0257911&rft_dat=%3Cgale_plos_%3EA677537326%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578376592&rft_id=info:pmid/34597304&rft_galeid=A677537326&rft_doaj_id=oai_doaj_org_article_19a1ca45325a42529d142e9df2c1aa29&rfr_iscdi=true |