Feature selection to classify lameness using a smartphone-based inertial measurement unit
Gait can be severely affected by pain, muscle weakness, and aging resulting in lameness. Despite the high incidence of lameness, there are no studies on the features that are useful for classifying lameness patterns. Therefore, we aimed to identify features of high importance for classifying populat...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-09, Vol.16 (9), p.e0258067-e0258067 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0258067 |
---|---|
container_issue | 9 |
container_start_page | e0258067 |
container_title | PloS one |
container_volume | 16 |
creator | Arita, Satoshi Nishiyama, Daisuke Taniguchi, Takaya Fukui, Daisuke Yamanaka, Manabu Yamada, Hiroshi |
description | Gait can be severely affected by pain, muscle weakness, and aging resulting in lameness. Despite the high incidence of lameness, there are no studies on the features that are useful for classifying lameness patterns. Therefore, we aimed to identify features of high importance for classifying population differences in lameness patterns using an inertial measurement unit mounted above the sacral region. Features computed exhaustively for multidimensional time series consisting of three-axis angular velocities and three-axis acceleration were carefully selected using the Benjamini-Yekutieli procedure, and multiclass classification was performed using LightGBM (Microsoft Corp., Redmond, WA, USA). We calculated the relative importance of the features that contributed to the classification task in machine learning. The most important feature was found to be the absolute value of the Fourier coefficients of the second frequency calculated by the one-dimensional discrete Fourier transform for real input. This was determined by the fast Fourier transformation algorithm using data of a single gait cycle of the yaw angular velocity of the pelvic region. Using an inertial measurement unit worn over the sacral region, we determined a set of features of high importance for classifying differences in lameness patterns based on different factors. This completely new set of indicators can be used to advance the understanding of lameness. |
doi_str_mv | 10.1371/journal.pone.0258067 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2578156937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A677376484</galeid><doaj_id>oai_doaj_org_article_00ef249ff85744289e2607200a58c43b</doaj_id><sourcerecordid>A677376484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c735t-e6ebd1cdeba5d1081030d545171d5c49a5a4264bcee75aa0ff82194180e37aff3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6DwQLgujFjEnz1d4Iy-LqwMKCX-BVOE1PZzKkzWyTivvvTZ0qW9kL6UXKyZP3zXvak2XPKVlTpujbvR-HHtz64Htck0KURKoH2SmtWLGSBWEP77yfZE9C2BMiWCnl4-yEcVHRisvT7PslQhwHzAM6NNH6Po8-Nw5CsO1t7qDDHkPIx2D7bQ556GCIh13yXNUQsMltj0O04PIOISShxMd87G18mj1qwQV8Nq9n2dfL918uPq6urj9sLs6vVkYxEVcosW6oabAG0VBSUsJII7igijbC8AoE8ELy2iAqAUDatizS1WlJkCloW3aWvTjqHpwPeu5K0IVQJRWyYioRmyPReNjrw2BThlvtwerfBT9sdQpljUNNCLYFr5KJUJwXZYWFJKogBERpOKuT1rvZbaw7bExKO4BbiC53ervTW_9Dl7xkTPEk8HoWGPzNiCHqzgaDzkGPfjzeW4lKFDKhL_9B7083U1tIAWzf-uRrJlF9LpViSvJysl3fQ6Wnwc6a9Dlbm-qLA28WBxIT8WfcwhiC3nz-9P_s9bcl--oOu0NwcRe8G6dfLyxBfgTN4EMYsP3bZEr0NAF_uqGnCdDzBLBfwdn3dA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578156937</pqid></control><display><type>article</type><title>Feature selection to classify lameness using a smartphone-based inertial measurement unit</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Arita, Satoshi ; Nishiyama, Daisuke ; Taniguchi, Takaya ; Fukui, Daisuke ; Yamanaka, Manabu ; Yamada, Hiroshi</creator><contributor>Loor, Juan J</contributor><creatorcontrib>Arita, Satoshi ; Nishiyama, Daisuke ; Taniguchi, Takaya ; Fukui, Daisuke ; Yamanaka, Manabu ; Yamada, Hiroshi ; Loor, Juan J</creatorcontrib><description>Gait can be severely affected by pain, muscle weakness, and aging resulting in lameness. Despite the high incidence of lameness, there are no studies on the features that are useful for classifying lameness patterns. Therefore, we aimed to identify features of high importance for classifying population differences in lameness patterns using an inertial measurement unit mounted above the sacral region. Features computed exhaustively for multidimensional time series consisting of three-axis angular velocities and three-axis acceleration were carefully selected using the Benjamini-Yekutieli procedure, and multiclass classification was performed using LightGBM (Microsoft Corp., Redmond, WA, USA). We calculated the relative importance of the features that contributed to the classification task in machine learning. The most important feature was found to be the absolute value of the Fourier coefficients of the second frequency calculated by the one-dimensional discrete Fourier transform for real input. This was determined by the fast Fourier transformation algorithm using data of a single gait cycle of the yaw angular velocity of the pelvic region. Using an inertial measurement unit worn over the sacral region, we determined a set of features of high importance for classifying differences in lameness patterns based on different factors. This completely new set of indicators can be used to advance the understanding of lameness.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0258067</identifier><identifier>PMID: 34591946</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Acceleration ; Accuracy ; Aging ; Algorithms ; Angular velocity ; Ankle ; Biology and Life Sciences ; Bone surgery ; Classification ; Data collection ; Engineering and Technology ; Fast Fourier transformations ; Fourier transforms ; Gait ; Identification and classification ; Inertial platforms ; Learning algorithms ; Machine learning ; Mathematical analysis ; Measurement ; Medical research ; Multidimensional methods ; Muscles ; Orthopedic apparatus ; Pain ; Physical Sciences ; Physiological aspects ; Research and Analysis Methods ; Sacrum ; Sensors ; Smart phones ; Smartphones ; Sound ; Standard deviation ; Three axis ; Velocity ; Walking ; Yaw</subject><ispartof>PloS one, 2021-09, Vol.16 (9), p.e0258067-e0258067</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Arita et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Arita et al 2021 Arita et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c735t-e6ebd1cdeba5d1081030d545171d5c49a5a4264bcee75aa0ff82194180e37aff3</citedby><cites>FETCH-LOGICAL-c735t-e6ebd1cdeba5d1081030d545171d5c49a5a4264bcee75aa0ff82194180e37aff3</cites><orcidid>0000-0002-0096-4067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8483374/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8483374/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Loor, Juan J</contributor><creatorcontrib>Arita, Satoshi</creatorcontrib><creatorcontrib>Nishiyama, Daisuke</creatorcontrib><creatorcontrib>Taniguchi, Takaya</creatorcontrib><creatorcontrib>Fukui, Daisuke</creatorcontrib><creatorcontrib>Yamanaka, Manabu</creatorcontrib><creatorcontrib>Yamada, Hiroshi</creatorcontrib><title>Feature selection to classify lameness using a smartphone-based inertial measurement unit</title><title>PloS one</title><description>Gait can be severely affected by pain, muscle weakness, and aging resulting in lameness. Despite the high incidence of lameness, there are no studies on the features that are useful for classifying lameness patterns. Therefore, we aimed to identify features of high importance for classifying population differences in lameness patterns using an inertial measurement unit mounted above the sacral region. Features computed exhaustively for multidimensional time series consisting of three-axis angular velocities and three-axis acceleration were carefully selected using the Benjamini-Yekutieli procedure, and multiclass classification was performed using LightGBM (Microsoft Corp., Redmond, WA, USA). We calculated the relative importance of the features that contributed to the classification task in machine learning. The most important feature was found to be the absolute value of the Fourier coefficients of the second frequency calculated by the one-dimensional discrete Fourier transform for real input. This was determined by the fast Fourier transformation algorithm using data of a single gait cycle of the yaw angular velocity of the pelvic region. Using an inertial measurement unit worn over the sacral region, we determined a set of features of high importance for classifying differences in lameness patterns based on different factors. This completely new set of indicators can be used to advance the understanding of lameness.</description><subject>Acceleration</subject><subject>Accuracy</subject><subject>Aging</subject><subject>Algorithms</subject><subject>Angular velocity</subject><subject>Ankle</subject><subject>Biology and Life Sciences</subject><subject>Bone surgery</subject><subject>Classification</subject><subject>Data collection</subject><subject>Engineering and Technology</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Gait</subject><subject>Identification and classification</subject><subject>Inertial platforms</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Measurement</subject><subject>Medical research</subject><subject>Multidimensional methods</subject><subject>Muscles</subject><subject>Orthopedic apparatus</subject><subject>Pain</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Research and Analysis Methods</subject><subject>Sacrum</subject><subject>Sensors</subject><subject>Smart phones</subject><subject>Smartphones</subject><subject>Sound</subject><subject>Standard deviation</subject><subject>Three axis</subject><subject>Velocity</subject><subject>Walking</subject><subject>Yaw</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6DwQLgujFjEnz1d4Iy-LqwMKCX-BVOE1PZzKkzWyTivvvTZ0qW9kL6UXKyZP3zXvak2XPKVlTpujbvR-HHtz64Htck0KURKoH2SmtWLGSBWEP77yfZE9C2BMiWCnl4-yEcVHRisvT7PslQhwHzAM6NNH6Po8-Nw5CsO1t7qDDHkPIx2D7bQ556GCIh13yXNUQsMltj0O04PIOISShxMd87G18mj1qwQV8Nq9n2dfL918uPq6urj9sLs6vVkYxEVcosW6oabAG0VBSUsJII7igijbC8AoE8ELy2iAqAUDatizS1WlJkCloW3aWvTjqHpwPeu5K0IVQJRWyYioRmyPReNjrw2BThlvtwerfBT9sdQpljUNNCLYFr5KJUJwXZYWFJKogBERpOKuT1rvZbaw7bExKO4BbiC53ervTW_9Dl7xkTPEk8HoWGPzNiCHqzgaDzkGPfjzeW4lKFDKhL_9B7083U1tIAWzf-uRrJlF9LpViSvJysl3fQ6Wnwc6a9Dlbm-qLA28WBxIT8WfcwhiC3nz-9P_s9bcl--oOu0NwcRe8G6dfLyxBfgTN4EMYsP3bZEr0NAF_uqGnCdDzBLBfwdn3dA</recordid><startdate>20210930</startdate><enddate>20210930</enddate><creator>Arita, Satoshi</creator><creator>Nishiyama, Daisuke</creator><creator>Taniguchi, Takaya</creator><creator>Fukui, Daisuke</creator><creator>Yamanaka, Manabu</creator><creator>Yamada, Hiroshi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0096-4067</orcidid></search><sort><creationdate>20210930</creationdate><title>Feature selection to classify lameness using a smartphone-based inertial measurement unit</title><author>Arita, Satoshi ; Nishiyama, Daisuke ; Taniguchi, Takaya ; Fukui, Daisuke ; Yamanaka, Manabu ; Yamada, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c735t-e6ebd1cdeba5d1081030d545171d5c49a5a4264bcee75aa0ff82194180e37aff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Accuracy</topic><topic>Aging</topic><topic>Algorithms</topic><topic>Angular velocity</topic><topic>Ankle</topic><topic>Biology and Life Sciences</topic><topic>Bone surgery</topic><topic>Classification</topic><topic>Data collection</topic><topic>Engineering and Technology</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Gait</topic><topic>Identification and classification</topic><topic>Inertial platforms</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Measurement</topic><topic>Medical research</topic><topic>Multidimensional methods</topic><topic>Muscles</topic><topic>Orthopedic apparatus</topic><topic>Pain</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Research and Analysis Methods</topic><topic>Sacrum</topic><topic>Sensors</topic><topic>Smart phones</topic><topic>Smartphones</topic><topic>Sound</topic><topic>Standard deviation</topic><topic>Three axis</topic><topic>Velocity</topic><topic>Walking</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arita, Satoshi</creatorcontrib><creatorcontrib>Nishiyama, Daisuke</creatorcontrib><creatorcontrib>Taniguchi, Takaya</creatorcontrib><creatorcontrib>Fukui, Daisuke</creatorcontrib><creatorcontrib>Yamanaka, Manabu</creatorcontrib><creatorcontrib>Yamada, Hiroshi</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arita, Satoshi</au><au>Nishiyama, Daisuke</au><au>Taniguchi, Takaya</au><au>Fukui, Daisuke</au><au>Yamanaka, Manabu</au><au>Yamada, Hiroshi</au><au>Loor, Juan J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature selection to classify lameness using a smartphone-based inertial measurement unit</atitle><jtitle>PloS one</jtitle><date>2021-09-30</date><risdate>2021</risdate><volume>16</volume><issue>9</issue><spage>e0258067</spage><epage>e0258067</epage><pages>e0258067-e0258067</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Gait can be severely affected by pain, muscle weakness, and aging resulting in lameness. Despite the high incidence of lameness, there are no studies on the features that are useful for classifying lameness patterns. Therefore, we aimed to identify features of high importance for classifying population differences in lameness patterns using an inertial measurement unit mounted above the sacral region. Features computed exhaustively for multidimensional time series consisting of three-axis angular velocities and three-axis acceleration were carefully selected using the Benjamini-Yekutieli procedure, and multiclass classification was performed using LightGBM (Microsoft Corp., Redmond, WA, USA). We calculated the relative importance of the features that contributed to the classification task in machine learning. The most important feature was found to be the absolute value of the Fourier coefficients of the second frequency calculated by the one-dimensional discrete Fourier transform for real input. This was determined by the fast Fourier transformation algorithm using data of a single gait cycle of the yaw angular velocity of the pelvic region. Using an inertial measurement unit worn over the sacral region, we determined a set of features of high importance for classifying differences in lameness patterns based on different factors. This completely new set of indicators can be used to advance the understanding of lameness.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34591946</pmid><doi>10.1371/journal.pone.0258067</doi><tpages>e0258067</tpages><orcidid>https://orcid.org/0000-0002-0096-4067</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-09, Vol.16 (9), p.e0258067-e0258067 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2578156937 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acceleration Accuracy Aging Algorithms Angular velocity Ankle Biology and Life Sciences Bone surgery Classification Data collection Engineering and Technology Fast Fourier transformations Fourier transforms Gait Identification and classification Inertial platforms Learning algorithms Machine learning Mathematical analysis Measurement Medical research Multidimensional methods Muscles Orthopedic apparatus Pain Physical Sciences Physiological aspects Research and Analysis Methods Sacrum Sensors Smart phones Smartphones Sound Standard deviation Three axis Velocity Walking Yaw |
title | Feature selection to classify lameness using a smartphone-based inertial measurement unit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20selection%20to%20classify%20lameness%20using%20a%20smartphone-based%20inertial%20measurement%20unit&rft.jtitle=PloS%20one&rft.au=Arita,%20Satoshi&rft.date=2021-09-30&rft.volume=16&rft.issue=9&rft.spage=e0258067&rft.epage=e0258067&rft.pages=e0258067-e0258067&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0258067&rft_dat=%3Cgale_plos_%3EA677376484%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578156937&rft_id=info:pmid/34591946&rft_galeid=A677376484&rft_doaj_id=oai_doaj_org_article_00ef249ff85744289e2607200a58c43b&rfr_iscdi=true |