Signal to noise and b-value analysis for optimal intra-voxel incoherent motion imaging in the brain

Intravoxel incoherent motion (IVIM) is a method that can provide quantitative information about perfusion in the human body, in vivo, and without contrast agent. Unfortunately, the IVIM perfusion parameter maps are known to be relatively noisy in the brain, in particular for the pseudo-diffusion coe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-09, Vol.16 (9), p.e0257545
Hauptverfasser: Merisaari, Harri, Federau, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page e0257545
container_title PloS one
container_volume 16
creator Merisaari, Harri
Federau, Christian
description Intravoxel incoherent motion (IVIM) is a method that can provide quantitative information about perfusion in the human body, in vivo, and without contrast agent. Unfortunately, the IVIM perfusion parameter maps are known to be relatively noisy in the brain, in particular for the pseudo-diffusion coefficient, which might hinder its potential broader use in clinical applications. Therefore, we studied the conditions to produce optimal IVIM perfusion images in the brain. IVIM imaging was performed on a 3-Tesla clinical system in four healthy volunteers, with 16 b values 0, 10, 20, 40, 80, 110, 140, 170, 200, 300, 400, 500, 600, 700, 800, 900 s/mm2, repeated 20 times. We analyzed the noise characteristics of the trace images as a function of b-value, and the homogeneity of the IVIM parameter maps across number of averages and sub-sets of the acquired b values. We found two peaks of noise of the trace images as function of b value, one due to thermal noise at high b-value, and one due to physiological noise at low b-value. The selection of b value distribution was found to have higher impact on the homogeneity of the IVIM parameter maps than the number of averages. Based on evaluations, we suggest an optimal b value acquisition scheme for a 12 min scan as 0 (7), 20 (4), 140 (19), 300 (9), 500 (19), 700 (1), 800 (4), 900 (1) s/mm2.
doi_str_mv 10.1371/journal.pone.0257545
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2575815569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A676583896</galeid><doaj_id>oai_doaj_org_article_5839ea542f3748a1ad270d48e94f3673</doaj_id><sourcerecordid>A676583896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-9f37050d3dcf6a736859545cd2f0685a4064192779158b37b458b76ef4b62a6b3</originalsourceid><addsrcrecordid>eNqNk01r3DAQhk1padK0_6C0hkJpD97K1pd1KYTQj4VAoGl7FbIs21q00laSl-TfV846YV1yKDpokJ55NTOaybLXJViVkJafNm70VpjVzlm1AhWmGOEn2WnJYFWQCsCnR_ZJ9iKEDQAY1oQ8z04gwhgDjE4zea37pJJHl1ung8qFbfOm2AszTrYwt0GHvHM-d7uot4nUNnpR7N2NmmzpBuWVjfnWRe1snpBe2z7d5HFQeeOFti-zZ50wQb2a97Ps19cvPy--F5dX39YX55eFJKyKBesgBRi0sJUdERSSGrOUk2yrDiRbIEBQySpKWYnrBtIGpY0S1aGGVII08Cx7e9DdGRf4XJ_Ap9LUJcaEJWJ9IFonNnznU7T-ljuh-d2B8z0XPmppFMc1ZEpgVKWoUC1K0VYUtKhWDHWQUJi0Ps-vjc1WtVJNdTEL0eWN1QPv3Z7XCDNWgyTwYRbw7s-oQuRbHaQyRljlxru4CUGMsSqh7_5BH89upnqREtC2c-ldOYnyc0JJyqhmJFGrR6i0WrXVMjVTp9P5wuHjwiExUd3EXowh8PX1j_9nr34v2fdH7KCEiUNwZpz6KCxBdACldyF41T0UuQR8moX7avBpFvg8C8ntzfEHPTjdNz_8C1tbAvs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575815569</pqid></control><display><type>article</type><title>Signal to noise and b-value analysis for optimal intra-voxel incoherent motion imaging in the brain</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Merisaari, Harri ; Federau, Christian</creator><creatorcontrib>Merisaari, Harri ; Federau, Christian</creatorcontrib><description>Intravoxel incoherent motion (IVIM) is a method that can provide quantitative information about perfusion in the human body, in vivo, and without contrast agent. Unfortunately, the IVIM perfusion parameter maps are known to be relatively noisy in the brain, in particular for the pseudo-diffusion coefficient, which might hinder its potential broader use in clinical applications. Therefore, we studied the conditions to produce optimal IVIM perfusion images in the brain. IVIM imaging was performed on a 3-Tesla clinical system in four healthy volunteers, with 16 b values 0, 10, 20, 40, 80, 110, 140, 170, 200, 300, 400, 500, 600, 700, 800, 900 s/mm2, repeated 20 times. We analyzed the noise characteristics of the trace images as a function of b-value, and the homogeneity of the IVIM parameter maps across number of averages and sub-sets of the acquired b values. We found two peaks of noise of the trace images as function of b value, one due to thermal noise at high b-value, and one due to physiological noise at low b-value. The selection of b value distribution was found to have higher impact on the homogeneity of the IVIM parameter maps than the number of averages. Based on evaluations, we suggest an optimal b value acquisition scheme for a 12 min scan as 0 (7), 20 (4), 140 (19), 300 (9), 500 (19), 700 (1), 800 (4), 900 (1) s/mm2.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0257545</identifier><identifier>PMID: 34555054</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Analysis ; Biology and Life Sciences ; Brain ; Brain - diagnostic imaging ; Brain - physiology ; Brain cancer ; Brain mapping ; Brain research ; Cerebrospinal fluid ; Contrast agents ; Diffusion coefficient ; Female ; Homogeneity ; Humans ; Image Processing, Computer-Assisted - methods ; Magnetic resonance imaging ; Male ; Medical prognosis ; Medicine and Health Sciences ; Metastasis ; Motion ; Neuroimaging ; Noise ; Optimization ; Parameters ; Perfusion ; Research and Analysis Methods ; Scholarships &amp; fellowships ; Signal-To-Noise Ratio ; Thermal noise ; Value analysis</subject><ispartof>PloS one, 2021-09, Vol.16 (9), p.e0257545</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Merisaari, Federau. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Merisaari, Federau 2021 Merisaari, Federau</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-9f37050d3dcf6a736859545cd2f0685a4064192779158b37b458b76ef4b62a6b3</citedby><cites>FETCH-LOGICAL-c692t-9f37050d3dcf6a736859545cd2f0685a4064192779158b37b458b76ef4b62a6b3</cites><orcidid>0000-0002-8515-5399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459980/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459980/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34555054$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Merisaari, Harri</creatorcontrib><creatorcontrib>Federau, Christian</creatorcontrib><title>Signal to noise and b-value analysis for optimal intra-voxel incoherent motion imaging in the brain</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Intravoxel incoherent motion (IVIM) is a method that can provide quantitative information about perfusion in the human body, in vivo, and without contrast agent. Unfortunately, the IVIM perfusion parameter maps are known to be relatively noisy in the brain, in particular for the pseudo-diffusion coefficient, which might hinder its potential broader use in clinical applications. Therefore, we studied the conditions to produce optimal IVIM perfusion images in the brain. IVIM imaging was performed on a 3-Tesla clinical system in four healthy volunteers, with 16 b values 0, 10, 20, 40, 80, 110, 140, 170, 200, 300, 400, 500, 600, 700, 800, 900 s/mm2, repeated 20 times. We analyzed the noise characteristics of the trace images as a function of b-value, and the homogeneity of the IVIM parameter maps across number of averages and sub-sets of the acquired b values. We found two peaks of noise of the trace images as function of b value, one due to thermal noise at high b-value, and one due to physiological noise at low b-value. The selection of b value distribution was found to have higher impact on the homogeneity of the IVIM parameter maps than the number of averages. Based on evaluations, we suggest an optimal b value acquisition scheme for a 12 min scan as 0 (7), 20 (4), 140 (19), 300 (9), 500 (19), 700 (1), 800 (4), 900 (1) s/mm2.</description><subject>Adult</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiology</subject><subject>Brain cancer</subject><subject>Brain mapping</subject><subject>Brain research</subject><subject>Cerebrospinal fluid</subject><subject>Contrast agents</subject><subject>Diffusion coefficient</subject><subject>Female</subject><subject>Homogeneity</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Medical prognosis</subject><subject>Medicine and Health Sciences</subject><subject>Metastasis</subject><subject>Motion</subject><subject>Neuroimaging</subject><subject>Noise</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Perfusion</subject><subject>Research and Analysis Methods</subject><subject>Scholarships &amp; fellowships</subject><subject>Signal-To-Noise Ratio</subject><subject>Thermal noise</subject><subject>Value analysis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01r3DAQhk1padK0_6C0hkJpD97K1pd1KYTQj4VAoGl7FbIs21q00laSl-TfV846YV1yKDpokJ55NTOaybLXJViVkJafNm70VpjVzlm1AhWmGOEn2WnJYFWQCsCnR_ZJ9iKEDQAY1oQ8z04gwhgDjE4zea37pJJHl1ung8qFbfOm2AszTrYwt0GHvHM-d7uot4nUNnpR7N2NmmzpBuWVjfnWRe1snpBe2z7d5HFQeeOFti-zZ50wQb2a97Ps19cvPy--F5dX39YX55eFJKyKBesgBRi0sJUdERSSGrOUk2yrDiRbIEBQySpKWYnrBtIGpY0S1aGGVII08Cx7e9DdGRf4XJ_Ap9LUJcaEJWJ9IFonNnznU7T-ljuh-d2B8z0XPmppFMc1ZEpgVKWoUC1K0VYUtKhWDHWQUJi0Ps-vjc1WtVJNdTEL0eWN1QPv3Z7XCDNWgyTwYRbw7s-oQuRbHaQyRljlxru4CUGMsSqh7_5BH89upnqREtC2c-ldOYnyc0JJyqhmJFGrR6i0WrXVMjVTp9P5wuHjwiExUd3EXowh8PX1j_9nr34v2fdH7KCEiUNwZpz6KCxBdACldyF41T0UuQR8moX7avBpFvg8C8ntzfEHPTjdNz_8C1tbAvs</recordid><startdate>20210923</startdate><enddate>20210923</enddate><creator>Merisaari, Harri</creator><creator>Federau, Christian</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8515-5399</orcidid></search><sort><creationdate>20210923</creationdate><title>Signal to noise and b-value analysis for optimal intra-voxel incoherent motion imaging in the brain</title><author>Merisaari, Harri ; Federau, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-9f37050d3dcf6a736859545cd2f0685a4064192779158b37b458b76ef4b62a6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiology</topic><topic>Brain cancer</topic><topic>Brain mapping</topic><topic>Brain research</topic><topic>Cerebrospinal fluid</topic><topic>Contrast agents</topic><topic>Diffusion coefficient</topic><topic>Female</topic><topic>Homogeneity</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Medical prognosis</topic><topic>Medicine and Health Sciences</topic><topic>Metastasis</topic><topic>Motion</topic><topic>Neuroimaging</topic><topic>Noise</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Perfusion</topic><topic>Research and Analysis Methods</topic><topic>Scholarships &amp; fellowships</topic><topic>Signal-To-Noise Ratio</topic><topic>Thermal noise</topic><topic>Value analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merisaari, Harri</creatorcontrib><creatorcontrib>Federau, Christian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merisaari, Harri</au><au>Federau, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signal to noise and b-value analysis for optimal intra-voxel incoherent motion imaging in the brain</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-09-23</date><risdate>2021</risdate><volume>16</volume><issue>9</issue><spage>e0257545</spage><pages>e0257545-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Intravoxel incoherent motion (IVIM) is a method that can provide quantitative information about perfusion in the human body, in vivo, and without contrast agent. Unfortunately, the IVIM perfusion parameter maps are known to be relatively noisy in the brain, in particular for the pseudo-diffusion coefficient, which might hinder its potential broader use in clinical applications. Therefore, we studied the conditions to produce optimal IVIM perfusion images in the brain. IVIM imaging was performed on a 3-Tesla clinical system in four healthy volunteers, with 16 b values 0, 10, 20, 40, 80, 110, 140, 170, 200, 300, 400, 500, 600, 700, 800, 900 s/mm2, repeated 20 times. We analyzed the noise characteristics of the trace images as a function of b-value, and the homogeneity of the IVIM parameter maps across number of averages and sub-sets of the acquired b values. We found two peaks of noise of the trace images as function of b value, one due to thermal noise at high b-value, and one due to physiological noise at low b-value. The selection of b value distribution was found to have higher impact on the homogeneity of the IVIM parameter maps than the number of averages. Based on evaluations, we suggest an optimal b value acquisition scheme for a 12 min scan as 0 (7), 20 (4), 140 (19), 300 (9), 500 (19), 700 (1), 800 (4), 900 (1) s/mm2.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34555054</pmid><doi>10.1371/journal.pone.0257545</doi><tpages>e0257545</tpages><orcidid>https://orcid.org/0000-0002-8515-5399</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-09, Vol.16 (9), p.e0257545
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2575815569
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adult
Analysis
Biology and Life Sciences
Brain
Brain - diagnostic imaging
Brain - physiology
Brain cancer
Brain mapping
Brain research
Cerebrospinal fluid
Contrast agents
Diffusion coefficient
Female
Homogeneity
Humans
Image Processing, Computer-Assisted - methods
Magnetic resonance imaging
Male
Medical prognosis
Medicine and Health Sciences
Metastasis
Motion
Neuroimaging
Noise
Optimization
Parameters
Perfusion
Research and Analysis Methods
Scholarships & fellowships
Signal-To-Noise Ratio
Thermal noise
Value analysis
title Signal to noise and b-value analysis for optimal intra-voxel incoherent motion imaging in the brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signal%20to%20noise%20and%20b-value%20analysis%20for%20optimal%20intra-voxel%20incoherent%20motion%20imaging%20in%20the%20brain&rft.jtitle=PloS%20one&rft.au=Merisaari,%20Harri&rft.date=2021-09-23&rft.volume=16&rft.issue=9&rft.spage=e0257545&rft.pages=e0257545-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0257545&rft_dat=%3Cgale_plos_%3EA676583896%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575815569&rft_id=info:pmid/34555054&rft_galeid=A676583896&rft_doaj_id=oai_doaj_org_article_5839ea542f3748a1ad270d48e94f3673&rfr_iscdi=true