Implementation of artificial intelligence algorithms for melanoma screening in a primary care setting
Skin cancer is currently the most common type of cancer among Caucasians. The increase in life expectancy, along with new diagnostic tools and treatments for skin cancer, has resulted in unprecedented changes in patient care and has generated a great burden on healthcare systems. Early detection of...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-09, Vol.16 (9), p.e0257006 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | e0257006 |
container_title | PloS one |
container_volume | 16 |
creator | Giavina-Bianchi, Mara de Sousa, Raquel Machado Paciello, Vitor Zago de Almeida Vitor, William Gois Okita, Aline Lissa Prôa, Renata Severino, Gian Lucca Dos Santos Schinaid, Anderson Alves Espírito Santo, Rafael Machado, Birajara Soares |
description | Skin cancer is currently the most common type of cancer among Caucasians. The increase in life expectancy, along with new diagnostic tools and treatments for skin cancer, has resulted in unprecedented changes in patient care and has generated a great burden on healthcare systems. Early detection of skin tumors is expected to reduce this burden. Artificial intelligence (AI) algorithms that support skin cancer diagnoses have been shown to perform at least as well as dermatologists' diagnoses. Recognizing the need for clinically and economically efficient means of diagnosing skin cancers at early stages in the primary care attention, we developed an efficient computer-aided diagnosis (CAD) system to be used by primary care physicians (PCP). Additionally, we developed a smartphone application with a protocol for data acquisition (i.e., photographs, demographic data and short clinical histories) and AI algorithms for clinical and dermoscopic image classification. For each lesion analyzed, a report is generated, showing the image of the suspected lesion and its respective Heat Map; the predicted probability of the suspected lesion being melanoma or malignant; the probable diagnosis based on that probability; and a suggestion on how the lesion should be managed. The accuracy of the dermoscopy model for melanoma was 89.3%, and for the clinical model, 84.7% with 0.91 and 0.89 sensitivity and 0.89 and 0.83 specificity, respectively. Both models achieved an area under the curve (AUC) above 0.9. Our CAD system can screen skin cancers to guide lesion management by PCPs, especially in the contexts where the access to the dermatologist can be difficult or time consuming. Its use can enable risk stratification of lesions and/or patients and dramatically improve timely access to specialist care for those requiring urgent attention. |
doi_str_mv | 10.1371/journal.pone.0257006 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2575314506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A676449280</galeid><doaj_id>oai_doaj_org_article_dcda1b413b5041558f4819a1167e1ff8</doaj_id><sourcerecordid>A676449280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-33941f021173ca22646af8ab58b69dcd7885113eb35df18e7d9318e4b8d895973</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEnz0fRGWBY_BhYW_LoNaXrSyZI2s0kq-u_NON1lKnshLaQkz3lPzttziuI5RmtMavzu2k9hVG698yOsUcVqhPiD4hQ3pFrxCpGHR98nxZMYrxFiRHD-uDghlDHU1Oi0gM2wczDAmFSyfiy9KVVI1lhtlSvtmMA528OooVSu98Gm7RBL40M5gFOjH1QZdQAY7dhnvFTlLthBhd-lVgHKCCnlk6fFI6NchGfzelZ8__jh28Xn1eXVp83F-eVK86ZKK0Iaig2qMK6JVlXFKVdGqJaJljed7mohGMYEWsI6gwXUXUPyQlvRiYY1NTkrXh50d85HOTsUZTaHEUwZ4pnYHIjOq2s531V6ZeXfDR96ua9fO5A5ocItxaRliGLGhKECNwpjXgM2RmSt93O2qR2g09nEoNxCdHky2q3s_U8pKKvzmwXezALB30wQkxxs1NlxNYKfDvcWVUMoyeirf9D7q5upXuUC7Gh8zqv3ovKc15zSphIoU-t7qPx0MFid28nYvL8IeLsIyEyCX6lXU4xy8_XL_7NXP5bs6yN2C8qlbfRu2ndiXIL0AOrgYwxg7kzGSO6n4dYNuZ8GOU9DDntx_IPugm7bn_wBRKsE2w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575314506</pqid></control><display><type>article</type><title>Implementation of artificial intelligence algorithms for melanoma screening in a primary care setting</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Giavina-Bianchi, Mara ; de Sousa, Raquel Machado ; Paciello, Vitor Zago de Almeida ; Vitor, William Gois ; Okita, Aline Lissa ; Prôa, Renata ; Severino, Gian Lucca Dos Santos ; Schinaid, Anderson Alves ; Espírito Santo, Rafael ; Machado, Birajara Soares</creator><contributor>Le, Khanh N.Q.</contributor><creatorcontrib>Giavina-Bianchi, Mara ; de Sousa, Raquel Machado ; Paciello, Vitor Zago de Almeida ; Vitor, William Gois ; Okita, Aline Lissa ; Prôa, Renata ; Severino, Gian Lucca Dos Santos ; Schinaid, Anderson Alves ; Espírito Santo, Rafael ; Machado, Birajara Soares ; Le, Khanh N.Q.</creatorcontrib><description>Skin cancer is currently the most common type of cancer among Caucasians. The increase in life expectancy, along with new diagnostic tools and treatments for skin cancer, has resulted in unprecedented changes in patient care and has generated a great burden on healthcare systems. Early detection of skin tumors is expected to reduce this burden. Artificial intelligence (AI) algorithms that support skin cancer diagnoses have been shown to perform at least as well as dermatologists' diagnoses. Recognizing the need for clinically and economically efficient means of diagnosing skin cancers at early stages in the primary care attention, we developed an efficient computer-aided diagnosis (CAD) system to be used by primary care physicians (PCP). Additionally, we developed a smartphone application with a protocol for data acquisition (i.e., photographs, demographic data and short clinical histories) and AI algorithms for clinical and dermoscopic image classification. For each lesion analyzed, a report is generated, showing the image of the suspected lesion and its respective Heat Map; the predicted probability of the suspected lesion being melanoma or malignant; the probable diagnosis based on that probability; and a suggestion on how the lesion should be managed. The accuracy of the dermoscopy model for melanoma was 89.3%, and for the clinical model, 84.7% with 0.91 and 0.89 sensitivity and 0.89 and 0.83 specificity, respectively. Both models achieved an area under the curve (AUC) above 0.9. Our CAD system can screen skin cancers to guide lesion management by PCPs, especially in the contexts where the access to the dermatologist can be difficult or time consuming. Its use can enable risk stratification of lesions and/or patients and dramatically improve timely access to specialist care for those requiring urgent attention.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0257006</identifier><identifier>PMID: 34550970</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Algorithms ; Analysis ; Area Under Curve ; Artificial Intelligence ; Cancer ; Computer and Information Sciences ; Data acquisition ; Dermatology ; Dermoscopy - instrumentation ; Dermoscopy - methods ; Diagnosis ; Diagnosis, Computer-Assisted - instrumentation ; Diagnosis, Computer-Assisted - methods ; Early Detection of Cancer - methods ; Einstein, Albert (1879-1955) ; Evaluation ; Female ; Health care ; Humans ; Image classification ; Lesions ; Life expectancy ; Life span ; Male ; Medical imaging ; Medical screening ; Medicine and Health Sciences ; Melanoma ; Melanoma - diagnosis ; Melanoma - pathology ; Patients ; People and Places ; Physical Sciences ; Physicians ; Physicians, Primary Care - education ; Primary care ; Research and Analysis Methods ; Sensitivity and Specificity ; Skin cancer ; Skin diseases ; Skin Neoplasms - diagnosis ; Skin Neoplasms - pathology ; Smartphone ; Surveys and Questionnaires ; Tumors</subject><ispartof>PloS one, 2021-09, Vol.16 (9), p.e0257006</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Giavina-Bianchi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Giavina-Bianchi et al 2021 Giavina-Bianchi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-33941f021173ca22646af8ab58b69dcd7885113eb35df18e7d9318e4b8d895973</citedby><cites>FETCH-LOGICAL-c692t-33941f021173ca22646af8ab58b69dcd7885113eb35df18e7d9318e4b8d895973</cites><orcidid>0000-0002-0934-5852 ; 0000-0003-1719-7711 ; 0000-0001-7820-8993 ; 0000-0001-7059-4068 ; 0000-0002-4265-7487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457457/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457457/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34550970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Le, Khanh N.Q.</contributor><creatorcontrib>Giavina-Bianchi, Mara</creatorcontrib><creatorcontrib>de Sousa, Raquel Machado</creatorcontrib><creatorcontrib>Paciello, Vitor Zago de Almeida</creatorcontrib><creatorcontrib>Vitor, William Gois</creatorcontrib><creatorcontrib>Okita, Aline Lissa</creatorcontrib><creatorcontrib>Prôa, Renata</creatorcontrib><creatorcontrib>Severino, Gian Lucca Dos Santos</creatorcontrib><creatorcontrib>Schinaid, Anderson Alves</creatorcontrib><creatorcontrib>Espírito Santo, Rafael</creatorcontrib><creatorcontrib>Machado, Birajara Soares</creatorcontrib><title>Implementation of artificial intelligence algorithms for melanoma screening in a primary care setting</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Skin cancer is currently the most common type of cancer among Caucasians. The increase in life expectancy, along with new diagnostic tools and treatments for skin cancer, has resulted in unprecedented changes in patient care and has generated a great burden on healthcare systems. Early detection of skin tumors is expected to reduce this burden. Artificial intelligence (AI) algorithms that support skin cancer diagnoses have been shown to perform at least as well as dermatologists' diagnoses. Recognizing the need for clinically and economically efficient means of diagnosing skin cancers at early stages in the primary care attention, we developed an efficient computer-aided diagnosis (CAD) system to be used by primary care physicians (PCP). Additionally, we developed a smartphone application with a protocol for data acquisition (i.e., photographs, demographic data and short clinical histories) and AI algorithms for clinical and dermoscopic image classification. For each lesion analyzed, a report is generated, showing the image of the suspected lesion and its respective Heat Map; the predicted probability of the suspected lesion being melanoma or malignant; the probable diagnosis based on that probability; and a suggestion on how the lesion should be managed. The accuracy of the dermoscopy model for melanoma was 89.3%, and for the clinical model, 84.7% with 0.91 and 0.89 sensitivity and 0.89 and 0.83 specificity, respectively. Both models achieved an area under the curve (AUC) above 0.9. Our CAD system can screen skin cancers to guide lesion management by PCPs, especially in the contexts where the access to the dermatologist can be difficult or time consuming. Its use can enable risk stratification of lesions and/or patients and dramatically improve timely access to specialist care for those requiring urgent attention.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Area Under Curve</subject><subject>Artificial Intelligence</subject><subject>Cancer</subject><subject>Computer and Information Sciences</subject><subject>Data acquisition</subject><subject>Dermatology</subject><subject>Dermoscopy - instrumentation</subject><subject>Dermoscopy - methods</subject><subject>Diagnosis</subject><subject>Diagnosis, Computer-Assisted - instrumentation</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Early Detection of Cancer - methods</subject><subject>Einstein, Albert (1879-1955)</subject><subject>Evaluation</subject><subject>Female</subject><subject>Health care</subject><subject>Humans</subject><subject>Image classification</subject><subject>Lesions</subject><subject>Life expectancy</subject><subject>Life span</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Medical screening</subject><subject>Medicine and Health Sciences</subject><subject>Melanoma</subject><subject>Melanoma - diagnosis</subject><subject>Melanoma - pathology</subject><subject>Patients</subject><subject>People and Places</subject><subject>Physical Sciences</subject><subject>Physicians</subject><subject>Physicians, Primary Care - education</subject><subject>Primary care</subject><subject>Research and Analysis Methods</subject><subject>Sensitivity and Specificity</subject><subject>Skin cancer</subject><subject>Skin diseases</subject><subject>Skin Neoplasms - diagnosis</subject><subject>Skin Neoplasms - pathology</subject><subject>Smartphone</subject><subject>Surveys and Questionnaires</subject><subject>Tumors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEnz0fRGWBY_BhYW_LoNaXrSyZI2s0kq-u_NON1lKnshLaQkz3lPzttziuI5RmtMavzu2k9hVG698yOsUcVqhPiD4hQ3pFrxCpGHR98nxZMYrxFiRHD-uDghlDHU1Oi0gM2wczDAmFSyfiy9KVVI1lhtlSvtmMA528OooVSu98Gm7RBL40M5gFOjH1QZdQAY7dhnvFTlLthBhd-lVgHKCCnlk6fFI6NchGfzelZ8__jh28Xn1eXVp83F-eVK86ZKK0Iaig2qMK6JVlXFKVdGqJaJljed7mohGMYEWsI6gwXUXUPyQlvRiYY1NTkrXh50d85HOTsUZTaHEUwZ4pnYHIjOq2s531V6ZeXfDR96ua9fO5A5ocItxaRliGLGhKECNwpjXgM2RmSt93O2qR2g09nEoNxCdHky2q3s_U8pKKvzmwXezALB30wQkxxs1NlxNYKfDvcWVUMoyeirf9D7q5upXuUC7Gh8zqv3ovKc15zSphIoU-t7qPx0MFid28nYvL8IeLsIyEyCX6lXU4xy8_XL_7NXP5bs6yN2C8qlbfRu2ndiXIL0AOrgYwxg7kzGSO6n4dYNuZ8GOU9DDntx_IPugm7bn_wBRKsE2w</recordid><startdate>20210922</startdate><enddate>20210922</enddate><creator>Giavina-Bianchi, Mara</creator><creator>de Sousa, Raquel Machado</creator><creator>Paciello, Vitor Zago de Almeida</creator><creator>Vitor, William Gois</creator><creator>Okita, Aline Lissa</creator><creator>Prôa, Renata</creator><creator>Severino, Gian Lucca Dos Santos</creator><creator>Schinaid, Anderson Alves</creator><creator>Espírito Santo, Rafael</creator><creator>Machado, Birajara Soares</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0934-5852</orcidid><orcidid>https://orcid.org/0000-0003-1719-7711</orcidid><orcidid>https://orcid.org/0000-0001-7820-8993</orcidid><orcidid>https://orcid.org/0000-0001-7059-4068</orcidid><orcidid>https://orcid.org/0000-0002-4265-7487</orcidid></search><sort><creationdate>20210922</creationdate><title>Implementation of artificial intelligence algorithms for melanoma screening in a primary care setting</title><author>Giavina-Bianchi, Mara ; de Sousa, Raquel Machado ; Paciello, Vitor Zago de Almeida ; Vitor, William Gois ; Okita, Aline Lissa ; Prôa, Renata ; Severino, Gian Lucca Dos Santos ; Schinaid, Anderson Alves ; Espírito Santo, Rafael ; Machado, Birajara Soares</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-33941f021173ca22646af8ab58b69dcd7885113eb35df18e7d9318e4b8d895973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Area Under Curve</topic><topic>Artificial Intelligence</topic><topic>Cancer</topic><topic>Computer and Information Sciences</topic><topic>Data acquisition</topic><topic>Dermatology</topic><topic>Dermoscopy - instrumentation</topic><topic>Dermoscopy - methods</topic><topic>Diagnosis</topic><topic>Diagnosis, Computer-Assisted - instrumentation</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Early Detection of Cancer - methods</topic><topic>Einstein, Albert (1879-1955)</topic><topic>Evaluation</topic><topic>Female</topic><topic>Health care</topic><topic>Humans</topic><topic>Image classification</topic><topic>Lesions</topic><topic>Life expectancy</topic><topic>Life span</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Medical screening</topic><topic>Medicine and Health Sciences</topic><topic>Melanoma</topic><topic>Melanoma - diagnosis</topic><topic>Melanoma - pathology</topic><topic>Patients</topic><topic>People and Places</topic><topic>Physical Sciences</topic><topic>Physicians</topic><topic>Physicians, Primary Care - education</topic><topic>Primary care</topic><topic>Research and Analysis Methods</topic><topic>Sensitivity and Specificity</topic><topic>Skin cancer</topic><topic>Skin diseases</topic><topic>Skin Neoplasms - diagnosis</topic><topic>Skin Neoplasms - pathology</topic><topic>Smartphone</topic><topic>Surveys and Questionnaires</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giavina-Bianchi, Mara</creatorcontrib><creatorcontrib>de Sousa, Raquel Machado</creatorcontrib><creatorcontrib>Paciello, Vitor Zago de Almeida</creatorcontrib><creatorcontrib>Vitor, William Gois</creatorcontrib><creatorcontrib>Okita, Aline Lissa</creatorcontrib><creatorcontrib>Prôa, Renata</creatorcontrib><creatorcontrib>Severino, Gian Lucca Dos Santos</creatorcontrib><creatorcontrib>Schinaid, Anderson Alves</creatorcontrib><creatorcontrib>Espírito Santo, Rafael</creatorcontrib><creatorcontrib>Machado, Birajara Soares</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giavina-Bianchi, Mara</au><au>de Sousa, Raquel Machado</au><au>Paciello, Vitor Zago de Almeida</au><au>Vitor, William Gois</au><au>Okita, Aline Lissa</au><au>Prôa, Renata</au><au>Severino, Gian Lucca Dos Santos</au><au>Schinaid, Anderson Alves</au><au>Espírito Santo, Rafael</au><au>Machado, Birajara Soares</au><au>Le, Khanh N.Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of artificial intelligence algorithms for melanoma screening in a primary care setting</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-09-22</date><risdate>2021</risdate><volume>16</volume><issue>9</issue><spage>e0257006</spage><pages>e0257006-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Skin cancer is currently the most common type of cancer among Caucasians. The increase in life expectancy, along with new diagnostic tools and treatments for skin cancer, has resulted in unprecedented changes in patient care and has generated a great burden on healthcare systems. Early detection of skin tumors is expected to reduce this burden. Artificial intelligence (AI) algorithms that support skin cancer diagnoses have been shown to perform at least as well as dermatologists' diagnoses. Recognizing the need for clinically and economically efficient means of diagnosing skin cancers at early stages in the primary care attention, we developed an efficient computer-aided diagnosis (CAD) system to be used by primary care physicians (PCP). Additionally, we developed a smartphone application with a protocol for data acquisition (i.e., photographs, demographic data and short clinical histories) and AI algorithms for clinical and dermoscopic image classification. For each lesion analyzed, a report is generated, showing the image of the suspected lesion and its respective Heat Map; the predicted probability of the suspected lesion being melanoma or malignant; the probable diagnosis based on that probability; and a suggestion on how the lesion should be managed. The accuracy of the dermoscopy model for melanoma was 89.3%, and for the clinical model, 84.7% with 0.91 and 0.89 sensitivity and 0.89 and 0.83 specificity, respectively. Both models achieved an area under the curve (AUC) above 0.9. Our CAD system can screen skin cancers to guide lesion management by PCPs, especially in the contexts where the access to the dermatologist can be difficult or time consuming. Its use can enable risk stratification of lesions and/or patients and dramatically improve timely access to specialist care for those requiring urgent attention.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34550970</pmid><doi>10.1371/journal.pone.0257006</doi><orcidid>https://orcid.org/0000-0002-0934-5852</orcidid><orcidid>https://orcid.org/0000-0003-1719-7711</orcidid><orcidid>https://orcid.org/0000-0001-7820-8993</orcidid><orcidid>https://orcid.org/0000-0001-7059-4068</orcidid><orcidid>https://orcid.org/0000-0002-4265-7487</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-09, Vol.16 (9), p.e0257006 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2575314506 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Adult Algorithms Analysis Area Under Curve Artificial Intelligence Cancer Computer and Information Sciences Data acquisition Dermatology Dermoscopy - instrumentation Dermoscopy - methods Diagnosis Diagnosis, Computer-Assisted - instrumentation Diagnosis, Computer-Assisted - methods Early Detection of Cancer - methods Einstein, Albert (1879-1955) Evaluation Female Health care Humans Image classification Lesions Life expectancy Life span Male Medical imaging Medical screening Medicine and Health Sciences Melanoma Melanoma - diagnosis Melanoma - pathology Patients People and Places Physical Sciences Physicians Physicians, Primary Care - education Primary care Research and Analysis Methods Sensitivity and Specificity Skin cancer Skin diseases Skin Neoplasms - diagnosis Skin Neoplasms - pathology Smartphone Surveys and Questionnaires Tumors |
title | Implementation of artificial intelligence algorithms for melanoma screening in a primary care setting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20artificial%20intelligence%20algorithms%20for%20melanoma%20screening%20in%20a%20primary%20care%20setting&rft.jtitle=PloS%20one&rft.au=Giavina-Bianchi,%20Mara&rft.date=2021-09-22&rft.volume=16&rft.issue=9&rft.spage=e0257006&rft.pages=e0257006-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0257006&rft_dat=%3Cgale_plos_%3EA676449280%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575314506&rft_id=info:pmid/34550970&rft_galeid=A676449280&rft_doaj_id=oai_doaj_org_article_dcda1b413b5041558f4819a1167e1ff8&rfr_iscdi=true |