Implementation of artificial intelligence algorithms for melanoma screening in a primary care setting

Skin cancer is currently the most common type of cancer among Caucasians. The increase in life expectancy, along with new diagnostic tools and treatments for skin cancer, has resulted in unprecedented changes in patient care and has generated a great burden on healthcare systems. Early detection of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-09, Vol.16 (9), p.e0257006
Hauptverfasser: Giavina-Bianchi, Mara, de Sousa, Raquel Machado, Paciello, Vitor Zago de Almeida, Vitor, William Gois, Okita, Aline Lissa, Prôa, Renata, Severino, Gian Lucca Dos Santos, Schinaid, Anderson Alves, Espírito Santo, Rafael, Machado, Birajara Soares
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page e0257006
container_title PloS one
container_volume 16
creator Giavina-Bianchi, Mara
de Sousa, Raquel Machado
Paciello, Vitor Zago de Almeida
Vitor, William Gois
Okita, Aline Lissa
Prôa, Renata
Severino, Gian Lucca Dos Santos
Schinaid, Anderson Alves
Espírito Santo, Rafael
Machado, Birajara Soares
description Skin cancer is currently the most common type of cancer among Caucasians. The increase in life expectancy, along with new diagnostic tools and treatments for skin cancer, has resulted in unprecedented changes in patient care and has generated a great burden on healthcare systems. Early detection of skin tumors is expected to reduce this burden. Artificial intelligence (AI) algorithms that support skin cancer diagnoses have been shown to perform at least as well as dermatologists' diagnoses. Recognizing the need for clinically and economically efficient means of diagnosing skin cancers at early stages in the primary care attention, we developed an efficient computer-aided diagnosis (CAD) system to be used by primary care physicians (PCP). Additionally, we developed a smartphone application with a protocol for data acquisition (i.e., photographs, demographic data and short clinical histories) and AI algorithms for clinical and dermoscopic image classification. For each lesion analyzed, a report is generated, showing the image of the suspected lesion and its respective Heat Map; the predicted probability of the suspected lesion being melanoma or malignant; the probable diagnosis based on that probability; and a suggestion on how the lesion should be managed. The accuracy of the dermoscopy model for melanoma was 89.3%, and for the clinical model, 84.7% with 0.91 and 0.89 sensitivity and 0.89 and 0.83 specificity, respectively. Both models achieved an area under the curve (AUC) above 0.9. Our CAD system can screen skin cancers to guide lesion management by PCPs, especially in the contexts where the access to the dermatologist can be difficult or time consuming. Its use can enable risk stratification of lesions and/or patients and dramatically improve timely access to specialist care for those requiring urgent attention.
doi_str_mv 10.1371/journal.pone.0257006
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2575314506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A676449280</galeid><doaj_id>oai_doaj_org_article_dcda1b413b5041558f4819a1167e1ff8</doaj_id><sourcerecordid>A676449280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-33941f021173ca22646af8ab58b69dcd7885113eb35df18e7d9318e4b8d895973</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEnz0fRGWBY_BhYW_LoNaXrSyZI2s0kq-u_NON1lKnshLaQkz3lPzttziuI5RmtMavzu2k9hVG698yOsUcVqhPiD4hQ3pFrxCpGHR98nxZMYrxFiRHD-uDghlDHU1Oi0gM2wczDAmFSyfiy9KVVI1lhtlSvtmMA528OooVSu98Gm7RBL40M5gFOjH1QZdQAY7dhnvFTlLthBhd-lVgHKCCnlk6fFI6NchGfzelZ8__jh28Xn1eXVp83F-eVK86ZKK0Iaig2qMK6JVlXFKVdGqJaJljed7mohGMYEWsI6gwXUXUPyQlvRiYY1NTkrXh50d85HOTsUZTaHEUwZ4pnYHIjOq2s531V6ZeXfDR96ua9fO5A5ocItxaRliGLGhKECNwpjXgM2RmSt93O2qR2g09nEoNxCdHky2q3s_U8pKKvzmwXezALB30wQkxxs1NlxNYKfDvcWVUMoyeirf9D7q5upXuUC7Gh8zqv3ovKc15zSphIoU-t7qPx0MFid28nYvL8IeLsIyEyCX6lXU4xy8_XL_7NXP5bs6yN2C8qlbfRu2ndiXIL0AOrgYwxg7kzGSO6n4dYNuZ8GOU9DDntx_IPugm7bn_wBRKsE2w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575314506</pqid></control><display><type>article</type><title>Implementation of artificial intelligence algorithms for melanoma screening in a primary care setting</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Giavina-Bianchi, Mara ; de Sousa, Raquel Machado ; Paciello, Vitor Zago de Almeida ; Vitor, William Gois ; Okita, Aline Lissa ; Prôa, Renata ; Severino, Gian Lucca Dos Santos ; Schinaid, Anderson Alves ; Espírito Santo, Rafael ; Machado, Birajara Soares</creator><contributor>Le, Khanh N.Q.</contributor><creatorcontrib>Giavina-Bianchi, Mara ; de Sousa, Raquel Machado ; Paciello, Vitor Zago de Almeida ; Vitor, William Gois ; Okita, Aline Lissa ; Prôa, Renata ; Severino, Gian Lucca Dos Santos ; Schinaid, Anderson Alves ; Espírito Santo, Rafael ; Machado, Birajara Soares ; Le, Khanh N.Q.</creatorcontrib><description>Skin cancer is currently the most common type of cancer among Caucasians. The increase in life expectancy, along with new diagnostic tools and treatments for skin cancer, has resulted in unprecedented changes in patient care and has generated a great burden on healthcare systems. Early detection of skin tumors is expected to reduce this burden. Artificial intelligence (AI) algorithms that support skin cancer diagnoses have been shown to perform at least as well as dermatologists' diagnoses. Recognizing the need for clinically and economically efficient means of diagnosing skin cancers at early stages in the primary care attention, we developed an efficient computer-aided diagnosis (CAD) system to be used by primary care physicians (PCP). Additionally, we developed a smartphone application with a protocol for data acquisition (i.e., photographs, demographic data and short clinical histories) and AI algorithms for clinical and dermoscopic image classification. For each lesion analyzed, a report is generated, showing the image of the suspected lesion and its respective Heat Map; the predicted probability of the suspected lesion being melanoma or malignant; the probable diagnosis based on that probability; and a suggestion on how the lesion should be managed. The accuracy of the dermoscopy model for melanoma was 89.3%, and for the clinical model, 84.7% with 0.91 and 0.89 sensitivity and 0.89 and 0.83 specificity, respectively. Both models achieved an area under the curve (AUC) above 0.9. Our CAD system can screen skin cancers to guide lesion management by PCPs, especially in the contexts where the access to the dermatologist can be difficult or time consuming. Its use can enable risk stratification of lesions and/or patients and dramatically improve timely access to specialist care for those requiring urgent attention.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0257006</identifier><identifier>PMID: 34550970</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Algorithms ; Analysis ; Area Under Curve ; Artificial Intelligence ; Cancer ; Computer and Information Sciences ; Data acquisition ; Dermatology ; Dermoscopy - instrumentation ; Dermoscopy - methods ; Diagnosis ; Diagnosis, Computer-Assisted - instrumentation ; Diagnosis, Computer-Assisted - methods ; Early Detection of Cancer - methods ; Einstein, Albert (1879-1955) ; Evaluation ; Female ; Health care ; Humans ; Image classification ; Lesions ; Life expectancy ; Life span ; Male ; Medical imaging ; Medical screening ; Medicine and Health Sciences ; Melanoma ; Melanoma - diagnosis ; Melanoma - pathology ; Patients ; People and Places ; Physical Sciences ; Physicians ; Physicians, Primary Care - education ; Primary care ; Research and Analysis Methods ; Sensitivity and Specificity ; Skin cancer ; Skin diseases ; Skin Neoplasms - diagnosis ; Skin Neoplasms - pathology ; Smartphone ; Surveys and Questionnaires ; Tumors</subject><ispartof>PloS one, 2021-09, Vol.16 (9), p.e0257006</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Giavina-Bianchi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Giavina-Bianchi et al 2021 Giavina-Bianchi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-33941f021173ca22646af8ab58b69dcd7885113eb35df18e7d9318e4b8d895973</citedby><cites>FETCH-LOGICAL-c692t-33941f021173ca22646af8ab58b69dcd7885113eb35df18e7d9318e4b8d895973</cites><orcidid>0000-0002-0934-5852 ; 0000-0003-1719-7711 ; 0000-0001-7820-8993 ; 0000-0001-7059-4068 ; 0000-0002-4265-7487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457457/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457457/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34550970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Le, Khanh N.Q.</contributor><creatorcontrib>Giavina-Bianchi, Mara</creatorcontrib><creatorcontrib>de Sousa, Raquel Machado</creatorcontrib><creatorcontrib>Paciello, Vitor Zago de Almeida</creatorcontrib><creatorcontrib>Vitor, William Gois</creatorcontrib><creatorcontrib>Okita, Aline Lissa</creatorcontrib><creatorcontrib>Prôa, Renata</creatorcontrib><creatorcontrib>Severino, Gian Lucca Dos Santos</creatorcontrib><creatorcontrib>Schinaid, Anderson Alves</creatorcontrib><creatorcontrib>Espírito Santo, Rafael</creatorcontrib><creatorcontrib>Machado, Birajara Soares</creatorcontrib><title>Implementation of artificial intelligence algorithms for melanoma screening in a primary care setting</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Skin cancer is currently the most common type of cancer among Caucasians. The increase in life expectancy, along with new diagnostic tools and treatments for skin cancer, has resulted in unprecedented changes in patient care and has generated a great burden on healthcare systems. Early detection of skin tumors is expected to reduce this burden. Artificial intelligence (AI) algorithms that support skin cancer diagnoses have been shown to perform at least as well as dermatologists' diagnoses. Recognizing the need for clinically and economically efficient means of diagnosing skin cancers at early stages in the primary care attention, we developed an efficient computer-aided diagnosis (CAD) system to be used by primary care physicians (PCP). Additionally, we developed a smartphone application with a protocol for data acquisition (i.e., photographs, demographic data and short clinical histories) and AI algorithms for clinical and dermoscopic image classification. For each lesion analyzed, a report is generated, showing the image of the suspected lesion and its respective Heat Map; the predicted probability of the suspected lesion being melanoma or malignant; the probable diagnosis based on that probability; and a suggestion on how the lesion should be managed. The accuracy of the dermoscopy model for melanoma was 89.3%, and for the clinical model, 84.7% with 0.91 and 0.89 sensitivity and 0.89 and 0.83 specificity, respectively. Both models achieved an area under the curve (AUC) above 0.9. Our CAD system can screen skin cancers to guide lesion management by PCPs, especially in the contexts where the access to the dermatologist can be difficult or time consuming. Its use can enable risk stratification of lesions and/or patients and dramatically improve timely access to specialist care for those requiring urgent attention.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Area Under Curve</subject><subject>Artificial Intelligence</subject><subject>Cancer</subject><subject>Computer and Information Sciences</subject><subject>Data acquisition</subject><subject>Dermatology</subject><subject>Dermoscopy - instrumentation</subject><subject>Dermoscopy - methods</subject><subject>Diagnosis</subject><subject>Diagnosis, Computer-Assisted - instrumentation</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Early Detection of Cancer - methods</subject><subject>Einstein, Albert (1879-1955)</subject><subject>Evaluation</subject><subject>Female</subject><subject>Health care</subject><subject>Humans</subject><subject>Image classification</subject><subject>Lesions</subject><subject>Life expectancy</subject><subject>Life span</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Medical screening</subject><subject>Medicine and Health Sciences</subject><subject>Melanoma</subject><subject>Melanoma - diagnosis</subject><subject>Melanoma - pathology</subject><subject>Patients</subject><subject>People and Places</subject><subject>Physical Sciences</subject><subject>Physicians</subject><subject>Physicians, Primary Care - education</subject><subject>Primary care</subject><subject>Research and Analysis Methods</subject><subject>Sensitivity and Specificity</subject><subject>Skin cancer</subject><subject>Skin diseases</subject><subject>Skin Neoplasms - diagnosis</subject><subject>Skin Neoplasms - pathology</subject><subject>Smartphone</subject><subject>Surveys and Questionnaires</subject><subject>Tumors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEnz0fRGWBY_BhYW_LoNaXrSyZI2s0kq-u_NON1lKnshLaQkz3lPzttziuI5RmtMavzu2k9hVG698yOsUcVqhPiD4hQ3pFrxCpGHR98nxZMYrxFiRHD-uDghlDHU1Oi0gM2wczDAmFSyfiy9KVVI1lhtlSvtmMA528OooVSu98Gm7RBL40M5gFOjH1QZdQAY7dhnvFTlLthBhd-lVgHKCCnlk6fFI6NchGfzelZ8__jh28Xn1eXVp83F-eVK86ZKK0Iaig2qMK6JVlXFKVdGqJaJljed7mohGMYEWsI6gwXUXUPyQlvRiYY1NTkrXh50d85HOTsUZTaHEUwZ4pnYHIjOq2s531V6ZeXfDR96ua9fO5A5ocItxaRliGLGhKECNwpjXgM2RmSt93O2qR2g09nEoNxCdHky2q3s_U8pKKvzmwXezALB30wQkxxs1NlxNYKfDvcWVUMoyeirf9D7q5upXuUC7Gh8zqv3ovKc15zSphIoU-t7qPx0MFid28nYvL8IeLsIyEyCX6lXU4xy8_XL_7NXP5bs6yN2C8qlbfRu2ndiXIL0AOrgYwxg7kzGSO6n4dYNuZ8GOU9DDntx_IPugm7bn_wBRKsE2w</recordid><startdate>20210922</startdate><enddate>20210922</enddate><creator>Giavina-Bianchi, Mara</creator><creator>de Sousa, Raquel Machado</creator><creator>Paciello, Vitor Zago de Almeida</creator><creator>Vitor, William Gois</creator><creator>Okita, Aline Lissa</creator><creator>Prôa, Renata</creator><creator>Severino, Gian Lucca Dos Santos</creator><creator>Schinaid, Anderson Alves</creator><creator>Espírito Santo, Rafael</creator><creator>Machado, Birajara Soares</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0934-5852</orcidid><orcidid>https://orcid.org/0000-0003-1719-7711</orcidid><orcidid>https://orcid.org/0000-0001-7820-8993</orcidid><orcidid>https://orcid.org/0000-0001-7059-4068</orcidid><orcidid>https://orcid.org/0000-0002-4265-7487</orcidid></search><sort><creationdate>20210922</creationdate><title>Implementation of artificial intelligence algorithms for melanoma screening in a primary care setting</title><author>Giavina-Bianchi, Mara ; de Sousa, Raquel Machado ; Paciello, Vitor Zago de Almeida ; Vitor, William Gois ; Okita, Aline Lissa ; Prôa, Renata ; Severino, Gian Lucca Dos Santos ; Schinaid, Anderson Alves ; Espírito Santo, Rafael ; Machado, Birajara Soares</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-33941f021173ca22646af8ab58b69dcd7885113eb35df18e7d9318e4b8d895973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Area Under Curve</topic><topic>Artificial Intelligence</topic><topic>Cancer</topic><topic>Computer and Information Sciences</topic><topic>Data acquisition</topic><topic>Dermatology</topic><topic>Dermoscopy - instrumentation</topic><topic>Dermoscopy - methods</topic><topic>Diagnosis</topic><topic>Diagnosis, Computer-Assisted - instrumentation</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Early Detection of Cancer - methods</topic><topic>Einstein, Albert (1879-1955)</topic><topic>Evaluation</topic><topic>Female</topic><topic>Health care</topic><topic>Humans</topic><topic>Image classification</topic><topic>Lesions</topic><topic>Life expectancy</topic><topic>Life span</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Medical screening</topic><topic>Medicine and Health Sciences</topic><topic>Melanoma</topic><topic>Melanoma - diagnosis</topic><topic>Melanoma - pathology</topic><topic>Patients</topic><topic>People and Places</topic><topic>Physical Sciences</topic><topic>Physicians</topic><topic>Physicians, Primary Care - education</topic><topic>Primary care</topic><topic>Research and Analysis Methods</topic><topic>Sensitivity and Specificity</topic><topic>Skin cancer</topic><topic>Skin diseases</topic><topic>Skin Neoplasms - diagnosis</topic><topic>Skin Neoplasms - pathology</topic><topic>Smartphone</topic><topic>Surveys and Questionnaires</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giavina-Bianchi, Mara</creatorcontrib><creatorcontrib>de Sousa, Raquel Machado</creatorcontrib><creatorcontrib>Paciello, Vitor Zago de Almeida</creatorcontrib><creatorcontrib>Vitor, William Gois</creatorcontrib><creatorcontrib>Okita, Aline Lissa</creatorcontrib><creatorcontrib>Prôa, Renata</creatorcontrib><creatorcontrib>Severino, Gian Lucca Dos Santos</creatorcontrib><creatorcontrib>Schinaid, Anderson Alves</creatorcontrib><creatorcontrib>Espírito Santo, Rafael</creatorcontrib><creatorcontrib>Machado, Birajara Soares</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giavina-Bianchi, Mara</au><au>de Sousa, Raquel Machado</au><au>Paciello, Vitor Zago de Almeida</au><au>Vitor, William Gois</au><au>Okita, Aline Lissa</au><au>Prôa, Renata</au><au>Severino, Gian Lucca Dos Santos</au><au>Schinaid, Anderson Alves</au><au>Espírito Santo, Rafael</au><au>Machado, Birajara Soares</au><au>Le, Khanh N.Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of artificial intelligence algorithms for melanoma screening in a primary care setting</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-09-22</date><risdate>2021</risdate><volume>16</volume><issue>9</issue><spage>e0257006</spage><pages>e0257006-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Skin cancer is currently the most common type of cancer among Caucasians. The increase in life expectancy, along with new diagnostic tools and treatments for skin cancer, has resulted in unprecedented changes in patient care and has generated a great burden on healthcare systems. Early detection of skin tumors is expected to reduce this burden. Artificial intelligence (AI) algorithms that support skin cancer diagnoses have been shown to perform at least as well as dermatologists' diagnoses. Recognizing the need for clinically and economically efficient means of diagnosing skin cancers at early stages in the primary care attention, we developed an efficient computer-aided diagnosis (CAD) system to be used by primary care physicians (PCP). Additionally, we developed a smartphone application with a protocol for data acquisition (i.e., photographs, demographic data and short clinical histories) and AI algorithms for clinical and dermoscopic image classification. For each lesion analyzed, a report is generated, showing the image of the suspected lesion and its respective Heat Map; the predicted probability of the suspected lesion being melanoma or malignant; the probable diagnosis based on that probability; and a suggestion on how the lesion should be managed. The accuracy of the dermoscopy model for melanoma was 89.3%, and for the clinical model, 84.7% with 0.91 and 0.89 sensitivity and 0.89 and 0.83 specificity, respectively. Both models achieved an area under the curve (AUC) above 0.9. Our CAD system can screen skin cancers to guide lesion management by PCPs, especially in the contexts where the access to the dermatologist can be difficult or time consuming. Its use can enable risk stratification of lesions and/or patients and dramatically improve timely access to specialist care for those requiring urgent attention.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34550970</pmid><doi>10.1371/journal.pone.0257006</doi><orcidid>https://orcid.org/0000-0002-0934-5852</orcidid><orcidid>https://orcid.org/0000-0003-1719-7711</orcidid><orcidid>https://orcid.org/0000-0001-7820-8993</orcidid><orcidid>https://orcid.org/0000-0001-7059-4068</orcidid><orcidid>https://orcid.org/0000-0002-4265-7487</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-09, Vol.16 (9), p.e0257006
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2575314506
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Adult
Algorithms
Analysis
Area Under Curve
Artificial Intelligence
Cancer
Computer and Information Sciences
Data acquisition
Dermatology
Dermoscopy - instrumentation
Dermoscopy - methods
Diagnosis
Diagnosis, Computer-Assisted - instrumentation
Diagnosis, Computer-Assisted - methods
Early Detection of Cancer - methods
Einstein, Albert (1879-1955)
Evaluation
Female
Health care
Humans
Image classification
Lesions
Life expectancy
Life span
Male
Medical imaging
Medical screening
Medicine and Health Sciences
Melanoma
Melanoma - diagnosis
Melanoma - pathology
Patients
People and Places
Physical Sciences
Physicians
Physicians, Primary Care - education
Primary care
Research and Analysis Methods
Sensitivity and Specificity
Skin cancer
Skin diseases
Skin Neoplasms - diagnosis
Skin Neoplasms - pathology
Smartphone
Surveys and Questionnaires
Tumors
title Implementation of artificial intelligence algorithms for melanoma screening in a primary care setting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20artificial%20intelligence%20algorithms%20for%20melanoma%20screening%20in%20a%20primary%20care%20setting&rft.jtitle=PloS%20one&rft.au=Giavina-Bianchi,%20Mara&rft.date=2021-09-22&rft.volume=16&rft.issue=9&rft.spage=e0257006&rft.pages=e0257006-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0257006&rft_dat=%3Cgale_plos_%3EA676449280%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575314506&rft_id=info:pmid/34550970&rft_galeid=A676449280&rft_doaj_id=oai_doaj_org_article_dcda1b413b5041558f4819a1167e1ff8&rfr_iscdi=true