Passive stretching decreases muscle efficiency in balance tasks

The current study aimed to verify whether or not passive static stretching affects balance control capacity. Thirty-eight participants (19 women and 19 men) underwent a passive static stretching session, involving the knee extensor/flexor and dorsi/plantarflexor muscles, and a control session (no st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-09, Vol.16 (9), p.e0256656-e0256656
Hauptverfasser: Coratella, Giuseppe, Longo, Stefano, Rampichini, Susanna, Doria, Christian, Borrelli, Marta, Limonta, Eloisa, Michielon, Giovanni, Cè, Emiliano, Esposito, Fabio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0256656
container_issue 9
container_start_page e0256656
container_title PloS one
container_volume 16
creator Coratella, Giuseppe
Longo, Stefano
Rampichini, Susanna
Doria, Christian
Borrelli, Marta
Limonta, Eloisa
Michielon, Giovanni
Cè, Emiliano
Esposito, Fabio
description The current study aimed to verify whether or not passive static stretching affects balance control capacity. Thirty-eight participants (19 women and 19 men) underwent a passive static stretching session, involving the knee extensor/flexor and dorsi/plantarflexor muscles, and a control session (no stretching, CTRL). Before (PRE), immediately after (POST), after 15 (POST.sub.15) and 30 min (POST.sub.30) from stretching (or rest in CTRL), balance control was evaluated under static and dynamic conditions, with open/closed eyes, and with/without somatosensory perturbation (foam under the feet). During tests, centre of pressure (CoP) sway area and perimeter and antero-posterior and medio-lateral sway mean speed were computed. Surface electromyography root mean square (sEMG RMS) was calculated from the vastus lateralis, biceps femoris, gastrocnemius medialis, and tibialis anterior muscles during MVC and during the balance tests. Hip flexion/extension and dorsi/plantarflexion range of motion (ROM), maximum voluntary contraction (MVC) and sEMG RMS during MVC were measured at the same time points. After stretching, ROM increased ([almost equal to]6.5%; P
doi_str_mv 10.1371/journal.pone.0256656
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2575313874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A676449254</galeid><doaj_id>oai_doaj_org_article_c7411e70b8a14b78a8522c6e42c118d2</doaj_id><sourcerecordid>A676449254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-4a9d2d36096f105097a2ce94a813f66fc7a12a2a510f0c98df3935e816cb58753</originalsourceid><addsrcrecordid>eNqNktuKFDEQhhtR3IO-gWCDIHoxY86dvllZFg8DCyuebkNNunomY09nTNLL7tubcVrZlr2QXCRUffVX_qKK4hklc8or-mbjh9BDN9_5HueESaWkelAc05qzmWKEP7zzPipOYtwQIrlW6nFxxIWUpNbiuHj7CWJ011jGFDDZtetXZYM2IESM5XaItsMS29ZZh729LV1fLqGD3mKZIP6IT4pHLXQRn473afHt_buvFx9nl1cfFhfnlzOrVJ1mAuqGNVyRWrWU5N4VMIu1AE15q1RrK6AMGEhKWmJr3bS85hI1VXYpdSX5afH8oLvrfDSj92iYzDnKdSUysTgQjYeN2QW3hXBrPDjzO-DDykBILvsxthKUYkWWGqhYVhq0ZMwqFMxSqhuWtc7GbsNyi43FPgXoJqLTTO_WZuWvjRayErLOAq9GgeB_DhiT2bposcuTQz8c_q05ZVxl9MU_6P3uRmoF2YDrW5_72r2oOVeVEqJmck_N76HyaXDrbF6U1uX4pOD1pCAzCW_SCoYYzeLL5_9nr75P2Zd32DVCl9bRd0Nyvo9TUBxAG3yMAdu_Q6bE7Pf8zzTMfs_NuOf8FyKc7Gc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575313874</pqid></control><display><type>article</type><title>Passive stretching decreases muscle efficiency in balance tasks</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Coratella, Giuseppe ; Longo, Stefano ; Rampichini, Susanna ; Doria, Christian ; Borrelli, Marta ; Limonta, Eloisa ; Michielon, Giovanni ; Cè, Emiliano ; Esposito, Fabio</creator><contributor>Masani, Kei</contributor><creatorcontrib>Coratella, Giuseppe ; Longo, Stefano ; Rampichini, Susanna ; Doria, Christian ; Borrelli, Marta ; Limonta, Eloisa ; Michielon, Giovanni ; Cè, Emiliano ; Esposito, Fabio ; Masani, Kei</creatorcontrib><description>The current study aimed to verify whether or not passive static stretching affects balance control capacity. Thirty-eight participants (19 women and 19 men) underwent a passive static stretching session, involving the knee extensor/flexor and dorsi/plantarflexor muscles, and a control session (no stretching, CTRL). Before (PRE), immediately after (POST), after 15 (POST.sub.15) and 30 min (POST.sub.30) from stretching (or rest in CTRL), balance control was evaluated under static and dynamic conditions, with open/closed eyes, and with/without somatosensory perturbation (foam under the feet). During tests, centre of pressure (CoP) sway area and perimeter and antero-posterior and medio-lateral sway mean speed were computed. Surface electromyography root mean square (sEMG RMS) was calculated from the vastus lateralis, biceps femoris, gastrocnemius medialis, and tibialis anterior muscles during MVC and during the balance tests. Hip flexion/extension and dorsi/plantarflexion range of motion (ROM), maximum voluntary contraction (MVC) and sEMG RMS during MVC were measured at the same time points. After stretching, ROM increased ([almost equal to]6.5%; P&lt;0.05), while MVC and sEMG RMS decreased ([almost equal to]9% and [almost equal to]7.5%, respectively; P&lt;0.05). Regardless of the testing condition, CoP sway area and the perimeter remained similar, while antero-posterior and medio-lateral sway mean speed decreased by [almost equal to]8% and [almost equal to]12%, respectively (P&lt;0.05). sEMG RMS during the balance tests increased in all muscles in POST ([almost equal to]7%, P&lt;0.05). All variables recovered in POST.sub.30 . No changes occurred in CTRL. Passive static stretching did not affect the overall balance control ability. However, greater muscle activation was required to maintain similar CoP sway, thus suggesting a decrease in muscle efficiency.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0256656</identifier><identifier>PMID: 34550984</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Bias ; Biology and Life Sciences ; Contraction ; Electromyography ; Equilibrium (Physics) ; Evaluation ; Feedback ; Foam ; Foams ; Health aspects ; Medicine and Health Sciences ; Muscle contraction ; Muscles ; Orthopedics ; Perturbation ; Physical Sciences ; Physiological aspects ; Plantar flexion ; Research and Analysis Methods ; Skeletal muscle ; Stretching ; Stretching exercises</subject><ispartof>PloS one, 2021-09, Vol.16 (9), p.e0256656-e0256656</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Coratella et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Coratella et al 2021 Coratella et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-4a9d2d36096f105097a2ce94a813f66fc7a12a2a510f0c98df3935e816cb58753</citedby><cites>FETCH-LOGICAL-c669t-4a9d2d36096f105097a2ce94a813f66fc7a12a2a510f0c98df3935e816cb58753</cites><orcidid>0000-0001-5806-8305 ; 0000-0002-6984-9323 ; 0000-0001-7523-9102 ; 0000-0003-0691-3153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457459/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457459/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23853,27911,27912,53778,53780,79355,79356</link.rule.ids></links><search><contributor>Masani, Kei</contributor><creatorcontrib>Coratella, Giuseppe</creatorcontrib><creatorcontrib>Longo, Stefano</creatorcontrib><creatorcontrib>Rampichini, Susanna</creatorcontrib><creatorcontrib>Doria, Christian</creatorcontrib><creatorcontrib>Borrelli, Marta</creatorcontrib><creatorcontrib>Limonta, Eloisa</creatorcontrib><creatorcontrib>Michielon, Giovanni</creatorcontrib><creatorcontrib>Cè, Emiliano</creatorcontrib><creatorcontrib>Esposito, Fabio</creatorcontrib><title>Passive stretching decreases muscle efficiency in balance tasks</title><title>PloS one</title><description>The current study aimed to verify whether or not passive static stretching affects balance control capacity. Thirty-eight participants (19 women and 19 men) underwent a passive static stretching session, involving the knee extensor/flexor and dorsi/plantarflexor muscles, and a control session (no stretching, CTRL). Before (PRE), immediately after (POST), after 15 (POST.sub.15) and 30 min (POST.sub.30) from stretching (or rest in CTRL), balance control was evaluated under static and dynamic conditions, with open/closed eyes, and with/without somatosensory perturbation (foam under the feet). During tests, centre of pressure (CoP) sway area and perimeter and antero-posterior and medio-lateral sway mean speed were computed. Surface electromyography root mean square (sEMG RMS) was calculated from the vastus lateralis, biceps femoris, gastrocnemius medialis, and tibialis anterior muscles during MVC and during the balance tests. Hip flexion/extension and dorsi/plantarflexion range of motion (ROM), maximum voluntary contraction (MVC) and sEMG RMS during MVC were measured at the same time points. After stretching, ROM increased ([almost equal to]6.5%; P&lt;0.05), while MVC and sEMG RMS decreased ([almost equal to]9% and [almost equal to]7.5%, respectively; P&lt;0.05). Regardless of the testing condition, CoP sway area and the perimeter remained similar, while antero-posterior and medio-lateral sway mean speed decreased by [almost equal to]8% and [almost equal to]12%, respectively (P&lt;0.05). sEMG RMS during the balance tests increased in all muscles in POST ([almost equal to]7%, P&lt;0.05). All variables recovered in POST.sub.30 . No changes occurred in CTRL. Passive static stretching did not affect the overall balance control ability. However, greater muscle activation was required to maintain similar CoP sway, thus suggesting a decrease in muscle efficiency.</description><subject>Bias</subject><subject>Biology and Life Sciences</subject><subject>Contraction</subject><subject>Electromyography</subject><subject>Equilibrium (Physics)</subject><subject>Evaluation</subject><subject>Feedback</subject><subject>Foam</subject><subject>Foams</subject><subject>Health aspects</subject><subject>Medicine and Health Sciences</subject><subject>Muscle contraction</subject><subject>Muscles</subject><subject>Orthopedics</subject><subject>Perturbation</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Plantar flexion</subject><subject>Research and Analysis Methods</subject><subject>Skeletal muscle</subject><subject>Stretching</subject><subject>Stretching exercises</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNktuKFDEQhhtR3IO-gWCDIHoxY86dvllZFg8DCyuebkNNunomY09nTNLL7tubcVrZlr2QXCRUffVX_qKK4hklc8or-mbjh9BDN9_5HueESaWkelAc05qzmWKEP7zzPipOYtwQIrlW6nFxxIWUpNbiuHj7CWJ011jGFDDZtetXZYM2IESM5XaItsMS29ZZh729LV1fLqGD3mKZIP6IT4pHLXQRn473afHt_buvFx9nl1cfFhfnlzOrVJ1mAuqGNVyRWrWU5N4VMIu1AE15q1RrK6AMGEhKWmJr3bS85hI1VXYpdSX5afH8oLvrfDSj92iYzDnKdSUysTgQjYeN2QW3hXBrPDjzO-DDykBILvsxthKUYkWWGqhYVhq0ZMwqFMxSqhuWtc7GbsNyi43FPgXoJqLTTO_WZuWvjRayErLOAq9GgeB_DhiT2bposcuTQz8c_q05ZVxl9MU_6P3uRmoF2YDrW5_72r2oOVeVEqJmck_N76HyaXDrbF6U1uX4pOD1pCAzCW_SCoYYzeLL5_9nr75P2Zd32DVCl9bRd0Nyvo9TUBxAG3yMAdu_Q6bE7Pf8zzTMfs_NuOf8FyKc7Gc</recordid><startdate>20210922</startdate><enddate>20210922</enddate><creator>Coratella, Giuseppe</creator><creator>Longo, Stefano</creator><creator>Rampichini, Susanna</creator><creator>Doria, Christian</creator><creator>Borrelli, Marta</creator><creator>Limonta, Eloisa</creator><creator>Michielon, Giovanni</creator><creator>Cè, Emiliano</creator><creator>Esposito, Fabio</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5806-8305</orcidid><orcidid>https://orcid.org/0000-0002-6984-9323</orcidid><orcidid>https://orcid.org/0000-0001-7523-9102</orcidid><orcidid>https://orcid.org/0000-0003-0691-3153</orcidid></search><sort><creationdate>20210922</creationdate><title>Passive stretching decreases muscle efficiency in balance tasks</title><author>Coratella, Giuseppe ; Longo, Stefano ; Rampichini, Susanna ; Doria, Christian ; Borrelli, Marta ; Limonta, Eloisa ; Michielon, Giovanni ; Cè, Emiliano ; Esposito, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-4a9d2d36096f105097a2ce94a813f66fc7a12a2a510f0c98df3935e816cb58753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bias</topic><topic>Biology and Life Sciences</topic><topic>Contraction</topic><topic>Electromyography</topic><topic>Equilibrium (Physics)</topic><topic>Evaluation</topic><topic>Feedback</topic><topic>Foam</topic><topic>Foams</topic><topic>Health aspects</topic><topic>Medicine and Health Sciences</topic><topic>Muscle contraction</topic><topic>Muscles</topic><topic>Orthopedics</topic><topic>Perturbation</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Plantar flexion</topic><topic>Research and Analysis Methods</topic><topic>Skeletal muscle</topic><topic>Stretching</topic><topic>Stretching exercises</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coratella, Giuseppe</creatorcontrib><creatorcontrib>Longo, Stefano</creatorcontrib><creatorcontrib>Rampichini, Susanna</creatorcontrib><creatorcontrib>Doria, Christian</creatorcontrib><creatorcontrib>Borrelli, Marta</creatorcontrib><creatorcontrib>Limonta, Eloisa</creatorcontrib><creatorcontrib>Michielon, Giovanni</creatorcontrib><creatorcontrib>Cè, Emiliano</creatorcontrib><creatorcontrib>Esposito, Fabio</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coratella, Giuseppe</au><au>Longo, Stefano</au><au>Rampichini, Susanna</au><au>Doria, Christian</au><au>Borrelli, Marta</au><au>Limonta, Eloisa</au><au>Michielon, Giovanni</au><au>Cè, Emiliano</au><au>Esposito, Fabio</au><au>Masani, Kei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passive stretching decreases muscle efficiency in balance tasks</atitle><jtitle>PloS one</jtitle><date>2021-09-22</date><risdate>2021</risdate><volume>16</volume><issue>9</issue><spage>e0256656</spage><epage>e0256656</epage><pages>e0256656-e0256656</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The current study aimed to verify whether or not passive static stretching affects balance control capacity. Thirty-eight participants (19 women and 19 men) underwent a passive static stretching session, involving the knee extensor/flexor and dorsi/plantarflexor muscles, and a control session (no stretching, CTRL). Before (PRE), immediately after (POST), after 15 (POST.sub.15) and 30 min (POST.sub.30) from stretching (or rest in CTRL), balance control was evaluated under static and dynamic conditions, with open/closed eyes, and with/without somatosensory perturbation (foam under the feet). During tests, centre of pressure (CoP) sway area and perimeter and antero-posterior and medio-lateral sway mean speed were computed. Surface electromyography root mean square (sEMG RMS) was calculated from the vastus lateralis, biceps femoris, gastrocnemius medialis, and tibialis anterior muscles during MVC and during the balance tests. Hip flexion/extension and dorsi/plantarflexion range of motion (ROM), maximum voluntary contraction (MVC) and sEMG RMS during MVC were measured at the same time points. After stretching, ROM increased ([almost equal to]6.5%; P&lt;0.05), while MVC and sEMG RMS decreased ([almost equal to]9% and [almost equal to]7.5%, respectively; P&lt;0.05). Regardless of the testing condition, CoP sway area and the perimeter remained similar, while antero-posterior and medio-lateral sway mean speed decreased by [almost equal to]8% and [almost equal to]12%, respectively (P&lt;0.05). sEMG RMS during the balance tests increased in all muscles in POST ([almost equal to]7%, P&lt;0.05). All variables recovered in POST.sub.30 . No changes occurred in CTRL. Passive static stretching did not affect the overall balance control ability. However, greater muscle activation was required to maintain similar CoP sway, thus suggesting a decrease in muscle efficiency.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34550984</pmid><doi>10.1371/journal.pone.0256656</doi><tpages>e0256656</tpages><orcidid>https://orcid.org/0000-0001-5806-8305</orcidid><orcidid>https://orcid.org/0000-0002-6984-9323</orcidid><orcidid>https://orcid.org/0000-0001-7523-9102</orcidid><orcidid>https://orcid.org/0000-0003-0691-3153</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-09, Vol.16 (9), p.e0256656-e0256656
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2575313874
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Bias
Biology and Life Sciences
Contraction
Electromyography
Equilibrium (Physics)
Evaluation
Feedback
Foam
Foams
Health aspects
Medicine and Health Sciences
Muscle contraction
Muscles
Orthopedics
Perturbation
Physical Sciences
Physiological aspects
Plantar flexion
Research and Analysis Methods
Skeletal muscle
Stretching
Stretching exercises
title Passive stretching decreases muscle efficiency in balance tasks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passive%20stretching%20decreases%20muscle%20efficiency%20in%20balance%20tasks&rft.jtitle=PloS%20one&rft.au=Coratella,%20Giuseppe&rft.date=2021-09-22&rft.volume=16&rft.issue=9&rft.spage=e0256656&rft.epage=e0256656&rft.pages=e0256656-e0256656&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0256656&rft_dat=%3Cgale_plos_%3EA676449254%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575313874&rft_id=info:pmid/34550984&rft_galeid=A676449254&rft_doaj_id=oai_doaj_org_article_c7411e70b8a14b78a8522c6e42c118d2&rfr_iscdi=true