An auxin signaling network translates low-sugar-state input into compensated cell enlargement in the fugu5 cotyledon

In plants, the effective mobilization of seed nutrient reserves is crucial during germination and for seedling establishment. The Arabidopsis H.sup.+ -PPase-loss-of-function fugu5 mutants exhibit a reduced number of cells in the cotyledons. This leads to enhanced post-mitotic cell expansion, also kn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2021-08, Vol.17 (8), p.e1009674-e1009674
Hauptverfasser: Tabeta, Hiromitsu, Watanabe, Shunsuke, Fukuda, Keita, Gunji, Shizuka, Asaoka, Mariko, Hirai, Masami Yokota, Seo, Mitsunori, Tsukaya, Hirokazu, Ferjani, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1009674
container_issue 8
container_start_page e1009674
container_title PLoS genetics
container_volume 17
creator Tabeta, Hiromitsu
Watanabe, Shunsuke
Fukuda, Keita
Gunji, Shizuka
Asaoka, Mariko
Hirai, Masami Yokota
Seo, Mitsunori
Tsukaya, Hirokazu
Ferjani, Ali
description In plants, the effective mobilization of seed nutrient reserves is crucial during germination and for seedling establishment. The Arabidopsis H.sup.+ -PPase-loss-of-function fugu5 mutants exhibit a reduced number of cells in the cotyledons. This leads to enhanced post-mitotic cell expansion, also known as compensated cell enlargement (CCE). While decreased cell numbers have been ascribed to reduced gluconeogenesis from triacylglycerol, the molecular mechanisms underlying CCE remain ill-known. Given the role of indole 3-butyric acid (IBA) in cotyledon development, and because CCE in fugu5 is specifically and completely cancelled by ech2, which shows defective IBA-to-indoleacetic acid (IAA) conversion, IBA has emerged as a potential regulator of CCE. Here, to further illuminate the regulatory role of IBA in CCE, we used a series of high-order mutants that harbored a specific defect in IBA-to-IAA conversion, IBA efflux, IAA signaling, or vacuolar type H.sup.+ -ATPase (V-ATPase) activity and analyzed the genetic interaction with fugu5-1. We found that while CCE in fugu5 was promoted by IBA, defects in IBA-to-IAA conversion, IAA response, or the V-ATPase activity alone cancelled CCE. Consistently, endogenous IAA in fugu5 reached a level 2.2-fold higher than the WT in 1-week-old seedlings. Finally, the above findings were validated in icl-2, mls-2, pck1-2 and ibr10 mutants, in which CCE was triggered by low sugar contents. This provides a scenario in which following seed germination, the low-sugar-state triggers IAA synthesis, leading to CCE through the activation of the V-ATPase. These findings illustrate how fine-tuning cell and organ size regulation depend on interplays between metabolism and IAA levels in plants.
doi_str_mv 10.1371/journal.pgen.1009674
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2573455720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A673927671</galeid><doaj_id>oai_doaj_org_article_69a0159ede9c4c479a33f11d496f32d8</doaj_id><sourcerecordid>A673927671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c737t-eb892e9dfb7ce25d8591a730ea904205202869f5779da9e5e24d4bc29bea5743</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7rr6DwQLgrgXHZMmaZobYVjUHRhc0MXbkGlPOxnTZDZJ9-Pfmzqj7Cx7oQSS8uY57-k54WTZa4xmmHD8YeNGb5WZbXuwM4yQqDh9kh1jxkjBKaJP730fZS9C2CBEWC348-yIUMJwLcRxFuc2V-OttnnQfbLTts8txBvnf-bRKxuMihBy426KMPbKFyEmIdd2O8a0R5c3btiCDUlt8waMycEa5XsYwE5EHteQd2M_skTGOwOtsy-zZ50yAV7tz5Ps8vOny7PzYnnxZXE2XxYNJzwWsKpFCaLtVryBkrU1E1hxgkAJREvESlTWlegY56JVAhiUtKWrphQrUIxTcpK92dlujQty368gS8YJZYyXKBGLHdE6tZFbrwfl76RTWv4WnO-l8lE3BmQlFMJMQAuioQ3lQhHSYdxSUXWkbOvk9XGfbVwN0DapfK_MgenhjdVr2btrWROKk18yON0ZrB-Enc-XctLS85U1p-waJ_b9Ppl3VyOEKAcdpu4rC26camSCElQJltC3D9DHO7GnepWK1bZz6R-byVTOK05EySs-pZ09QqXVwqAbZ6HTST8IOD0ISEyE29irMQS5-P7tP9iv_85e_Dhk391j16BMXAdnxqidDYcg3YGNdyF46P6-AkZymrk_nZPTzMn9zJFf9pkchw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573455720</pqid></control><display><type>article</type><title>An auxin signaling network translates low-sugar-state input into compensated cell enlargement in the fugu5 cotyledon</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Tabeta, Hiromitsu ; Watanabe, Shunsuke ; Fukuda, Keita ; Gunji, Shizuka ; Asaoka, Mariko ; Hirai, Masami Yokota ; Seo, Mitsunori ; Tsukaya, Hirokazu ; Ferjani, Ali</creator><contributor>Sicard, Adrien</contributor><creatorcontrib>Tabeta, Hiromitsu ; Watanabe, Shunsuke ; Fukuda, Keita ; Gunji, Shizuka ; Asaoka, Mariko ; Hirai, Masami Yokota ; Seo, Mitsunori ; Tsukaya, Hirokazu ; Ferjani, Ali ; Sicard, Adrien</creatorcontrib><description>In plants, the effective mobilization of seed nutrient reserves is crucial during germination and for seedling establishment. The Arabidopsis H.sup.+ -PPase-loss-of-function fugu5 mutants exhibit a reduced number of cells in the cotyledons. This leads to enhanced post-mitotic cell expansion, also known as compensated cell enlargement (CCE). While decreased cell numbers have been ascribed to reduced gluconeogenesis from triacylglycerol, the molecular mechanisms underlying CCE remain ill-known. Given the role of indole 3-butyric acid (IBA) in cotyledon development, and because CCE in fugu5 is specifically and completely cancelled by ech2, which shows defective IBA-to-indoleacetic acid (IAA) conversion, IBA has emerged as a potential regulator of CCE. Here, to further illuminate the regulatory role of IBA in CCE, we used a series of high-order mutants that harbored a specific defect in IBA-to-IAA conversion, IBA efflux, IAA signaling, or vacuolar type H.sup.+ -ATPase (V-ATPase) activity and analyzed the genetic interaction with fugu5-1. We found that while CCE in fugu5 was promoted by IBA, defects in IBA-to-IAA conversion, IAA response, or the V-ATPase activity alone cancelled CCE. Consistently, endogenous IAA in fugu5 reached a level 2.2-fold higher than the WT in 1-week-old seedlings. Finally, the above findings were validated in icl-2, mls-2, pck1-2 and ibr10 mutants, in which CCE was triggered by low sugar contents. This provides a scenario in which following seed germination, the low-sugar-state triggers IAA synthesis, leading to CCE through the activation of the V-ATPase. These findings illustrate how fine-tuning cell and organ size regulation depend on interplays between metabolism and IAA levels in plants.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1009674</identifier><identifier>PMID: 34351899</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Adenosine triphosphatase ; Auxin ; Biology and Life Sciences ; Butyric acid ; Cell growth ; Cell size ; Cellular signal transduction ; Cotyledons ; Enlargement ; Genetic aspects ; Germination ; Gluconeogenesis ; H+-transporting ATPase ; Human health and pathology ; Hydrogen ; Indoleacetic acid ; Life Sciences ; Metabolism ; Metabolites ; Molecular modelling ; Mutants ; Mutation ; Nutrient reserves ; Physiological aspects ; Research and Analysis Methods ; Seed germination ; Seedlings ; Seeds ; Sugar</subject><ispartof>PLoS genetics, 2021-08, Vol.17 (8), p.e1009674-e1009674</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Tabeta et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2021 Tabeta et al 2021 Tabeta et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c737t-eb892e9dfb7ce25d8591a730ea904205202869f5779da9e5e24d4bc29bea5743</citedby><cites>FETCH-LOGICAL-c737t-eb892e9dfb7ce25d8591a730ea904205202869f5779da9e5e24d4bc29bea5743</cites><orcidid>0000-0001-8325-7984 ; 0000-0001-6206-1923 ; 0000-0003-1157-3261 ; 0000-0002-4430-4538 ; 0000-0003-0802-6208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341479/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341479/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23853,27911,27912,53778,53780,79355,79356</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-03528745$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Sicard, Adrien</contributor><creatorcontrib>Tabeta, Hiromitsu</creatorcontrib><creatorcontrib>Watanabe, Shunsuke</creatorcontrib><creatorcontrib>Fukuda, Keita</creatorcontrib><creatorcontrib>Gunji, Shizuka</creatorcontrib><creatorcontrib>Asaoka, Mariko</creatorcontrib><creatorcontrib>Hirai, Masami Yokota</creatorcontrib><creatorcontrib>Seo, Mitsunori</creatorcontrib><creatorcontrib>Tsukaya, Hirokazu</creatorcontrib><creatorcontrib>Ferjani, Ali</creatorcontrib><title>An auxin signaling network translates low-sugar-state input into compensated cell enlargement in the fugu5 cotyledon</title><title>PLoS genetics</title><description>In plants, the effective mobilization of seed nutrient reserves is crucial during germination and for seedling establishment. The Arabidopsis H.sup.+ -PPase-loss-of-function fugu5 mutants exhibit a reduced number of cells in the cotyledons. This leads to enhanced post-mitotic cell expansion, also known as compensated cell enlargement (CCE). While decreased cell numbers have been ascribed to reduced gluconeogenesis from triacylglycerol, the molecular mechanisms underlying CCE remain ill-known. Given the role of indole 3-butyric acid (IBA) in cotyledon development, and because CCE in fugu5 is specifically and completely cancelled by ech2, which shows defective IBA-to-indoleacetic acid (IAA) conversion, IBA has emerged as a potential regulator of CCE. Here, to further illuminate the regulatory role of IBA in CCE, we used a series of high-order mutants that harbored a specific defect in IBA-to-IAA conversion, IBA efflux, IAA signaling, or vacuolar type H.sup.+ -ATPase (V-ATPase) activity and analyzed the genetic interaction with fugu5-1. We found that while CCE in fugu5 was promoted by IBA, defects in IBA-to-IAA conversion, IAA response, or the V-ATPase activity alone cancelled CCE. Consistently, endogenous IAA in fugu5 reached a level 2.2-fold higher than the WT in 1-week-old seedlings. Finally, the above findings were validated in icl-2, mls-2, pck1-2 and ibr10 mutants, in which CCE was triggered by low sugar contents. This provides a scenario in which following seed germination, the low-sugar-state triggers IAA synthesis, leading to CCE through the activation of the V-ATPase. These findings illustrate how fine-tuning cell and organ size regulation depend on interplays between metabolism and IAA levels in plants.</description><subject>Adenosine triphosphatase</subject><subject>Auxin</subject><subject>Biology and Life Sciences</subject><subject>Butyric acid</subject><subject>Cell growth</subject><subject>Cell size</subject><subject>Cellular signal transduction</subject><subject>Cotyledons</subject><subject>Enlargement</subject><subject>Genetic aspects</subject><subject>Germination</subject><subject>Gluconeogenesis</subject><subject>H+-transporting ATPase</subject><subject>Human health and pathology</subject><subject>Hydrogen</subject><subject>Indoleacetic acid</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Molecular modelling</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Nutrient reserves</subject><subject>Physiological aspects</subject><subject>Research and Analysis Methods</subject><subject>Seed germination</subject><subject>Seedlings</subject><subject>Seeds</subject><subject>Sugar</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7rr6DwQLgrgXHZMmaZobYVjUHRhc0MXbkGlPOxnTZDZJ9-Pfmzqj7Cx7oQSS8uY57-k54WTZa4xmmHD8YeNGb5WZbXuwM4yQqDh9kh1jxkjBKaJP730fZS9C2CBEWC348-yIUMJwLcRxFuc2V-OttnnQfbLTts8txBvnf-bRKxuMihBy426KMPbKFyEmIdd2O8a0R5c3btiCDUlt8waMycEa5XsYwE5EHteQd2M_skTGOwOtsy-zZ50yAV7tz5Ps8vOny7PzYnnxZXE2XxYNJzwWsKpFCaLtVryBkrU1E1hxgkAJREvESlTWlegY56JVAhiUtKWrphQrUIxTcpK92dlujQty368gS8YJZYyXKBGLHdE6tZFbrwfl76RTWv4WnO-l8lE3BmQlFMJMQAuioQ3lQhHSYdxSUXWkbOvk9XGfbVwN0DapfK_MgenhjdVr2btrWROKk18yON0ZrB-Enc-XctLS85U1p-waJ_b9Ppl3VyOEKAcdpu4rC26camSCElQJltC3D9DHO7GnepWK1bZz6R-byVTOK05EySs-pZ09QqXVwqAbZ6HTST8IOD0ISEyE29irMQS5-P7tP9iv_85e_Dhk391j16BMXAdnxqidDYcg3YGNdyF46P6-AkZymrk_nZPTzMn9zJFf9pkchw</recordid><startdate>20210805</startdate><enddate>20210805</enddate><creator>Tabeta, Hiromitsu</creator><creator>Watanabe, Shunsuke</creator><creator>Fukuda, Keita</creator><creator>Gunji, Shizuka</creator><creator>Asaoka, Mariko</creator><creator>Hirai, Masami Yokota</creator><creator>Seo, Mitsunori</creator><creator>Tsukaya, Hirokazu</creator><creator>Ferjani, Ali</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8325-7984</orcidid><orcidid>https://orcid.org/0000-0001-6206-1923</orcidid><orcidid>https://orcid.org/0000-0003-1157-3261</orcidid><orcidid>https://orcid.org/0000-0002-4430-4538</orcidid><orcidid>https://orcid.org/0000-0003-0802-6208</orcidid></search><sort><creationdate>20210805</creationdate><title>An auxin signaling network translates low-sugar-state input into compensated cell enlargement in the fugu5 cotyledon</title><author>Tabeta, Hiromitsu ; Watanabe, Shunsuke ; Fukuda, Keita ; Gunji, Shizuka ; Asaoka, Mariko ; Hirai, Masami Yokota ; Seo, Mitsunori ; Tsukaya, Hirokazu ; Ferjani, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c737t-eb892e9dfb7ce25d8591a730ea904205202869f5779da9e5e24d4bc29bea5743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine triphosphatase</topic><topic>Auxin</topic><topic>Biology and Life Sciences</topic><topic>Butyric acid</topic><topic>Cell growth</topic><topic>Cell size</topic><topic>Cellular signal transduction</topic><topic>Cotyledons</topic><topic>Enlargement</topic><topic>Genetic aspects</topic><topic>Germination</topic><topic>Gluconeogenesis</topic><topic>H+-transporting ATPase</topic><topic>Human health and pathology</topic><topic>Hydrogen</topic><topic>Indoleacetic acid</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Molecular modelling</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Nutrient reserves</topic><topic>Physiological aspects</topic><topic>Research and Analysis Methods</topic><topic>Seed germination</topic><topic>Seedlings</topic><topic>Seeds</topic><topic>Sugar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tabeta, Hiromitsu</creatorcontrib><creatorcontrib>Watanabe, Shunsuke</creatorcontrib><creatorcontrib>Fukuda, Keita</creatorcontrib><creatorcontrib>Gunji, Shizuka</creatorcontrib><creatorcontrib>Asaoka, Mariko</creatorcontrib><creatorcontrib>Hirai, Masami Yokota</creatorcontrib><creatorcontrib>Seo, Mitsunori</creatorcontrib><creatorcontrib>Tsukaya, Hirokazu</creatorcontrib><creatorcontrib>Ferjani, Ali</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tabeta, Hiromitsu</au><au>Watanabe, Shunsuke</au><au>Fukuda, Keita</au><au>Gunji, Shizuka</au><au>Asaoka, Mariko</au><au>Hirai, Masami Yokota</au><au>Seo, Mitsunori</au><au>Tsukaya, Hirokazu</au><au>Ferjani, Ali</au><au>Sicard, Adrien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An auxin signaling network translates low-sugar-state input into compensated cell enlargement in the fugu5 cotyledon</atitle><jtitle>PLoS genetics</jtitle><date>2021-08-05</date><risdate>2021</risdate><volume>17</volume><issue>8</issue><spage>e1009674</spage><epage>e1009674</epage><pages>e1009674-e1009674</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>In plants, the effective mobilization of seed nutrient reserves is crucial during germination and for seedling establishment. The Arabidopsis H.sup.+ -PPase-loss-of-function fugu5 mutants exhibit a reduced number of cells in the cotyledons. This leads to enhanced post-mitotic cell expansion, also known as compensated cell enlargement (CCE). While decreased cell numbers have been ascribed to reduced gluconeogenesis from triacylglycerol, the molecular mechanisms underlying CCE remain ill-known. Given the role of indole 3-butyric acid (IBA) in cotyledon development, and because CCE in fugu5 is specifically and completely cancelled by ech2, which shows defective IBA-to-indoleacetic acid (IAA) conversion, IBA has emerged as a potential regulator of CCE. Here, to further illuminate the regulatory role of IBA in CCE, we used a series of high-order mutants that harbored a specific defect in IBA-to-IAA conversion, IBA efflux, IAA signaling, or vacuolar type H.sup.+ -ATPase (V-ATPase) activity and analyzed the genetic interaction with fugu5-1. We found that while CCE in fugu5 was promoted by IBA, defects in IBA-to-IAA conversion, IAA response, or the V-ATPase activity alone cancelled CCE. Consistently, endogenous IAA in fugu5 reached a level 2.2-fold higher than the WT in 1-week-old seedlings. Finally, the above findings were validated in icl-2, mls-2, pck1-2 and ibr10 mutants, in which CCE was triggered by low sugar contents. This provides a scenario in which following seed germination, the low-sugar-state triggers IAA synthesis, leading to CCE through the activation of the V-ATPase. These findings illustrate how fine-tuning cell and organ size regulation depend on interplays between metabolism and IAA levels in plants.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34351899</pmid><doi>10.1371/journal.pgen.1009674</doi><orcidid>https://orcid.org/0000-0001-8325-7984</orcidid><orcidid>https://orcid.org/0000-0001-6206-1923</orcidid><orcidid>https://orcid.org/0000-0003-1157-3261</orcidid><orcidid>https://orcid.org/0000-0002-4430-4538</orcidid><orcidid>https://orcid.org/0000-0003-0802-6208</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2021-08, Vol.17 (8), p.e1009674-e1009674
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2573455720
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Adenosine triphosphatase
Auxin
Biology and Life Sciences
Butyric acid
Cell growth
Cell size
Cellular signal transduction
Cotyledons
Enlargement
Genetic aspects
Germination
Gluconeogenesis
H+-transporting ATPase
Human health and pathology
Hydrogen
Indoleacetic acid
Life Sciences
Metabolism
Metabolites
Molecular modelling
Mutants
Mutation
Nutrient reserves
Physiological aspects
Research and Analysis Methods
Seed germination
Seedlings
Seeds
Sugar
title An auxin signaling network translates low-sugar-state input into compensated cell enlargement in the fugu5 cotyledon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A38%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20auxin%20signaling%20network%20translates%20low-sugar-state%20input%20into%20compensated%20cell%20enlargement%20in%20the%20fugu5%20cotyledon&rft.jtitle=PLoS%20genetics&rft.au=Tabeta,%20Hiromitsu&rft.date=2021-08-05&rft.volume=17&rft.issue=8&rft.spage=e1009674&rft.epage=e1009674&rft.pages=e1009674-e1009674&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1009674&rft_dat=%3Cgale_plos_%3EA673927671%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2573455720&rft_id=info:pmid/34351899&rft_galeid=A673927671&rft_doaj_id=oai_doaj_org_article_69a0159ede9c4c479a33f11d496f32d8&rfr_iscdi=true