A comparison of prediction approaches for identifying prodromal Parkinson disease

Identifying people with Parkinson disease during the prodromal period, including via algorithms in administrative claims data, is an important research and clinical priority. We sought to improve upon an existing penalized logistic regression model, based on diagnosis and procedure codes, by adding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-08, Vol.16 (8), p.e0256592
Hauptverfasser: Warden, Mark N, Searles Nielsen, Susan, Camacho-Soto, Alejandra, Garnett, Roman, Racette, Brad A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page e0256592
container_title PloS one
container_volume 16
creator Warden, Mark N
Searles Nielsen, Susan
Camacho-Soto, Alejandra
Garnett, Roman
Racette, Brad A
description Identifying people with Parkinson disease during the prodromal period, including via algorithms in administrative claims data, is an important research and clinical priority. We sought to improve upon an existing penalized logistic regression model, based on diagnosis and procedure codes, by adding prescription medication data or using machine learning. Using Medicare Part D beneficiaries age 66-90 from a population-based case-control study of incident Parkinson disease, we fit a penalized logistic regression both with and without Part D data. We also built a predictive algorithm using a random forest classifier for comparison. In a combined approach, we introduced the probability of Parkinson disease from the random forest, as a predictor in the penalized regression model. We calculated the receiver operator characteristic area under the curve (AUC) for each model. All models performed well, with AUCs ranging from 0.824 (simplest model) to 0.835 (combined approach). We conclude that medication data and random forests improve Parkinson disease prediction, but are not essential.
doi_str_mv 10.1371/journal.pone.0256592
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2564928704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A673321004</galeid><doaj_id>oai_doaj_org_article_4f17074530b341eaa642d598bcba33fe</doaj_id><sourcerecordid>A673321004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-c9b9c4433606a765eef40b36e724803ffc13f04b799355a533e7779cc00b5d093</originalsourceid><addsrcrecordid>eNqNkl2L1DAYhYso7of-A9GCIHgxY9o3TZobYVj8GFhYv2_D2zSZydg2NenI7r833ekuU1CQXrRNn3N6OJwkeZaRZQY8e7Nze99hs-xdp5ckL1gh8gfJaSYgX7CcwMOj55PkLIQdIQWUjD1OToBS4IyQ0-TzKlWu7dHb4LrUmbT3urZqsPEN-947VFsdUuN8amvdDdbc2G4TKVd712KTfkL_03ajuLZBY9BPkkcGm6CfTvfz5Pv7d98uPi4urz6sL1aXC8VEPiyUqISKMYARhpwVWhtKKmCa57QkYIzKwBBacSGgKLAA0JxzoRQhVVETAefJi4Nv37ggpzaCjEVQkZec0EisD0TtcCd7b1v0N9KhlbcHzm8k-sGqRktqMk44LSBGoJlGZDSvC1FWqkIAo6PX2-lv-6rVtYpVeGxmpvMvnd3KjfstSygF5WPcl5OBd7_2Ogz_iDxRG4ypbGdcNFOtDUquGAfIM3JLLf9CxavWrVVxD8bG85ng9UwQmUFfDxvchyDXX7_8P3v1Y86-OmK3GpthG1yzH-cT5iA9gMq7ELw2981lRI5zvmtDjnOW05yj7Plx6_eiu_3CH8YI71U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564928704</pqid></control><display><type>article</type><title>A comparison of prediction approaches for identifying prodromal Parkinson disease</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Warden, Mark N ; Searles Nielsen, Susan ; Camacho-Soto, Alejandra ; Garnett, Roman ; Racette, Brad A</creator><contributor>Gadekallu, Thippa Reddy</contributor><creatorcontrib>Warden, Mark N ; Searles Nielsen, Susan ; Camacho-Soto, Alejandra ; Garnett, Roman ; Racette, Brad A ; Gadekallu, Thippa Reddy</creatorcontrib><description>Identifying people with Parkinson disease during the prodromal period, including via algorithms in administrative claims data, is an important research and clinical priority. We sought to improve upon an existing penalized logistic regression model, based on diagnosis and procedure codes, by adding prescription medication data or using machine learning. Using Medicare Part D beneficiaries age 66-90 from a population-based case-control study of incident Parkinson disease, we fit a penalized logistic regression both with and without Part D data. We also built a predictive algorithm using a random forest classifier for comparison. In a combined approach, we introduced the probability of Parkinson disease from the random forest, as a predictor in the penalized regression model. We calculated the receiver operator characteristic area under the curve (AUC) for each model. All models performed well, with AUCs ranging from 0.824 (simplest model) to 0.835 (combined approach). We conclude that medication data and random forests improve Parkinson disease prediction, but are not essential.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0256592</identifier><identifier>PMID: 34437600</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Age ; Aged ; Aged, 80 and over ; Algorithms ; Beneficiaries ; Case-Control Studies ; Codes ; Computer and Information Sciences ; Computer-aided medical diagnosis ; Diagnosis ; Female ; Government programs ; Humans ; Learning algorithms ; Machine learning ; Male ; Medical informatics ; Medicare ; Medicine ; Medicine and Health Sciences ; Methods ; Middle Aged ; Models, Theoretical ; Movement disorders ; Neurodegenerative diseases ; Neurology ; Parkinson Disease - diagnosis ; Parkinson's disease ; Physical Sciences ; Population ; Population studies ; Probability ; Prodromal Symptoms ; Regression models ; Research and Analysis Methods ; Social Sciences ; Statistical analysis ; United States ; Variables</subject><ispartof>PloS one, 2021-08, Vol.16 (8), p.e0256592</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Warden et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Warden et al 2021 Warden et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-c9b9c4433606a765eef40b36e724803ffc13f04b799355a533e7779cc00b5d093</citedby><cites>FETCH-LOGICAL-c692t-c9b9c4433606a765eef40b36e724803ffc13f04b799355a533e7779cc00b5d093</cites><orcidid>0000-0002-1630-6018 ; 0000-0002-9582-8235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8389479/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8389479/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23849,27907,27908,53774,53776,79351,79352</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34437600$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gadekallu, Thippa Reddy</contributor><creatorcontrib>Warden, Mark N</creatorcontrib><creatorcontrib>Searles Nielsen, Susan</creatorcontrib><creatorcontrib>Camacho-Soto, Alejandra</creatorcontrib><creatorcontrib>Garnett, Roman</creatorcontrib><creatorcontrib>Racette, Brad A</creatorcontrib><title>A comparison of prediction approaches for identifying prodromal Parkinson disease</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Identifying people with Parkinson disease during the prodromal period, including via algorithms in administrative claims data, is an important research and clinical priority. We sought to improve upon an existing penalized logistic regression model, based on diagnosis and procedure codes, by adding prescription medication data or using machine learning. Using Medicare Part D beneficiaries age 66-90 from a population-based case-control study of incident Parkinson disease, we fit a penalized logistic regression both with and without Part D data. We also built a predictive algorithm using a random forest classifier for comparison. In a combined approach, we introduced the probability of Parkinson disease from the random forest, as a predictor in the penalized regression model. We calculated the receiver operator characteristic area under the curve (AUC) for each model. All models performed well, with AUCs ranging from 0.824 (simplest model) to 0.835 (combined approach). We conclude that medication data and random forests improve Parkinson disease prediction, but are not essential.</description><subject>Age</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Beneficiaries</subject><subject>Case-Control Studies</subject><subject>Codes</subject><subject>Computer and Information Sciences</subject><subject>Computer-aided medical diagnosis</subject><subject>Diagnosis</subject><subject>Female</subject><subject>Government programs</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Male</subject><subject>Medical informatics</subject><subject>Medicare</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Models, Theoretical</subject><subject>Movement disorders</subject><subject>Neurodegenerative diseases</subject><subject>Neurology</subject><subject>Parkinson Disease - diagnosis</subject><subject>Parkinson's disease</subject><subject>Physical Sciences</subject><subject>Population</subject><subject>Population studies</subject><subject>Probability</subject><subject>Prodromal Symptoms</subject><subject>Regression models</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Statistical analysis</subject><subject>United States</subject><subject>Variables</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAYhYso7of-A9GCIHgxY9o3TZobYVj8GFhYv2_D2zSZydg2NenI7r833ekuU1CQXrRNn3N6OJwkeZaRZQY8e7Nze99hs-xdp5ckL1gh8gfJaSYgX7CcwMOj55PkLIQdIQWUjD1OToBS4IyQ0-TzKlWu7dHb4LrUmbT3urZqsPEN-947VFsdUuN8amvdDdbc2G4TKVd712KTfkL_03ajuLZBY9BPkkcGm6CfTvfz5Pv7d98uPi4urz6sL1aXC8VEPiyUqISKMYARhpwVWhtKKmCa57QkYIzKwBBacSGgKLAA0JxzoRQhVVETAefJi4Nv37ggpzaCjEVQkZec0EisD0TtcCd7b1v0N9KhlbcHzm8k-sGqRktqMk44LSBGoJlGZDSvC1FWqkIAo6PX2-lv-6rVtYpVeGxmpvMvnd3KjfstSygF5WPcl5OBd7_2Ogz_iDxRG4ypbGdcNFOtDUquGAfIM3JLLf9CxavWrVVxD8bG85ng9UwQmUFfDxvchyDXX7_8P3v1Y86-OmK3GpthG1yzH-cT5iA9gMq7ELw2981lRI5zvmtDjnOW05yj7Plx6_eiu_3CH8YI71U</recordid><startdate>20210826</startdate><enddate>20210826</enddate><creator>Warden, Mark N</creator><creator>Searles Nielsen, Susan</creator><creator>Camacho-Soto, Alejandra</creator><creator>Garnett, Roman</creator><creator>Racette, Brad A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1630-6018</orcidid><orcidid>https://orcid.org/0000-0002-9582-8235</orcidid></search><sort><creationdate>20210826</creationdate><title>A comparison of prediction approaches for identifying prodromal Parkinson disease</title><author>Warden, Mark N ; Searles Nielsen, Susan ; Camacho-Soto, Alejandra ; Garnett, Roman ; Racette, Brad A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-c9b9c4433606a765eef40b36e724803ffc13f04b799355a533e7779cc00b5d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Age</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Beneficiaries</topic><topic>Case-Control Studies</topic><topic>Codes</topic><topic>Computer and Information Sciences</topic><topic>Computer-aided medical diagnosis</topic><topic>Diagnosis</topic><topic>Female</topic><topic>Government programs</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Male</topic><topic>Medical informatics</topic><topic>Medicare</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Models, Theoretical</topic><topic>Movement disorders</topic><topic>Neurodegenerative diseases</topic><topic>Neurology</topic><topic>Parkinson Disease - diagnosis</topic><topic>Parkinson's disease</topic><topic>Physical Sciences</topic><topic>Population</topic><topic>Population studies</topic><topic>Probability</topic><topic>Prodromal Symptoms</topic><topic>Regression models</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Statistical analysis</topic><topic>United States</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Warden, Mark N</creatorcontrib><creatorcontrib>Searles Nielsen, Susan</creatorcontrib><creatorcontrib>Camacho-Soto, Alejandra</creatorcontrib><creatorcontrib>Garnett, Roman</creatorcontrib><creatorcontrib>Racette, Brad A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Warden, Mark N</au><au>Searles Nielsen, Susan</au><au>Camacho-Soto, Alejandra</au><au>Garnett, Roman</au><au>Racette, Brad A</au><au>Gadekallu, Thippa Reddy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of prediction approaches for identifying prodromal Parkinson disease</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-08-26</date><risdate>2021</risdate><volume>16</volume><issue>8</issue><spage>e0256592</spage><pages>e0256592-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Identifying people with Parkinson disease during the prodromal period, including via algorithms in administrative claims data, is an important research and clinical priority. We sought to improve upon an existing penalized logistic regression model, based on diagnosis and procedure codes, by adding prescription medication data or using machine learning. Using Medicare Part D beneficiaries age 66-90 from a population-based case-control study of incident Parkinson disease, we fit a penalized logistic regression both with and without Part D data. We also built a predictive algorithm using a random forest classifier for comparison. In a combined approach, we introduced the probability of Parkinson disease from the random forest, as a predictor in the penalized regression model. We calculated the receiver operator characteristic area under the curve (AUC) for each model. All models performed well, with AUCs ranging from 0.824 (simplest model) to 0.835 (combined approach). We conclude that medication data and random forests improve Parkinson disease prediction, but are not essential.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34437600</pmid><doi>10.1371/journal.pone.0256592</doi><tpages>e0256592</tpages><orcidid>https://orcid.org/0000-0002-1630-6018</orcidid><orcidid>https://orcid.org/0000-0002-9582-8235</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-08, Vol.16 (8), p.e0256592
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2564928704
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Age
Aged
Aged, 80 and over
Algorithms
Beneficiaries
Case-Control Studies
Codes
Computer and Information Sciences
Computer-aided medical diagnosis
Diagnosis
Female
Government programs
Humans
Learning algorithms
Machine learning
Male
Medical informatics
Medicare
Medicine
Medicine and Health Sciences
Methods
Middle Aged
Models, Theoretical
Movement disorders
Neurodegenerative diseases
Neurology
Parkinson Disease - diagnosis
Parkinson's disease
Physical Sciences
Population
Population studies
Probability
Prodromal Symptoms
Regression models
Research and Analysis Methods
Social Sciences
Statistical analysis
United States
Variables
title A comparison of prediction approaches for identifying prodromal Parkinson disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20prediction%20approaches%20for%20identifying%20prodromal%20Parkinson%20disease&rft.jtitle=PloS%20one&rft.au=Warden,%20Mark%20N&rft.date=2021-08-26&rft.volume=16&rft.issue=8&rft.spage=e0256592&rft.pages=e0256592-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0256592&rft_dat=%3Cgale_plos_%3EA673321004%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564928704&rft_id=info:pmid/34437600&rft_galeid=A673321004&rft_doaj_id=oai_doaj_org_article_4f17074530b341eaa642d598bcba33fe&rfr_iscdi=true