A comparison of prediction approaches for identifying prodromal Parkinson disease
Identifying people with Parkinson disease during the prodromal period, including via algorithms in administrative claims data, is an important research and clinical priority. We sought to improve upon an existing penalized logistic regression model, based on diagnosis and procedure codes, by adding...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-08, Vol.16 (8), p.e0256592 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | e0256592 |
container_title | PloS one |
container_volume | 16 |
creator | Warden, Mark N Searles Nielsen, Susan Camacho-Soto, Alejandra Garnett, Roman Racette, Brad A |
description | Identifying people with Parkinson disease during the prodromal period, including via algorithms in administrative claims data, is an important research and clinical priority. We sought to improve upon an existing penalized logistic regression model, based on diagnosis and procedure codes, by adding prescription medication data or using machine learning. Using Medicare Part D beneficiaries age 66-90 from a population-based case-control study of incident Parkinson disease, we fit a penalized logistic regression both with and without Part D data. We also built a predictive algorithm using a random forest classifier for comparison. In a combined approach, we introduced the probability of Parkinson disease from the random forest, as a predictor in the penalized regression model. We calculated the receiver operator characteristic area under the curve (AUC) for each model. All models performed well, with AUCs ranging from 0.824 (simplest model) to 0.835 (combined approach). We conclude that medication data and random forests improve Parkinson disease prediction, but are not essential. |
doi_str_mv | 10.1371/journal.pone.0256592 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2564928704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A673321004</galeid><doaj_id>oai_doaj_org_article_4f17074530b341eaa642d598bcba33fe</doaj_id><sourcerecordid>A673321004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-c9b9c4433606a765eef40b36e724803ffc13f04b799355a533e7779cc00b5d093</originalsourceid><addsrcrecordid>eNqNkl2L1DAYhYso7of-A9GCIHgxY9o3TZobYVj8GFhYv2_D2zSZydg2NenI7r833ekuU1CQXrRNn3N6OJwkeZaRZQY8e7Nze99hs-xdp5ckL1gh8gfJaSYgX7CcwMOj55PkLIQdIQWUjD1OToBS4IyQ0-TzKlWu7dHb4LrUmbT3urZqsPEN-947VFsdUuN8amvdDdbc2G4TKVd712KTfkL_03ajuLZBY9BPkkcGm6CfTvfz5Pv7d98uPi4urz6sL1aXC8VEPiyUqISKMYARhpwVWhtKKmCa57QkYIzKwBBacSGgKLAA0JxzoRQhVVETAefJi4Nv37ggpzaCjEVQkZec0EisD0TtcCd7b1v0N9KhlbcHzm8k-sGqRktqMk44LSBGoJlGZDSvC1FWqkIAo6PX2-lv-6rVtYpVeGxmpvMvnd3KjfstSygF5WPcl5OBd7_2Ogz_iDxRG4ypbGdcNFOtDUquGAfIM3JLLf9CxavWrVVxD8bG85ng9UwQmUFfDxvchyDXX7_8P3v1Y86-OmK3GpthG1yzH-cT5iA9gMq7ELw2981lRI5zvmtDjnOW05yj7Plx6_eiu_3CH8YI71U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564928704</pqid></control><display><type>article</type><title>A comparison of prediction approaches for identifying prodromal Parkinson disease</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Warden, Mark N ; Searles Nielsen, Susan ; Camacho-Soto, Alejandra ; Garnett, Roman ; Racette, Brad A</creator><contributor>Gadekallu, Thippa Reddy</contributor><creatorcontrib>Warden, Mark N ; Searles Nielsen, Susan ; Camacho-Soto, Alejandra ; Garnett, Roman ; Racette, Brad A ; Gadekallu, Thippa Reddy</creatorcontrib><description>Identifying people with Parkinson disease during the prodromal period, including via algorithms in administrative claims data, is an important research and clinical priority. We sought to improve upon an existing penalized logistic regression model, based on diagnosis and procedure codes, by adding prescription medication data or using machine learning. Using Medicare Part D beneficiaries age 66-90 from a population-based case-control study of incident Parkinson disease, we fit a penalized logistic regression both with and without Part D data. We also built a predictive algorithm using a random forest classifier for comparison. In a combined approach, we introduced the probability of Parkinson disease from the random forest, as a predictor in the penalized regression model. We calculated the receiver operator characteristic area under the curve (AUC) for each model. All models performed well, with AUCs ranging from 0.824 (simplest model) to 0.835 (combined approach). We conclude that medication data and random forests improve Parkinson disease prediction, but are not essential.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0256592</identifier><identifier>PMID: 34437600</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Age ; Aged ; Aged, 80 and over ; Algorithms ; Beneficiaries ; Case-Control Studies ; Codes ; Computer and Information Sciences ; Computer-aided medical diagnosis ; Diagnosis ; Female ; Government programs ; Humans ; Learning algorithms ; Machine learning ; Male ; Medical informatics ; Medicare ; Medicine ; Medicine and Health Sciences ; Methods ; Middle Aged ; Models, Theoretical ; Movement disorders ; Neurodegenerative diseases ; Neurology ; Parkinson Disease - diagnosis ; Parkinson's disease ; Physical Sciences ; Population ; Population studies ; Probability ; Prodromal Symptoms ; Regression models ; Research and Analysis Methods ; Social Sciences ; Statistical analysis ; United States ; Variables</subject><ispartof>PloS one, 2021-08, Vol.16 (8), p.e0256592</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Warden et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Warden et al 2021 Warden et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-c9b9c4433606a765eef40b36e724803ffc13f04b799355a533e7779cc00b5d093</citedby><cites>FETCH-LOGICAL-c692t-c9b9c4433606a765eef40b36e724803ffc13f04b799355a533e7779cc00b5d093</cites><orcidid>0000-0002-1630-6018 ; 0000-0002-9582-8235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8389479/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8389479/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23849,27907,27908,53774,53776,79351,79352</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34437600$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gadekallu, Thippa Reddy</contributor><creatorcontrib>Warden, Mark N</creatorcontrib><creatorcontrib>Searles Nielsen, Susan</creatorcontrib><creatorcontrib>Camacho-Soto, Alejandra</creatorcontrib><creatorcontrib>Garnett, Roman</creatorcontrib><creatorcontrib>Racette, Brad A</creatorcontrib><title>A comparison of prediction approaches for identifying prodromal Parkinson disease</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Identifying people with Parkinson disease during the prodromal period, including via algorithms in administrative claims data, is an important research and clinical priority. We sought to improve upon an existing penalized logistic regression model, based on diagnosis and procedure codes, by adding prescription medication data or using machine learning. Using Medicare Part D beneficiaries age 66-90 from a population-based case-control study of incident Parkinson disease, we fit a penalized logistic regression both with and without Part D data. We also built a predictive algorithm using a random forest classifier for comparison. In a combined approach, we introduced the probability of Parkinson disease from the random forest, as a predictor in the penalized regression model. We calculated the receiver operator characteristic area under the curve (AUC) for each model. All models performed well, with AUCs ranging from 0.824 (simplest model) to 0.835 (combined approach). We conclude that medication data and random forests improve Parkinson disease prediction, but are not essential.</description><subject>Age</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Beneficiaries</subject><subject>Case-Control Studies</subject><subject>Codes</subject><subject>Computer and Information Sciences</subject><subject>Computer-aided medical diagnosis</subject><subject>Diagnosis</subject><subject>Female</subject><subject>Government programs</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Male</subject><subject>Medical informatics</subject><subject>Medicare</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Models, Theoretical</subject><subject>Movement disorders</subject><subject>Neurodegenerative diseases</subject><subject>Neurology</subject><subject>Parkinson Disease - diagnosis</subject><subject>Parkinson's disease</subject><subject>Physical Sciences</subject><subject>Population</subject><subject>Population studies</subject><subject>Probability</subject><subject>Prodromal Symptoms</subject><subject>Regression models</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Statistical analysis</subject><subject>United States</subject><subject>Variables</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAYhYso7of-A9GCIHgxY9o3TZobYVj8GFhYv2_D2zSZydg2NenI7r833ekuU1CQXrRNn3N6OJwkeZaRZQY8e7Nze99hs-xdp5ckL1gh8gfJaSYgX7CcwMOj55PkLIQdIQWUjD1OToBS4IyQ0-TzKlWu7dHb4LrUmbT3urZqsPEN-947VFsdUuN8amvdDdbc2G4TKVd712KTfkL_03ajuLZBY9BPkkcGm6CfTvfz5Pv7d98uPi4urz6sL1aXC8VEPiyUqISKMYARhpwVWhtKKmCa57QkYIzKwBBacSGgKLAA0JxzoRQhVVETAefJi4Nv37ggpzaCjEVQkZec0EisD0TtcCd7b1v0N9KhlbcHzm8k-sGqRktqMk44LSBGoJlGZDSvC1FWqkIAo6PX2-lv-6rVtYpVeGxmpvMvnd3KjfstSygF5WPcl5OBd7_2Ogz_iDxRG4ypbGdcNFOtDUquGAfIM3JLLf9CxavWrVVxD8bG85ng9UwQmUFfDxvchyDXX7_8P3v1Y86-OmK3GpthG1yzH-cT5iA9gMq7ELw2981lRI5zvmtDjnOW05yj7Plx6_eiu_3CH8YI71U</recordid><startdate>20210826</startdate><enddate>20210826</enddate><creator>Warden, Mark N</creator><creator>Searles Nielsen, Susan</creator><creator>Camacho-Soto, Alejandra</creator><creator>Garnett, Roman</creator><creator>Racette, Brad A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1630-6018</orcidid><orcidid>https://orcid.org/0000-0002-9582-8235</orcidid></search><sort><creationdate>20210826</creationdate><title>A comparison of prediction approaches for identifying prodromal Parkinson disease</title><author>Warden, Mark N ; Searles Nielsen, Susan ; Camacho-Soto, Alejandra ; Garnett, Roman ; Racette, Brad A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-c9b9c4433606a765eef40b36e724803ffc13f04b799355a533e7779cc00b5d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Age</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Beneficiaries</topic><topic>Case-Control Studies</topic><topic>Codes</topic><topic>Computer and Information Sciences</topic><topic>Computer-aided medical diagnosis</topic><topic>Diagnosis</topic><topic>Female</topic><topic>Government programs</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Male</topic><topic>Medical informatics</topic><topic>Medicare</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Models, Theoretical</topic><topic>Movement disorders</topic><topic>Neurodegenerative diseases</topic><topic>Neurology</topic><topic>Parkinson Disease - diagnosis</topic><topic>Parkinson's disease</topic><topic>Physical Sciences</topic><topic>Population</topic><topic>Population studies</topic><topic>Probability</topic><topic>Prodromal Symptoms</topic><topic>Regression models</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Statistical analysis</topic><topic>United States</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Warden, Mark N</creatorcontrib><creatorcontrib>Searles Nielsen, Susan</creatorcontrib><creatorcontrib>Camacho-Soto, Alejandra</creatorcontrib><creatorcontrib>Garnett, Roman</creatorcontrib><creatorcontrib>Racette, Brad A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Warden, Mark N</au><au>Searles Nielsen, Susan</au><au>Camacho-Soto, Alejandra</au><au>Garnett, Roman</au><au>Racette, Brad A</au><au>Gadekallu, Thippa Reddy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of prediction approaches for identifying prodromal Parkinson disease</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-08-26</date><risdate>2021</risdate><volume>16</volume><issue>8</issue><spage>e0256592</spage><pages>e0256592-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Identifying people with Parkinson disease during the prodromal period, including via algorithms in administrative claims data, is an important research and clinical priority. We sought to improve upon an existing penalized logistic regression model, based on diagnosis and procedure codes, by adding prescription medication data or using machine learning. Using Medicare Part D beneficiaries age 66-90 from a population-based case-control study of incident Parkinson disease, we fit a penalized logistic regression both with and without Part D data. We also built a predictive algorithm using a random forest classifier for comparison. In a combined approach, we introduced the probability of Parkinson disease from the random forest, as a predictor in the penalized regression model. We calculated the receiver operator characteristic area under the curve (AUC) for each model. All models performed well, with AUCs ranging from 0.824 (simplest model) to 0.835 (combined approach). We conclude that medication data and random forests improve Parkinson disease prediction, but are not essential.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34437600</pmid><doi>10.1371/journal.pone.0256592</doi><tpages>e0256592</tpages><orcidid>https://orcid.org/0000-0002-1630-6018</orcidid><orcidid>https://orcid.org/0000-0002-9582-8235</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-08, Vol.16 (8), p.e0256592 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2564928704 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Age Aged Aged, 80 and over Algorithms Beneficiaries Case-Control Studies Codes Computer and Information Sciences Computer-aided medical diagnosis Diagnosis Female Government programs Humans Learning algorithms Machine learning Male Medical informatics Medicare Medicine Medicine and Health Sciences Methods Middle Aged Models, Theoretical Movement disorders Neurodegenerative diseases Neurology Parkinson Disease - diagnosis Parkinson's disease Physical Sciences Population Population studies Probability Prodromal Symptoms Regression models Research and Analysis Methods Social Sciences Statistical analysis United States Variables |
title | A comparison of prediction approaches for identifying prodromal Parkinson disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20prediction%20approaches%20for%20identifying%20prodromal%20Parkinson%20disease&rft.jtitle=PloS%20one&rft.au=Warden,%20Mark%20N&rft.date=2021-08-26&rft.volume=16&rft.issue=8&rft.spage=e0256592&rft.pages=e0256592-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0256592&rft_dat=%3Cgale_plos_%3EA673321004%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564928704&rft_id=info:pmid/34437600&rft_galeid=A673321004&rft_doaj_id=oai_doaj_org_article_4f17074530b341eaa642d598bcba33fe&rfr_iscdi=true |